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Abstract Polychaetes are famous for their outstanding ability
to regenerate lost body parts. Moreover, these worms possess
a number of ancestral features in anatomy, development, and
genetics, making them particularly suitable for comparative
studies. Thus, fundamental as well as new undisclosed so far
features of regenerative processes may be revealed, using
polychaetes as a model. In the present work, we aimed to
analyze the molecular basis of caudal regeneration in the ne-
reid polychaete Alitta virens (formerly Nereis virens). We fo-
cused on homologues genes of RNA helicases Vasa and PL10
and ncRNA-binding proteins Piwi. These markers are sug-
gested to play a significant role in maintenance of undifferen-
tiated state of primordial germ cells and multipotent stem cells
across invertebrates. In normal conditions, A. virens homo-
logues of Vasa, PL10, and Piwi were differentially expressed
in the subterminal growth zone and germline cells. Caudal
amputation induced expression of studied genes de novo,
which further accompanies all steps of regeneration. An early
appearance of the transcripts in wound epithelium and internal
blastemal cells suggests involvement of these genes in the
well-known cell dedifferentiation events that assure poly-
chaete regeneration. Provided interpretation of the gene ex-
pression dynamics implies the primary restoration of the py-
gidium and growth zone, which promotes following segment
formation. Obtained results are valuable as a molecular fin-
gerprint of the alterations occurring in regulatory state of lo-
cally regenerating tissues.
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Introduction

Polychaete annelids are well-known to possess widely distrib-
uted regeneration ability after injury and during asexual repro-
duction. Unlike classical invertebrate models of regenerative
biology (hydra and planarians), polychaete worms display a
compound segmented body plan similar to hypothesized
Urbilateria (Balavoine and Adoutte 2003; De Robertis
2008). Recently, an ancestral-type genome organization has
been shown for the nereid polychaete Platynereis dumerilii
(Raible et al. 2005), rising this species as a new valuable
model organism for evolutionary and developmental biology
studies. Assuming an ancestral state of both the developmen-
tal programs and the body molecular architecture in nereid
polychaetes (Kulakova et al. 2007; Denes et al. 2007;
Christodoulou et al. 2010; Simakov et al. 2013), these animals
may be particularly useful for disclosure of ancient and fun-
damental features of regenerative processes.

Nereids and most of other errant (free-moving) poly-
chaetes, regarded as more primitive forms, are incapable of
the head regeneration, but can easily regrow lost tail region.
Unexpectedly, the more derived sedentary (tube-dwelling)
polychaetes as well as oligochaetes in addition to caudal re-
generation possess a great ability of anterior regeneration,
whereas leeches lack epimorphic regeneration at all (Hyman
1940). Owing to well-resolved phylogenetic relationships
among annelids (Struck et al. 2011), a comparative analysis
of molecular and cellular morphogenetic mechanisms can elu-
cidate evolutionary trends of the regenerative ability in the
whole phylum. In that way, it would benefit our understanding
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of the causality of long-distance interspecies differences. In
turn, this knowledge is a key prerequisite of the progress in
regenerative biomedicine.

Nereid worms (Nereis, Perinereis, Platynereis) have long
been studied as models for regeneration, so comprehensive
data describing specific physiological and cellular features of
the process are available. Thus, more in-depth, i.e., molecular,
analysis can be performed. Classical microsurgical studies on
annelids have first indicated an exceptional importance of the
nervous system in regeneration (Hyman 1940; Herlant-
Meewis 1964). Damaged ventral nerve cord is believed to
induce and promote regenerative outgrowth in the stump or
even ectopically. Nereids also display a fascinating and still
enigmatic hormonal control of mutually exclusive normal/
regenerative growth versus sexual maturation (Herlant-
Meewis 1964; Golding 1967).

From an anatomical perspective, after amputation of pos-
terior segments, caudal regeneration in nereids starts by the
constriction of the body wall musculature that brings together
epidermis and intestinal epithelium in the wound surface.
During the wound healing, these two epithelial layers join
each other circumferentially, so that the new anus is
reconstituted at the first few days post amputation (dpa)
(Herlant-Meewis and Nokin 1962; Hofmann 1966; Boilly
1969; Combaz and Boilly 1974). This morphogenesis em-
ploys local tissue remodeling (histolysis, phagocytosis,
wound plug formation, epithelialization) and externally results
in construction of the so-called wound (cicatricial) epithelium
(Herlant-Meewis 1964; Bely 2014). Typically, wounding
(cicatrization) in annelids is free of cell divisions in the stump
(Hill 1970; Bely 2014).

The next step of regeneration is accumulation of the inter-
nal cell mass referred to as the blastema. It consists of mesen-
chymal elements of diverse morphology including highly ba-
sophilic undifferentiated cells. The wound epithelium is also
reported to have activated appearance (enlarged basophilic
cells with hypertrophic nuclei) that indicates undifferentiated
state of the cells (Herlant-Meewis 1964; Hill 1970; Korotkova
1997). Proliferation of epithelial and blastemal cells promotes
further growth of the regenerative bud. Finally, the formation
of a new pygidium, growth zone, and segment primordia man-
ifests the differentiation of the regenerative bud.

To explain the cellular mechanisms of annelid regenera-
tion, a great attention was given to determine the cellular or-
igin of the blastema. The first reports on this topic in oligo-
chaetes described totipotent stem cells (called neoblasts) as the
main source of blastema (Randolph 1892). Injury activates
neoblasts, which become larger, begin to proliferate, and mi-
grate over segments towards the wound. However, some oli-
gochaete species apparently lack population of neoblasts, but
all examined oligochaetes do employ cellular dedifferentiation
in regenerative process (Herlant-Meewis 1964; Yoshida-Noro
and Tochinai 2010; Myohara 2012).

Descriptive histological and EM studies as well as experi-
ments utilizing autoradiography, X-ray irradiation, and trans-
plantations undoubtedly indicated that polychaetes have no
neoblast-like totipotent stem cells (Potswald 1969; Hill
1970; Korotkova 1997). Indeed, polychaete regeneration in-
volves numerous cell dedifferentiation events in the stump
along with retention of the germ layer identity in new tissues
(Boilly 1968, 1969; Marilley and Thouveny 1978; Fontés
et al. 1983; Paulus and Müller 2006; Bely 2014). Diverse
mesodermal derivatives (muscles, cells of the coelomic
(peritoneal) lining, and free coelomocytes) of the last old seg-
ment were found to dedifferentiate and accumulate under the
wound epithelium, forming blastema. These blastemal cells
and dedifferentiated wound epithelium begin to proliferate in
the regenerative bud and redifferentiate afterwards according
to their germ layer origin. The molecular basis underlying
regeneration in polychaetes is still completely undiscovered
and should be revealed.

The so-called germline genes encoding DEAD box RNA
helicase Vasa and ncRNA-binding protein Piwi are the most
famous markers of undifferentiated cells in invertebrates to
date (Gustafson and Wessel 2010; Juliano et al. 2011).
Moreover, these genes are believed to have a broad role in
establishing and maintaining of multipotency (Juliano et al.
2010; Alié et al. 2011). Germline, progenitor, and stem cells
employ a conserved set of genes referred to as the germline
multipotency program (GMP) (Juliano and Wessel 2010;
Solana 2013). To test probable involvement of the GMP in
polychaete caudal regeneration, we have isolated and charac-
terized gene expression patterns of two RNA helicases (Vasa
and PL10) and two paralogues of Piwi in the nereid worm
Alitta virens (formerly Nereis virens).

Material and methods

Animals

MatureA. virensworms were collected in natural habitat at the
White Sea nearby the Marine Biological Station of St.
Petersburg State University. An artificial fertilization and em-
bryos’ culturing were performed as described earlier (Dondua
1975). Juvenile 15-segmented individuals were relaxed in
7.5 %MgCl2 mixed with an artificial sea water 1:1, following
amputation of posterior third of the body carried out under
dissecting binocular microscope. Regenerating worms were
kept in the small Petri dishes in artificial sea water at 18 °C.

Gene cloning and phylogenetic analysis

Total RNAwas isolated from regenerating A. virens of various
ages using TRI Reagent (Sigma) according to the manufac-
turer’s instructions. Mixed RNA from different stages was
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subjected for the reverse transcription using RevertAid First
Strand cDNA Synthesis Kits (Thermo Scientific) and SMAR
Ter RACE cDNA Amplification Kit (Clontech Laboratories).
Degenerate, 5′, and 3′ rapid amplification of cDNA ends
(RACE) polymerase chain reaction (PCR) resulted in
amplicons, which were cloned in the pCRII-TOPO vector
(Invitrogen) and sequenced. Primer sequences and PCR con-
ditions are available upon request. NCBI database accession
numbers for Avi-vasa, Avi-pl10, Avi-piwi1, and Avi-piwi2 are
KM406469–KM406472, correspondingly.

Newly cloned A. virens nucleotide sequences of can-
didate genes were translated into proteins, on which we
mapped conserved domains using the Pfam database
(http://pfam.xfam.org/). Genes’ orthologies were
assigned to the sequences based on BLASTX searches
in the GenBank database of the NCBI. Multiple
alignments followed by maximum likelihood analyses
were performed with algorithms MUSCLE 3.7 and
PhyML 3.0 coupled with approximate likelihood-ratio
test (aLRT) using the Phylogeny.fr online tools (www.
phylogeny.fr).

In situ hybridization and imaging

Intact and amputated A. virens were fixed in 4 % formalde-
hyde on 1.75× PBS overnight at 4 °C. At least 20 individuals
of every stage were analyzed in whole mount in situ hybridi-
zation for each gene. All treatments of the single-color in situ
hybridization using NBT/BCIP staining were performed as
described earlier (Tessmar-Raible et al. 2005). Dig-labeled
RNA probes were prepared according to the manufacturer’s
protocol (Roche). The results were imaged under DIC optics
on an Axio Imager D1 microscope (Carl Zeiss) equipped with
AxioCam ICc5 and MRm (Carl Zeiss) digital cameras.
Artwork was done using Adobe Photoshop, ImageJ, and
AxioVision 4.8 software.

5-Bromo-2′-deoxyuridine incorporation assay

Alive 2 dpa worms were incubated for 4 h in pasteurized sea
water containing 0.1 % of 5-bromo-2′-deoxyuridine (BrdU).
BrdU can be incorporated into the newly synthesized DNA
during the S phase of the cell cycle. As cells pulsed with BrdU
may be photosensitive, the incubation was performed in dark-
ness. Afterwards, the animals were briefly washed in several
changes of fresh sea water and fixed in Bouin solution (picric
acid, saturated; formaldehyde, 37–40 %; glacial acetic acid;
15:5:1) for 2 h. Specimens were washed in 70 % ethanol and
stored at −20 °C for a short period. Following BrdU detection
steps were performed as described earlier (de Rosa et al.
2005).

Results

Using degenerate, 5′, and 3′ RACE PCR, we cloned and re-
constructed the full CDS containing fragments of the four
A. virens genes named Avi-vasa (2.7 kb), Avi-pl10 (2.4 kb),
Avi-piwi1 (3.6 kb), and Avi-piwi2 (3.6 kb). Sequence analysis
revealed typical domains for each of the gene families and
apparent phylogenetic relations of these genes (Figs. 1 and
2). Considering branch lengths and topography of the phylo-
genetic trees, one can see that, A. virens sequences show rel-
atively low divergence speed and constantly cluster with other
lophotrochozoan orthologues.

Avi-vasa and Avi-pl10 are predicted to encode proteins of
808 and 769 amino acid residues, correspondingly. The se-
quences share two conserved domains: the DEAD/DEAH
box helicase and the helicase C-terminal domain, which are
responsible for ATP binding, nucleic acid binding, and un-
winding of nucleic acid duplexes. In addition, six CCHC-
type zinc finger motifs are detected at the N-terminus of
Avi-vasa (Fig. 1a). Phylogenetic tree confirms Avi-vasa and
Avi-pl10 as corresponding representatives of DDX4/Vasa and
DDX3/PL10 subfamilies (Fig. 1b).

Two assembled A. virens Piwi homologues were translated
into proteins of 869 and 951 amino acid residues. Both se-
quences contain characteristic PAZ and Piwi domains
(Fig. 2a). Maximum likelihood analysis revealed two clear
clades separating metazoan Piwi-1-like from Piwi-2-like
genes (Fig. 2b). Thus, two A. virens paralogues were named
Avi-piwi1 and Avi-piwi2. A single known P. dumerilii Piwi
gene clustered with Avi-piwi1.

Next, we have addressed the question what regions of
postlarval A. virens body are distinguished by molecular signs
of multipotency and stemness. Differential expression of
PL10, Vasa, and Piwi homologues were found in a posterior
region of the 10–15-segmented juvenile worms (Fig. 3). These
genes had evident expression in the subterminal growth zone
(GZ). Avi-pl10 was expressed more broadly both in the
posteriormost nascent segments and the GZ (Fig. 3a–c). The
latter domain includes superficial (ectodermal) and internal
(mesodermal) cells arranged into a narrow ring adjacent to
the pygidium. Relatively higher expression level in the meso-
dermal part of the GZ was detected for Avi-vasa and Avi-piwi1
(Fig. 3d–g). These two genes alsomarked germline cells in the
primary gonad and gonial clusters in parapodia (Fig. 4) similar
to described localization of Vasa-positive cells in the poly-
chaete P. dumerilii (Rebscher et al. 2007). Expression of Avi-
piwi2 was detected only in the mesodermal part of the GZ
region (Fig. 3h). Immediately after posterior amputation, there
is no any PL10-, Vasa-, or Piwi-positive cells at the wound
(Fig. 3i–l).

During caudal regeneration of the amputated A. virens ju-
veniles in the used experimental conditions, wound healing is
completed by 1 dpa. Wound epithelium combines with the
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intestinal one, but no outgrowth can be observed in the stump.
The next 1–2 days, epimorphic blastema grows at the site of
wound. Subsequent differentiation of the regenerative bud
shows up for the first time by 3 dpa, when pygidial cirrus
anlagen become apparent. Following regenerative bud seg-
mentation occurs the next days (4–5 dpa). By 6–7 dpa, new
segment primordia start to appear sequentially, indicating re-
sumption of the normal posterior growth.

Among all examined stages, we found no scattered ex-
pressing cells in the whole body (which otherwise could be
interpreted as migrating stem cells). At the time point 1 dpa,
all four studied genes demonstrate nearly identical expression
pattern: it appears de novo at the site of injury. We observed
expression in the wound epithelium and in the internal cells
underneath (Fig. 5a, f, k, p). Proposed dedifferentiated internal
cells are situated on the ventral side of the stump on the level
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of longitudinal muscles or slightly deeper. In particular, the
expression of Avi-pl10 is more extensive around the wound
(Fig. 5a). Avi-vasa- and Avi-piwi2-positive cells show up as
two lateral patches on each side of the anus (Fig. 5f, p). Avi-
piwi1 is expressed in the wound epitheliumwider and stronger
than in the deep mesodermal cells (Fig. 5k). A day later, Avi-
pl10, Avi-vasa, and Avi-piwi1 transcripts are broadly distribut-
ed across the whole regenerative bud (Fig. 5b, g, l), while Avi-
piwi2 signal is found exclusively in the blastema comprised of
accumulating internal cells (Fig. 5q). In the case of each gene,
the internal expressing cells at this stage form a bilateral pro-
trusion covered by the wound epithelium. At the 3 dpa stage,

the expression of Avi-pl10, Avi-vasa, and Avi-piwi1 disappears
from the most terminal region of the regenerative bud corre-
sponding to pygidium anlage (Fig. 5c, h, m). Ectodermal cells
adjacent to this border express Avi-vasa and Avi-piwi1 on rel-
atively higher level than the rest regenerated epidermis does
(Fig. 5h, m). The mesodermal expression domains of all four
genes have a dumbbell-like shape on the ventral side. The
dumbbell-shaped region comprises restricted to three–four
cells in width middle part and wider lateral parts. At 4–
5 dpa, the mesodermal domain extends in lateral parts anteri-
orly, thereby shifting the ventral middle region towards sub-
terminal position (Fig. 5d, i, s). At the similar subterminal
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position, Avi-pl10, Avi-vasa, and Avi-piwi1 are prominently
expressed in the ectodermal epithelium on the dorsal and lat-
eral sides, forming a narrow one- to two-cell-wide stripe
(Fig. 6). Later on, segment primordia become apparent in
the regenerative bud and the expression of Avi-vasa and Avi-
piwi2 gradually fades in the nascent segments (Fig. 5j, t). At
the same time (6 dpa), Avi-pl10 and Avi-piwi1 demonstrate
rather vast expression despite inferred differentiation that have
begun in the anteriormost segmented part of the regenerative
bud (Fig. 5e, o). These differences between gene expression
patterns resemble the situation observed in unamputated
growing worms.

To address the role of cell divisions during regenerative
growth, we performed BrdU (an analog of thymidine) incor-
poration experiment. Cells in the S phase are abundant
throughout regenerative bud at about 2.5 dpa (Fig. 7). BrdU-
labeled nuclei are randomly scattered across the epidermis
(Fig. 7a). A different intensity of the signal in neighboring
nuclei indicates asynchronous proliferation of the ectodermal
cells. The strongest labeling throughout the ectodermal layer
was observed in primordia of the pygidial cirri (Fig. 7b).
Internal BrdU-incorporated nuclei in the blastema are restrict-
ed to ventrolateral positions (Fig. 7b). Thus, labeled mesoder-
mal cells underlay actively proliferating ectodermal ones.

Discussion

In the present study, we have attempted to analyze a molecular
profile of regenerating and normally growing tail of the poly-
chaete A. virens. The used here so-called germline genes were
expressed in the GZ of juvenile worms, corresponding to the
results on other polychaete and oligochaete species (Rebscher
et al. 2007; Dill and Seaver 2008; Oyama et al. 2008; Sugio
et al. 2008; Giani et al. 2011; Kostyuchenko et al. 2012;
Gazave et al. 2013). Thus, PL10, Vasa, and Piwi homologues
can be considered as conserved markers of the annelid GZ.
We suppose this particular localization reflects an undifferen-
tiated state of the GZ cells. At the same time, subtle differ-
ences in the observed expression patterns indicate a complex-
ity of this region.

After tail amputation, an expression of Avi-pl10, Avi-vasa,
Avi-piwi1, and Avi-piwi2 accompanies all steps of caudal re-
generation. Signal of all tested genes emerges de novo in the
both wound epithelium and mesodermal blastemal cells. It
corresponds well with the known cellular dedifferentiation
events initiated at the beginning of polychaete regeneration
(see “Introduction”). Thus, the proposed dedifferentiating ec-
todermal and mesodermal cells seem to utilize the GMP com-
ponents since the initial step of regeneration (0–1 dpa). No
signs of scattered or migrating stem-like cells (i. e., expressing
the GMP genes) were found across all segments of A. virens
body. It further corroborates an absence of multipotent stem
cells in polychaetes. A recent proliferation survey on
regenerating polychaete Dorvillea bermudensis inferred sim-
ilar conclusions (Paulus and Müller 2006). It is opposite to
results obtained on the oligochaete Enchytraeus japonensis,
which possesses a system of Vasa-positive stem cells
(neoblasts). In E. japonensis, neoblasts apparently contribute
to regeneration blastema and are distinct from the germline
and the GZ cells for their molecular fingerprint and prolifera-
tive activity (Yoshida-Noro and Tochinai 2010). The neoblast
lineage also appears much later in the development, suggest-
ing an idea of its evolutionary origin as oligochaete-specific
deviation. Altogether, it implies an essential variability of the
cellular origin of regeneration blastema across annelids.

During the A. virens blastema growth and development (1–
3 dpa), expression patterns demonstrate subtle distinctions
(more general distribution of Avi-pl10 transcript, restricted
mesodermal signal of Avi-piwi2), indicating diversification
of these four genes’ specificity as well as compoundmolecular
architecture of the regenerative bud. According to BrdU assay
results, the regenerative bud increases in size at this time on
account of extensive cellular proliferation. In regenerated epi-
dermis, the area of active BrdU incorporation is rather wider
than expression domains, whereas only a ventrolateral subset
of expressing cells in blastema is proliferative. Hence, the
function of the GMP genes here is not restricted to promoting
cell divisions, while the latter can occur (e.g., in primordia of

b

Avi-vasa

a

Avi-piwi1
Fig. 4 Germline expression of Avi-vasa (a) and Avi-piwi1 (b). Gonial
clusters (black arrows) in the anterior part of each parapodium are
indicated. Ventral views, anterior is to the left

134 Dev Genes Evol (2015) 225:129–138



the pygidial cirri) in cells lacking the expression of tested
genes.

Since differentiation of regenerative bud shows up (3 dpa),
a strong expression of Avi-vasa and Avi-piwi1 delineates the
newly formed subterminal GZ. At 4–6 dpa, the corresponding
subterminal region of expression becomes more apparent,
comprising dorsal ectodermal one- to two-cell-wide arc and
ventral mesodermal three- to four-cell-wide arc. The former
part of the GZ on late stages of regeneration of nereids
P. dumerilii and Perinereis nuntia has the same outward and
a synchronized long-term cell cycle (de Rosa et al. 2005;
Gazave et al. 2013; Niwa et al. 2013). The rest regenerative
bud epidermis excluding the pygidium proliferates actively till
the full segment size has been achieved (de Rosa et al. 2005).

Therefore, we speculate that the initial cell dedifferentiation
and following proliferation aim to restore the pygidium and
the GZ, utilizing a molecular state of the latter. Accordingly,
further regenerative bud growth (3 dpa onward) is based on
the activity of the GZ, which gives rise to new segments and
shifts posteriorly meanwhile.

A few works were published on the molecular basis of
regeneration in polychaetes to date. The results on Piwi gene
expression in regenerating Capitella teleta (Giani et al. 2011)
confirm the use of GMP in somatic undifferentiated cells
across polychaetes. However, the expression was not detected
prior to obvious blastema outgrowth at 3 dpa. Vasa homo-
logue expression but not Piwi was shown for GZ in the
clitellate worm E. japonensis (Sugio et al. 2008). In contrast,
in another oligochaete Tubifex tubifex Vasa is not expressed in
the GZ (Oyama and Shimizu 2007). Probably its function has
been assigned to p68, another RNA helicase of the DEAD box
family (Oyama et al. 2008). In our own studies, we have found
both Vasa and Piwi homologues to be expressed posteriorly
during caudal regeneration and normal growth in naidids
Pristina longiseta and Nais communis (Kostyuchenko et al.
2012). Thus, although some important cellular events of re-
generation in clitellate and non-clitellate annelids might be
different, restoration of the GZ and de novo segmentation
occurs by involving GMP in these processes. Moreover,
Piwi homologues are required for regeneration across as
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Fig. 5 Expression patterns in the regeneratingA. virens: a–e Avi-pl10; f–j
Avi-vasa; k–o Avi-piwi1; p–t Avi-piwi2. Stages of 1, 2, 3, 4–5, and 6 dpa
are shown sequentially in each row. Amputation site (dotted line); wound
epithelium (double arrowheads); mesodermal blastemal cells (white

arrows); and subterminal ectodermal (black arrows) and mesodermal
(black arrowheads) cells comprising the GZ are indicated. Ventral
views, anterior is to the left
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diverse models as flatworm, ascidian, and amphibian species
(Reddien et al. 2005; Rinkevich et al. 2010; Zhu et al. 2012).
In the latter case, the expression of two Piwi paralogues was
activated upon injury in dedifferentiating ectodermal and me-
sodermal cells (Zhu et al. 2012). Depletion of these genes by
morpholino oligonucleotides interfered with forelimb regen-
eration by decreasing cell proliferation and increasing cell

death in the blastema. On the contrary, planarian regeneration
is based on a population of pluripotent stem cells, whose self-
renewal and differentiation are assured by Piwi and Vasa
genes (Reddien et al. 2005; Gustafson and Wessel 2010;
Rink 2013). Considering the profound difference in cellular
mechanisms of tissue restoration in animals, it is extremely
curious how GMP have evolved. Whether an ancestral state
was a reprogramming of the cell fate upon inductive cues or
specification of distinct lineage of germline/stem cells, the
answer might lie at the root of the metazoan tree, in studies
of the very first and oldest multicellular organisms, such as
sponges, which possess both unique totipotent stem cell pop-
ulations (Funayama 2013) and highly conserved developmen-
tal processes (Korotkova 1997; Ereskovsky et al. 2013).

The data regardingHox genes’ profiles during regeneration
of the nereid worms P. dumerilii and A. virens (Pfeifer et al.
2012; Novikova et al. 2013) strengthen our hypothesis of the
primary GZ restoration. Since the expression of the GZ-
specific markers Hox-2 (a mesodermal one) and Hox-3 (an
ectodermal one) is observed quite early (1 dpa onward) and
their following domains refine position of the GZ within the
regenerative bud, one may propose the first labeled
(dedifferentiated) cells to be determined for the GZ fate.
Even further, there are a substantial data proving a sequential
homeogenetic induction during the posterior segmentation of
the nereid polychaeteP. nuntia (Niwa et al. 2013). InP. nuntia,
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Avi-piwi1c d

a b

DAPI

dorsal

Fig. 6 Expression in the 4–5 dpa
regenerative bud: a Avi-pl10; b
Avi-vasa; c–d Avi-piwi1.
Subterminal stripe of epithelial
cells representing ectodermal part
of the GZ (black arrows) is
indicated. Nuclei were
counterstained by DAPI in (c–d).
Dorsal views, anterior is to the left

ba BrdU

ventral ventral deep

*

*

Fig. 7 Cell division pattern revealed by BrdU labeling. a Superficial
focal plane; b deep focal plane. BrdU-positive nuclei of ectodermal
cells (black arrows) and mesodermal blastemal cells (white arrows) in
2.5 dpa regenerative bud are indicated. Asterisks mark primordia of the
pygidial cirri. Ventral views, anterior is to the left
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superficial ectodermal cells at the segment/pygidium bound-
ary are periodically induced to synchronously enter the cell
cycle and remodel the chromatin state. In a similar way, de
Rosa et al. (2005) interpreted the GZ in P. dumerilii. Hence,
we favor dedifferentiation-based explanation of the poly-
chaete GZ in normal condition and after amputation rather
the existence of posterior teloblast-like stem cells.

In future studies, an attempt to reconstruct the whole gene
regulatory network of the polychaete regeneration should be
given, emphasizing on the developmentally relevant transcrip-
tion factors and signaling cascades. Taking into account recent
elaboration of new functional techniques for P. dumerilii
(Backfisch et al. 2014; Bannister et al. 2014; Zantke et al.
2014), dissecting the exact role of GMP genes in polychaetes
would be of great significance. The presented data can serve
as a reference of cellular dedifferentiation and GZ restoration
during caudal regeneration in nereids.
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