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Abstract Little research has been carried out on human
performance in optimization problems, such as the
Traveling Salesman problem (TSP). Studies by Poliva-
nova (1974, Voprosy Psikhologii, 4, 41-51) and by
MacGregor and Ormerod (1996, Perception & Psycho-
physics, 58, 527-539) suggest that: (1) the complexity of
solutions to visually presented TSPs depends on the
number of points on the convex hull; and (2) the per-
ception of optimal structure is an innate tendency of the
visual system, not subject to individual differences. Re-
sults are reported from two experiments. In the first,
measures of the total length and completion speed of
pathways, and a measure of path uncertainty were
compared with optimal solutions produced by an elastic
net algorithm and by several heuristic methods. Perfor-
mance was also compared under instructions to draw the
shortest or the most attractive pathway. In the second,
various measures of performance were compared with
scores on Raven’s advanced progressive matrices
(APM). The number of points on the convex hull did not
determine the relative optimality of solutions, although
both this factor and the total number of points influ-
enced solution speed and path uncertainty. Subjects’
solutions showed appreciable individual differences,
which had a strong correlation with APM scores. The
relation between perceptual organization and the pro-
cess of solving visually presented TSPs is briefly dis-
cussed, as is the potential of optimization for providing a
conceptual framework for the study of intelligence.

Introduction

The Traveling Salesman problem (TSP) is a well-known
type of combinatorial optimization problem, belonging
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to the class of so-called NP-complete problems, for
which it is believed there is no algorithm that can be
guaranteed to arrive at an optimal solution within a
practicable (polynomial) time (Lawler, Lenstra, Rinooy
Kan, & Shmoys, 1985). That is, no algorithm can solve
the problem in a time proportional to n° (or better),
where 7 is the number of relevant input variables and c¢ is
some constant (Goldschlager & Lister, 1988). A com-
mon version of the TSP is formulated as follows: Given
a set of n cities, and a specified cost (or distance) in-
curred in traveling between any two of them, devise an
itinerary, such that (a) each city is visited exactly once,
and (b) the total cost (or distance) is kept to a minimum.
To solve this problem definitively involves considering
(n-1)!/2 pathways. For 5 cities, this amounts to 12 dis-
tinct pathways. With 10 cities, the 181, 440 possibilities
are still manageable. However, for just 25 cities, the
number of pathways is so immense that a computer
evaluating 1 million possibilities a second would take 9.8
billion years (or two thirds the age of the universe) to
evaluate them all (Stein, 1989).

Such optimization problems arise in many different,
often unexpected contexts. In our case, we were looking
for a simple neuropsychological test that could be ad-
ministered repeatedly to monitor recovery during hy-
perbaric treatment. One favored candidate was the Trail
Making Test (TMT) from the Halstead-Reitan Neuro-
psychological Battery (Reitan, 1992). There are two
forms in the TMT. In form A, there are 25 circles,
numbered from 1 through 25, ‘randomly distributed’ on
a page. Subjects have to draw a path, connecting them
up, as quickly as possible, in the order 1, 2, 3, ... . In
form B, there are numbers and letters, and the subject
has to connect the 25 circles in the order 1, A, 2, B, 3, C,
... . In both cases, the score is the time taken to complete
the path. The TMT correlates around 0.5 with psycho-
metric measures of intelligence, is widely regarded as a
sensitive indicator of brain damage (Lezak, 1995), and
has a claim to being the single, most frequently used
neuropsychological test (Butler, Retzlaff, & Vander-
ploeg, 1991).



Unfortunately, a major disadvantage with the TMT
is that there is no algorithm for generating theoretically
(or measurably) equivalent, but stochastically different,
forms for repeated testing. Noting that the pathways
employed in both forms of the TMT were not random,
but took the form of constrained, self-avoiding curves,
we compared their lengths with those of 10,000 random
pathways through the same sets of points. We found
that the TMT pathways were between 3 and 5 standard
deviations shorter than the means of the distributions of
random itineraries. We, therefore, suggested that the
pathways in forms A and B constituted near-optimal
routes through the 25 circles in each case. On this basis,
we proposed a method for generating multiple test
forms, using an elastic net algorithm (Durbin & Will-
shaw, 1987; Peterson & Soderberg, 1995) to produce
near-optimal pathways linking sets of 25 randomly dis-
tributed circles (Vickers & Lee, 1998). A similar ap-
proach, using a Hopfield-style neural network, also
proved useful in generating pathways for an alternative
path-following test — the so-called ‘number-joining’ or
Zahlen-Verbindungs-Test (Oswald & Roth 1987), for
which the inter-nodal distances could not be represented
by a metric arrangement of the nodes in question (Lee,
Brown, & Vickers, 1997).

Human performance on TSPs

The possibility that performance on the TMT might
depend — at least partly — on how easily subjects detect
optimal pathways raises the further question of how well
human beings might solve visually presented optimiza-
tion problems like the TSP. In addition, there are good
reasons for investigating performance on optimization
problems. For instance, if a major function of the brain
is to provide the individual with a model of his or her
environment, then we should expect the most general
physical principles operating in the natural world would
be reflected in the way the brain constructs such a model
(Shepard, 1984).

One such constraint is the ‘minimum principle’. This
states that, in passing from one state to another, physical
systems tend to expend the minimum amount of energy.
Some form of minimum principle has been invoked to
account for a diverse array of phenomena. These include
the shapes of soap bubbles, the structure of spider webs,
and the circular plan of walled cities (Hildebrandt &
Tromba, 1996). Many architectural constructions, such
as Frei Otto’s Olympic Stadium in Munich, are intended
to achieve strength with a minimum of material. Simi-
larly, as exemplified in the foraging patterns of animals,
survival in the natural world frequently depends upon
the capacity of an organism to minimize the value of
some function, such as energy expenditure, under a
multiplicity of constraints (Stephens & Krebs, 1986).

Optimization problems, such as foraging, elude exact
solution by means of deterministic algorithms, and a
separate mathematical discipline of ‘optimization’ (and a
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corresponding branch of computer science) has devel-
oped to find solutions to such challenges. At the same
time, the ability to arrive quickly at near-optimal solu-
tions to such problems seems to be a characteristic of
much human perception and cognition, and is often
taken to epitomize ingenuity and intelligence, as op-
posed to sheer mechanistic computation. When a chess
master defeats a powerful computer, this is hailed as a
triumph of human intelligence over brute-force serial
computation. In contrast, the same intelligence is not
ascribed to the calculating feats of people historically
labeled as ‘idiots savants’ (Anderson, 1992).

In psychology, there have been several attempts to
formulate some kind of minimum principle for human
behavior and mental activity, a well-known example
being Zipf’s (1949) book, Human behavior and the law of
least effort. Echoing this, the ‘Prdgnanz principle’,
enunciated by the German Gestalt school, proposed that
we tend to perceive that structure which is minimal, in
the sense of being simplest and most economical (K6h-
ler, 1929). Some form of optimization hypothesis has
long underpinned the notion of rational behavior in
economics and decision making. More recently, Ander-
son (1990, 1991) has argued that human cognition in
general can be seen as an optimal response to the in-
formation-processing demands of the environment.

Given the prevalence of optimizing processes, it
might be expected that our capacity to perceive minimal
structures and to solve optimization problems would
constitute a major focus of research. However, our first
literature search found only one paper (in Russian) that
focussed on the optimization process itself. In an ex-
ploratory study, Polivanova (1974) presented subjects
with TSPs in two formats. In the first, she gave the
subject a table of all the distances between (say) 10
randomly distributed points. In the second, she gave the
subject a diagram with the points marked on it. In both
cases, the subject had to find a path that would go
through each point once only and return to the starting
point.

Polivanova employed simple problems, with 4, 6, or 10
points only, and, as might be expected, her subjects did
much better with the visual format. Polivanova specu-
lated that this was because it was easier to apply heuris-
tics to the visual problems. For example, subjects said
they looked for ‘simple’, ‘convex’ forms, and avoided
pathways that crossed. They also looked for pathways
that seemed ‘natural’ or ‘aesthetically pleasing’.

As we were preparing to investigate these possibili-
ties, a second article on the same topic appeared. Mac-
Gregor and Ormerod (1996) looked at performance on
10- and 20-point problems — all presented as visual ar-
rays. They found that their subjects’ solutions were all
close to the best known solutions. In consequence, they
found no individual differences and a zero correlation
between performance across different arrays. They
concluded that detecting minimum paths was an innate,
natural tendency of the visual system, like seeing the
world in three dimensions.
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MacGregor and Ormerod (1996) also suggested that
subjects make use of the principle, enunciated by Flood
(1956), that the optimal solution will always connect
adjacent points on the convex hull in sequence (even
though it also passes through interior points in the
process). The convex hull is a boundary, such that no
line joining any two points in the array can fall outside
it. Specifically, MacGregor and Ormerod argued, the
difficulty of finding a solution will depend, not on the
total number of points, but on the number of points on
the convex hull (or, equivalently, on the number of
points inside the convex hull).

This last conclusion seems counterintuitive. In addi-
tion, Lee and Vickers (2000) have questioned it on three
counts: First, the nodal points in the arrays of MacGr-
egor and Ormerod (1996) were not randomly distributed.
To manipulate the number of points on the convex hull,
MacGregor and Ormerod began with a regular polygon
with the requisite number of points on the hull. They
then subjected the vertices to a random angular dis-
placement of between plus and minus 5 degrees. This
means that, with the 10-point arrays, it would be possible
to draw a circle that would pass through between 4 and 9
boundary points. In the case of the 20-point arrays, the
circle would pass through between 4 and as many as 16
boundary points. It is difficult to believe that subjects
would not pick up the high degree of rotational sym-
metry in several of these arrays (Glass, 1969; Pickover,
1984). Second, after fixing the boundary points, Mac-
Gregor and Ormerod generated the interior points ran-
domly, with the constraint that they fell within either a
circular or a torus-shaped area inside the hull. As shown
by Lee and Vickers, the probability that a random con-
figuration of nonboundary points will fall entirely within
the prescribed areas inside the convex hull is negligibly
small in most cases. Again, it seems likely that the subject
would be sensitive to these constraints, and that this
would favor a convex hull strategy. Third, the influence
of the number of boundary points is, in principle, re-
stricted. To demonstrate this, Lee and Vickers generated
10,000 simulated arrays with 10, 20, 30 ... 100 total
points. According to these simulations, the number of
boundary points increases very little beyond 50 points.
For example, the 20-point arrays, used by MacGregor
and Ormerod, would be expected to have only 7 or 8
points on the convex hull; any array with 10 or more
points (or 6 or fewer) would be extremely unusual.

These constraints resulted in arrays that were not
only non-random but may well have increased the sa-
liency of the convex hull for the subjects, thereby biasing
the findings in line with the experimental hypothesis of
MacGregor and Ormerod (1996).

Experiment 1

The first experiment was carried out to examine the ef-
fect of the number of points on the convex hull on the
optimality of solutions to visually presented TSP arrays.

A second aim was to explore the possibility, suggested
by both Polivanova’s subjects and by MacGregor and
Ormerod, that the perception of optimal structure might
be a natural, automatic tendency of the human visual
system, as opposed to a specific, task-determined and
capacity-limited achievement.

Method

Subjects. The 36 subjects came from a variety of backgrounds and
educational levels.

Stimuli. In each stimulus array, the points to be linked were
uniformly distributed within a rectangular area. There were six
arrays in all. Two had 10 points, two had 25, and two had 40
points. Each pair of arrays had either a high or a low number of
points falling on the convex hull.

The number of points on the convex hull was determined by
first generating 10,000 random arrays with a given number of
points, and calculating the mean number of points that fell on the
convex hull for each array size. We then chose an array with a
number that was 1 SD above this, and one that was 1 SD below.
This meant that the two 10-point arrays had either 5 or 7, the two
25-point arrays had 7 or 9, and the two 40-point arrays had either 8
or 12 points on the convex hull.

Procedure. Subjects were partitioned randomly into two equal-
sized groups, labeled O and G. Both groups were then presented
with the six stimulus arrays described above.

For each array, the ‘Optimization’ group (O) were instructed to
draw a pathway through all of the points, such that: (a) the path
passed through each point once and once only; (b) the overall
pathway was as short as possible; and (c) the completed pathway
returned to the starting point. This constitutes the classical TSP.

The corresponding instructions for the ‘Gestalt’” group (G) were
to draw a pathway through all of the points, such that: (a) the path
passed through each point once and once only; (b) the overall
pathway looked most natural, attractive, or aesthetically pleasing;
and (c) the completed pathway returned to the starting point.
Having completed the six arrays, subjects in both groups were
asked to rate the difficulty of the task, and to describe briefly how
they set about the task. Difficulty ratings were made by marking a
linear scale labeled “—5 (extremely difficult), through “0” (inter-
mediate), up to 5 (extremely easy).

Subjects in both groups were allowed to start their pathways at
any point. They were permitted to erase and redo any part of any
pathway, but were asked to try to avoid this if possible. The time
taken to complete each array was recorded, but subjects were as-
sured that this was not a test of speed, and that they should take as
much or as little time as they wanted.

Results

A connectionist model for human performance
on the TSP

Comparative solutions to the TSP problems were found
using two main approaches. The first employed the
‘elastic net” approach of Durbin and Willshaw (1987) as
a potential candidate for the human solution process.
The net is made up of a number of elements, chosen to
be two or three times greater than the number of cities
(Durbin, Szelski, & Yuille 1989, Simmen 1991). Each
element is continually acted upon by two forces. The
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Fig. 1 Four successive stages in the fitting process of the elastic net
algorithm, from start (a) to finished solution (d)

first force acts to keep each net element near its topo-
logical neighbors. The second force, which is given a
greater weighting, attracts elements to position them-
selves on cities, with an even greater force of attraction
being applied for those elements closest to a given city.
Durbin and Willshaw (1987) note that the combined
action of these forces performs a type of gradient-des-
cent optimization, with the result that the final
configuration of the net corresponds to a (local) mini-
mum of a global error function. Figure 1 illustrates four
stages in the progressive effect of these forces for a set of
25 randomly located cities. As with other applications of
the elastic net reported here, this example used similar
parameter values to those suggested by Durbin and
Willshaw (1987), and experimentation with other
parameter regimes did not produce better results.
Although hypothetical, this parallel, analogue algo-
rithm accords well with current connectionist ap-
proaches in cognitive research, which focus on the global
activity of a large number of ‘neuron-like’ units. Indeed,
it is derived from a biological mechanism postulated to
explain the development of neuronal structures associ-
ated with vision in the brain (Malsburg & Willshaw,
1977; Willshaw & Malsburg, 1979). In addition, the
‘elastic net’ algorithm represents a holistic, geometrical
approach to the TSP, which concurs with the ‘gestalt-
like’, visual-based problem solving style suggested by
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previous research. It is simple, robust, and versatile
(Yuille, 1995), and its performance, both in terms of
speed and proximity to optimal solutions, is comparable
to more conventional and serial TSP algorithms (Durbin
& Willshaw, 1987) and alternative parallel distributed
approaches (Peterson, 1990).

Calculation of optimal or near-optimal pathway lengths

In the second approach, we followed MacGregor and
Ormerod (1996) in their use of the TRAVEL suite of
algorithms, designed to produce provably good solutions
to TSPs (Boyd, Pulleyblank, & Cornuéjols, 1987). This
comprises six conventional, serial TSP algorithms, in-
cluding the Nearest Neighbor, Largest Interior Angle,
and Convex Hull heuristics (Norback & Love, 1977;
Golden, Bodin, Doyle and Stewart, 1980), as well as
several well-proven tour improvement routines, includ-
ing the Lin and Kernighan (1973) heuristic. The opti-
mality of subjects’ pathways was determined by
comparing them with lower bounds estimated by the
TRAVEL program by means of a number of different
methods. For example, one such estimate can be ob-
tained by calculating the distance between each point in
the array and its nearest neighbor, and summing the
distances. This may not correspond to a valid pathway.
However, no valid pathway can be shorter than this
lower bound. Consequently, if a pathway is found, which
is as short as this, we know that this is an optimal solu-
tion (although not necessarily the only optimal solution).
All of the above algorithms were employed in the search
for optimal solutions for each of the six arrays, although
no single algorithm consistently provided the shortest
pathway. By these means, we were able to arrive at optimal
solutions for five of the stimulus arrays. In the case of the
sixth (the 40-point problem with 12 points on the convex
hull), the best solution was conservatively estimated to be
no more than 0.2% from the lower bound, so that this
solution may or may not be optimal. In this case, the best
solution was adopted as a surrogate for the optimal.
Having estimates of optimal pathway lengths meant
that we could express the subjects’ pathway lengths for
each problem in a standard, normalized form, as done
by MacGregor and Ormerod (1996). These authors ex-
pressed each pathway length in terms of the standard
deviation of a distribution of 100 random pathways
through the same set of points. Because our stimuli
differed in number of points, we also wished to stan-
dardize over problems of differing size and difficulty.
This was accomplished by dividing the difference be-
tween the length of the optimal pathway for each array
and that of the subject’s pathway by the standard de-
viation in length for 10,000 random pathways through
the same number of points. As shown by Vickers and
Lee (1998), these distributions are highly symmetric, and
closely resemble normal distributions. (When distribu-
tions of 10,000 random pathways through each of the six
problem arrays were examined, the average measure of
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skewness was —0.12 and the average measure of kurtosis
was 2.88. These figures are sufficiently close to the re-
spective values of 0 and 3, for a perfectly normal dis-
tribution, to justify the assumption of normality.) The
resulting measure, z,,, allows a comparison across
problems differing in number of points and geometrical
complexity, and takes into account the fact that, at each
problem size, subjects’ solutions were tightly bunched
towards the optimal value. Thus, an optimal solution
would have a score of z,,, = 0. Any other score is nec-
essarily positive, and represents a standardized measure
of the difference between the pathway length and the
shortest possible pathway length for that problem array.

For similar reasons, the times taken to complete the
arrays were converted to a speed score, s (the inverse of
the time taken per point).

Speed of completing stimulus arrays

A repeated measures ANOVA was carried out, with s as
the dependent variable, a between-subjects factor of
Group (G or O), and two within-subjects factors: Con-
vexity (a HIGH or LOW number of points on the
convex hull); and Number (the total number of points in
the array, being either 10, 25, or 40).

The trend analysis of Number showed a highly sig-
nificant linear component [F(1, 34) = 33.14; p < 0.001],
with a less significant nonlinear component [F(1, 34) =
9.02; p < 0.05]. The trend was monotonic, but the rate
of increase in speed appeared to fall off with increasing
problem size (Mg poins probiems = 0.53, SD = 0.31; M5
point problems — 0.80, SD = 0.33; My point problems — 0.90,
SD = 0.43).

There was a significant effect of Convexity [F(1, 34) =
11.44; p < 0.05, Mhigh convexity problems — 0.78, SD = 0.31
VS Mypw conveity proviems = 0.70, SD = 0.33], with subjects
in both groups completing arrays faster when there was
a greater number of points on the convex hull [except for
group O, who performed more slowly with the 40-point,
HIGH array (M = 0.71, SD = 0.46) than with the cor-
responding LOW array (M = 0.78, SD = 0.44)].

There was a significant effect of Group
[F(1, 34) =5.00; p < 0.05], with the G group
(M =0.85, SD = 0.31) being somewhat faster overall
than the O group (M = 0.63, SD = 0.29).

There were also two significant interactions: a two-
way interaction between Convexity and Number
[F(1, 34) = 8.63; p < 0.05]; and a three-way interaction
between Group, Convexity, and Number [F(1, 34) =
8.35; p < 0.05]. The first indicates a relatively greater
increase in speed from LOW to HIGH convexity as
the number of points is increased (M;y ., = 0.51,
SD =028 vs Myy 1ien=054, SD=0.37;, My;s
low =0.70, SD =0.38 vs Mjs i = 0.90, SD = 0.33;
M40 low = 089, SD =048 Vs M40 high = 091,
SD = 0.46). The second is largely a reflection of the
anomalous performance of O group with the 40-point,
HIGH Convexity array.

Pathway lengths

A similar repeated measures ANOVA was carried out,
but with z,,,, rather than s, as the dependent variable.

Not surprisingly, each Convexity and Number com-
bination had very different variances in the two groups
(p < 0.001, in all cases), with the G group showing the
greater variance in all cases.

There was a significant Group difference in the mean
pathway length [F(1, 34) = 11.28; p < 0.05], with the O
group producing shorter pathways on average
(Mapfim[zation =0.30, SD =020 s Mgestall = 0.20,
SD = 1.1). Despite the non-normality of the distribu-
tions and the apparent violation of the homogeneity of
variance assumption, this result is unlikely to have oc-
curred by chance.

There was also a marginally significant non-linear
component in the trend of Number [F(1, 34) = 4.26;
p < 0.05, Mg point problems — 0.81, SD = 1.16 vs M5 point
problems — 0.59, SD =0.77 vs My point  problems = 0.77,
SD = 0.97]. However, this result may well be spurious,
given the marginal significance and the violation of
assumptions noted above.

No other main or interaction trends or effects were
significant, even at the 0.05 level.

Correlations between performance
on different stimulus arrays

Matrices of Spearman rank-order correlations between
pathway lengths for each array were calculated for groups
G and O separately. In the case of group G, the rank
order correlations between all 15 possible pairs of arrays
were all positive and significant (p > 0.43; p <0.039),
with an average p of 0.81, and with Kendall’s coefficient
of concordance, w = 0.84 (df = 5; p < 0.001). For group
O, the rank order correlations between all fifteen possible
pairs of arrays were all positive, with six being significant
(p 2 0.40; p < 0.05), an average p of 0.87, and with Ken-
dall’s coefficient of concordance, w=0.89 (df=75;
p < 0.001). These results are consistent with the existence
of reliable individual differences between subjects.

Pathways common to different subjects
and to both groups G and O

Table 1 shows the degree to which certain solutions were
repeated by subjects. ‘Rank’ refers to the rank order in the
length of a given pathway, whether produced by a subject
in either group G or group O, with 1 denoting the shortest
pathway produced by any subject. ‘Number of times’
refers to the frequency with which a particular solution
was produced by different subjects. ‘Relative proportion
of Gestalt pathways’ gives the proportion (in percentage
form) of the number of times the pathway in question
occurred in the G group, divided by the total number of
identical pathways (whether from group G or group O).



Table 1 Relative frequency of common solutions in Experiment 1

No. of times Relative no. of
solution reoccurred Gestalt solutions (%)

Problem Solution
rank

10-7* 13 30.8
10 40

2 100

12.5
50

0
50

23
40
50

0
0

0

10-5*

25-9%

—_
N NDERE DLW DN

25-Ta

—_
W = D= A= W~

40-12°
40-8% No common

solutions

#Indicates total number of points in the array followed by number
of points on the convex hull, e.g., the 10-7 problem has 10 points in
total and 7 on the convex hull

The data in Table 1 bring out four main points.
Firstly, the lower the number of points, the more overlap
there was between the pathways. For example, on the
10-7 array (10 points, with 7 on the convex hull), 25
subjects produced one of the three shortest pathways,
while, at the 40-8 level, no two subjects produced the
same pathway. Secondly, the closer a particular pathway
is to the optimal, the higher the frequency with which
that pathway is produced. In other words, if two dif-
ferent subjects produce the same pathway, the chances
are that this pathway is going to be a relatively short
one. Thirdly, the probabilities that the same pathway
would have been reproduced by the observed number of
different subjects, if the pathways were being drawn in a
random manner, can be regarded as zero for all practical
purposes. Fourthly, although most of the repeated
pathways were found in group O, a sizable proportion
(around 30.5% overall) occurred when subjects were
asked to draw purely aesthetic pathways. In effect, 9 of
the 13 repeated pathways were produced by both groups.
That is, several subjects, when presented with the same
arrays, but with instructions to maximize aesthetic
appearance or to minimize pathway length, produced
exactly the same pathways out of a total set of potential
pathways that, even for a 10-point array, consists of
181,400 possibilities.

Path uncertainty

Following MacGregor and Ormerod (1996), a measure
of ‘path uncertainty’ was calculated for each array. This
was done by constructing an n X n matrix and counting
the frequency with which each point in an array was
connected by subjects to each of the other points. These
frequencies were then divided by the total number of
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subjects (18, in each case) to provide probabilities, p;.
The total path uncertainty, H, associated with a given
array was then calculated by means of the standard
information theory formula,

H =

k
pi(—log, pi),

i=1

where k is the total number of connections made by
subjects (Shannon & Weaver, 1949). The convention
was followed that zero probabilities give rise to zero
uncertainty measures (i.e., if something does not hap-
pen, it is not regarded as informative).

The measure of path uncertainty provides a concise
description of the variety of different solutions generated
by all subjects on a particular array. Following Garner’s
(1970) principle that good patterns have few alterna-
tives, MacGregor and Ormerod suggest that it may
provide a useful first approximation to a measure of the
difficulty of each problem.

Path uncertainty measures, calculated for the six arrays
were 5.59,10.22,9.9,27.99. 48.99, and 55.46, respectively,
forarrays with 3, 5, 16, 18, 28, and 32 points interior to the
convex hull. The product-moment correlation between
path uncertainty and the number of interior points was
r = 0.94 (df = 4), which is significant beyond the 0.01 level
(two-tail test). This virtually coincides with a similar
correlation of r =0.93, obtained by MacGregor and
Ormerod (1996), between these two quantities.

Comparisons between subjects’ pathways
and elastic net solutions

Table 2 shows the shortest pathways of the subjects in
comparison with the solutions produced by the elastic
net algorithm for the same stimulus arrays. All pathway
lengths are expressed as the difference between the given
pathway length and the optimal (or surrogate) length,
expressed, in turn, as a percentage of the optimal (or
surrogate) length.

From Table 2 it can be seen that, with the 10-point
arrays, there is no difference between the best solutions
for the elastic net and the shortest pathways produced
by subjects, with both arriving at an optimal pathway.
However, as the number of points in the array increases,
the performance of the ‘best’ subjects declines at a much

Table 2 Summary of best solutions expressed in terms of percen-
tage deviation from the optimal (O group Optimization group, G
group Gestalt group)

Problem Human O group Human G group Elastic net
10-7 0 0 0

10-5 0 0 0

25-9 0 0 1.69

25-7 0 3.53 4.11

40-12 2.23 0.08 8.84

40-8 2.69 4.66 8.1

Note: shortest human tours are highlighted in bold



40

slower rate than that of the elastic net algorithm. Unlike
the best subjects, the elastic net algorithm failed to find
an optimal solution to the 25-point problems, and, with
40-point problems, the algorithm is at least 8% poorer
than the optimal. This compares unfavorably with the
best human performance, which is at most 4.7% poorer.

When we compare the shortest pathways produced
by subjects in groups G and O, those produced in ac-
cordance with aesthetic preference were longer (around
3%, on average) only in the case of the 25-7 and 40-8
problems. The shortest pathways, produced by the
group G subjects, corresponded to the optimal pathways
for three of the arrays, and equaled the performance of
the best subjects in group O. Indeed, on the 40-12 array,
the shortest pathway produced by a subject in group G
was actually shorter than the best solution produced by
any subject in group O.

Ratings of difficulty

Generally, subjects seemed to find the tasks more easy
than difficult, with an average rating, over both groups
and all subjects, of 1.64 (SD = 2.25). A trend analysis
and repeated measures ANOVA was carried out, similar
to the two previous analyses, except for the substitution
of the difficulty rating, d, as the dependent variable. Not
surprisingly, the multivariate test for homogeneity of
dispersion was significant at the 0.05 level, suggesting a
minor violation of this assumption.

The analysis showed a significant linear increase in
perceived difficulty as the number of points in the arrays
increased [F(1, 34) =11.92; p < 0.05, My point prob-
tems = 2.63, SD =2.13 vs Mpys point  problems — 1.72,
SD =2.09 vs M4() point problems = 15, SD = 24], with a
significant non-linear component [F(1, 34) = 4.59,
p < 0.05], indicating that the rate of increase in diffi-
culty ratings is not steady, but falls off as the number of
points in an array increases.

There was also a significant two-way interaction be-
tween Number and Convexity, with a marginally sig-
nificant linear component [F(1, 34) =4.91; p < 0.05],
and a highly significant non-linear component
[F(1, 34) = 8.77; p < 0.05]. This reflected the fact that
perceived difficulty for the two 10-point arrays was vir-
tually identical (Migs convexiry = 2.64, SD = 2.17 vs My,
convexity = 2.63, SD = 2.29), and, for the 25-point arrays,
the array with more points on the convex hull was per-
ceived as easier (Myen convexiry = 2.13, SD = 2.17 vs M,,,,
comvexiry = 1.32, SD = 2.34), while, for the 40-point ar-
rays, it was the array with fewer points on the convex
hull that was rated as easier My, convexiy = 1.79,
SD = 2.32 vs Myien convexiy = 1.13, SD = 2.73).

Reported strategies

A total of seven subjects (from both groups G and O)
reported using some form of ‘‘circular” strategy,
whereby they began by forming a roughly circular pe-

rimeter around the points. Eight subjects (again from
both groups) reported that the pathway was immedi-
ately and intuitively obvious, and seemed to be auto-
matically triggered by the points. However, the G group
showed a much wider range of approaches. These
ranged from pathway minimization, through avoidance
of self intersections, and the imposition of repetitive or
spiral patterns, up to one or two that seemed designed to
maximize the pathway length.

Figure 2, for example, shows two contrasting path-
ways drawn by subjects from the G group; Fig. 2a, which
has a clear spiral structure, is some 70% longer than the
optimal pathway length, while Fig. 2b is a mere 0.08%
longer than the optimal — and was shorter than any
pathway produced by a member of group O. (Interest-
ingly, Fig. 2b was drawn by a fashion designer, who also
produced the shortest pathway among the subjects for all
other arrays, except the 25-9 configuration, for which she
produced the second shortest pathway.)

Figure 2c shows the solution produced by the elastic
net algorithm to the 40-12 array, also shown in Fig. 2b.
This solution was over 8% longer than the above sub-
ject’s pathway. One possible reason is that she, along
with several other subjects, was sensitive to symmetrical
properties of the array that eluded the elastic net. For
example, several subjects reported that this array seemed
to divide naturally into an upper and a lower constel-
lation of points.

Experiment 2

MacGregor and Ormerod (1996) found virtually no
correlation in subjects’ performance across different ar-
rays, and concluded that performance on visually pre-
sented TSPs appears to be determined by global
perceptual properties to which the human visual system
is naturally attuned. The close similarity between the
performance of the two groups in the above experiment is
consistent with the view that the perception of minimal
structure is indeed a natural tendency of the visual sys-
tem. However, the consistency in performance observed
(in both groups) across different arrays calls into ques-
tion the notion that performance in the TSP task is un-
affected by individual differences in perceptual or
cognitive abilities. It suggests instead that, provided the
task is sufficiently difficult, consistent individual differ-
ences in performance will emerge. The second experiment
was undertaken to examine this question more closely.

Method

Subjects. A total of 40 second-year Psychology students acted as
subjects as part of a class practical exercise.

Stimulus material. A single stimulus was selected from the previ-
ous experiment. This consisted of 40 points, randomly distributed
within a rectangular area, with 8 points on the convex hull. This
stimulus was chosen because it showed the greatest path uncer-
tainty, and performance on it correlated more highly and consis-
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tently with each of the other arrays. Because path uncertainty in-
dicates a greater variety of solution pathways, this stimulus should
provide greater scope for the emergence of individual differences.

Procedure. All subjects were tested on Raven’s Advanced Pro-
gressive Matrices (APM; Raven, Court, & Raven, 1988), a test in
which subjects are required to complete vertical and horizontal
sequences of transformations on elements of visual patterns. The
APM is widely regarded as a relatively pure measure of general
intelligence (Burke, 1958; Jensen, 1980), and is designed to differ-
entiate among subjects at the upper end of the intelligence scale.
Subjects were then presented with the TSP array at a separate
session, and asked to connect up the points in accordance with the
same instructions as were given to group O subjects in the previous
experiment. Subjects were allowed to take as long as they wished,
and no times were recorded.

Results
Calculation of objective measures

In addition to an estimate of pathway length, two fur-
ther measures were calculated. The first was fractal di-

Fig. 2a— Contrasting pathways produced by subjects from the
Gestalt group in response to 40-point arrays in Experiment 1. a and
b show different subjects’ solutions to a 40-8 and a 40-12 array,
respectively. ¢ shows an elastic net solution for the 40-12 array

mension (Mandelbrot, 1983). In contrast to a straight
line, with a single Euclidean dimension (length), a fractal
curve tends to fill the plane to varying degrees, as mea-
sured by its fractal (or fractional) dimension. For ex-
ample, by replacing a single straight line segment by a
set of reduced and transformed copies of that segment,
and then reiterating that procedure on each of the re-
sultant line segments, curves can be produced that retain
the same characteristics at different scales of magnifi-
cation. If this procedure is continued, certain curves can
be generated, which, in the limit, pass through every
point in the plane, and hence have a fractal dimension of
2 (Peitgen, Jirgens, & Saupe, 1992). However, most
curves will turn out to have a fractal dimension between
1 and 2. The perceived complexity of outline shapes has
been shown by Cutting and Garvin (1987) to be closely
correlated with a measure of their fractal dimension. A
measure of fractal dimension might therefore provide a
useful alternative to pathway length as an estimate of the
efficiency of subjects’ solution processes.

When the generation process is unknown, there are a
number of ways of estimating the fractal dimension of
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an empirical curve. For example, an estimate of the box-
counting dimension can be made by superimposing a
grid with box size, s, on the curve, and counting the
number of boxes N(s) that contain any part of the curve.
Successive estimates of N(s) are made with progressively
smaller values of s. The slope of the best fitting straight
line for the plot of log [N(s)] against log (1/s) provides an
estimate of the fractal dimension (Peitgen et al., 1992).
We employed a related, but more efficient, box-covering
algorithm (Voss, 1988), in which the number of boxes of
size s required to cover the curve is calculated for a range
of values of s.

The second measure calculated was that of the
Hausdorff distance between each pathway and what
appeared to be the unique optimal pathway, as calcu-
lated by the TRAVEL suite of algorithms. This provides
a measure of the similarity in shape between each
pathway and the optimal. The Hausdorff distance is a
generalization of the notion of the distance between two
points to the distance between two sets of points, A and
B (Peitgen et al., 1992). It can be defined as the supre-
mum, or least upper bound, of the distances from points
in set A to points in set B and from points in set B to
those in set A. To calculate it, the point in B that is
furthest away from any point in A is found, and its
distance, m, to the nearest point in A is measured.
Similarly, the point in A that is furthest away from any
point in B is found, and its distance, n, from the nearest
point in B (which may be different from m) is measured.
The Hausdorff distance is then the smaller of these two
maximum distances, m and n. To obtain a measure of
the distance between a subject’s pathway and the opti-
mum, a sufficient number of points was interpolated on
straight line segments joining the nodal points, or ‘cit-
ies’, such that estimates of Hausdorff distance remained
stable.

Individual differences in pathway length

Pathway lengths for different subjects ranged from 4.95
up to 6.41 units, with a mean of 5.46 (SD = 0.43).
Scores on the APM ranged from a low score of 11, in-
dicating poor performance, up to a high score of 35,
with a mean of 25.65 (SD = 5.37).

Figure 3 shows examples of a pathway with the op-
timal length of 4.94 units, produced by the elastic net
algorithm, together with short, intermediate, and long
pathways produced by subjects. The intermediate and
long pathways are characterized by pronounced ‘inlets’
and ‘promontories’, and are consequently much less
convex than the optimal or near-optimal solutions.

Correlations among dependent measures
Table 3 shows the Spearman rank order correlations

between the various pairs of measures. The length,
fractal dimension, and Hausdorff distance from the

o
=2

Optimal length Short tour

[c]
[="

Intermediate tour Long tour

Fig. 3 Examples of a the optimal pathway, and b a short, ¢ an
intermediate, and d a long pathway produced in Experiment 2

Table 3 Spearman correlation coefficients for TSP path length
(TSP), fractal dimension (Fractal D), Hausdorff distance (Haus-
dorff) and APM scores (APM) (TSP Traveling Salesman problem,
APM advanced progressive matrices)

TSP Fractal D Hausdorff APM
TSP —— 0.89%* 0.69%* -0.36
Fractal D — 0.60%** -0.34
Hausdorff — —0.50*
APM —

Note: all correlations are one tailed with N = 40
*p < 0.01; **p < 0.001

optimal pathway all show significant correlations with
performance on Raven’s APM, as well as with each
other.

Discussion

The above results can be interpreted at both a specific
and a general level. At the specific level, Experiment 1
showed that, in the case of each group, both the total
number of points and the number of points on the
convex hull had significant effects on the speed of
pathway completion. Irrespective of the task, subjects
produced complete pathways more quickly when there
were more points on the convex hull, and this advantage
was (generally) more pronounced when the arrays con-
tained a higher total number of points. The effects of
both total number of points and of convexity are echoed
in the lower path uncertainty scores, observed in group
O, for those arrays with a smaller total number of points



and with more points on the convex hull. At the same
time, there was no evidence, in either group, that the
standardized deviations of subjects’ pathways from the
optimum were influenced by either the total number of
points in an array or by its degree of convexity.

These findings mean that the primary conclusion of
MacGregor and Ormerod (1996) is subject to consider-
able qualification. Within the parameter ranges investi-
gated here, neither total number of points nor convexity
affect the optimality of subjects’ pathways, whatever the
instructions. However, despite the strictures of Lee and
Vickers (2000), convexity does appear to facilitate the
perception of Gestalt structures, which usually happen
to be both ‘good’ and near-optimal, and this facilitation
appears to be greater as the number of points on the
convex hull is increased.

Experiment 1 also showed that subjects under Gestalt
instructions produced completed pathways more quickly
than those under instructions to find a minimal path-
way, and that their pathways were somewhat longer on
average. At this stage, our best guess is that these dif-
ferences may reflect the results of more local, cognitively
guided processes in the O group, as well as the increased
time required by such processes. An additional factor,
which may also have contributed to the greater variance
in path length shown by the G group, is that some
subjects in this group may have looked for pathways
that maximized some form of symmetry (such as spiral),
even though this did not minimize path length. At the
same time, the extent to which the G group focussed on
producing minimal solutions is remarkable. As shown in
Table 1, the three shortest solutions frequently reoc-
curred in the G group, and did so almost as often as they
reoccurred in the O group. These findings are certainly
consistent with MacGregor and Ormerod’s conclusion
that the perception of minimal structure may be a nat-
ural, automatic tendency of the human visual system.

Also consistent with this conclusion are reports by
Polivanova’s subjects that they looked for ‘natural’
forms. This description would apply, for example, to
elastic net solutions to problems with several hundred
nodes, which have an attractive, fractal appearance,
reminiscent of branching coral (e.g., Fritz & Wilke,
1991). Such structures are frequently the signature of a
naturally occurring recursive process that is itself at-
tempting to minimize (or maximize) the value of some
function under a multiplicity of constraints (Mandelb-
rot, 1983; Barnsley, 1988). It may be that subjects are
sensitive to the underlying order that results from such
optimizing, and this is why they find the structures at-
tractive (Pickover, 1990; Schmidhuber, 1997). It is also
possible that subjects’ attempts to find optimal path-
ways, by constructing natural, aesthetically pleasing
structures, reflect a preference for capturing maximally
disordered data by means of an algorithm of minimum
complexity (Chaitin, 1987). These two alternatives are
closely related, and it may be possible to find some more
general formulation that would encompass them both.
In any case, it seems likely that the detection of ap-
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proximate, partial symmetries is an important ingredient
in the process. This would go some way towards ex-
plaining the marked differences in length found between
some pathways, such as those shown in Fig. 4a and b,
which are nevertheless both characterized by a high
degree of apparent symmetry. However, the possible
relationship between symmetry maximization and the
minimization of length (or, possibly, perimeter) in the
spontaneous perception of organization in such random
arrays is still far from clear.

Meanwhile, and contrary to the previous data, hu-
man performance on visually presented TSPs appears to
show consistent individual differences that are reliable
across different problems, and are related to perfor-
mance in a psychometric test of general intelligence.
Although the measures of pathway length, fractal
dimension and Hausdorff distance are intercorrelated, it
is arguable that they each capture a different aspect of
performance: namely, minimality, complexity, and sim-
ilarity in shape to the optimal pathway. Only further
research will tell which measure(s) will turn out to be the
most informative.

The fact that a number of subjects in both conditions
outperformed the elastic net rules out this algorithm as
an account of the perceptual optimization process. Since
the performance of the elastic net declined at a faster
rate than that of the subjects, as the size of the arrays
increased, this algorithm proved to be an insufficient
model of the subject’s approach to the TSP. Instead, one
possibility is that, under these conditions, subjects be-
come increasingly sensitized to symmetries in the arrays.
These trigger Gestalt organizations which, in the case of
group O, may be modified by attention to more local
features. There is considerable evidence that subjects are
sensitive to a wide variety of approximate and incom-
plete symmetries (e.g., Tyler, 1996), and one of our av-
enues for future research is directed towards the
development of a general algorithm for the detection of
such symmetries.

On a more positive note, the elastic net did demon-
strate the relative success of the human TSP solving style
(whatever that may be). In addition, the individual dif-
ferences in performance suggest that the particular
problem solving approach involved may be more com-
plex than the process encapsulated by this model. Al-
though many subjects confirmed the results of previous
research by claiming that they utilized global, geomet-
rical properties of the arrays, it appeared that the
problem was subsequently broken down into a number
of smaller tasks involving sub-groups of points. We are
currently developing a modified elastic net algorithm, in
which the initial ring of nodes takes the form of the
convex hull of the array, and is subsequently deformed
until it encompasses the remaining points in the prob-
lem. Such an algorithm would take into account the
‘two-stage’ model alluded to above, as well as being
sensitive to the composition of the convex hull.

Finally, because there is no difficulty in generating
multiple, stochastically equivalent arrays, the consistent
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individual differences, found in both experiments, sug-
gest that the visual TSP task may have some potential as
a neuropsychological test (Geffen, 1995), and that opti-
mization might provide a useful perspective in which to
investigate path-following performance more generally.
Meanwhile, the link with intelligence, and the occur-
rence of optimal structures in the natural world, suggest
that the perception of optimal structure may have some
adaptive utility. This suggests that the type of task
studied here may not only be interesting from the per-
spective of perception, and cognition, but may help to
provide a conceptual framework of optimization, within
which to study intelligence in general.

Such a perspective seems to have much in common
with Anderson’s (1990; 1991) adaptive theory of cogni-
tion. Anderson (1991) argues that there is a serious and
perhaps intractable induction problem in inferring the
structure of mental processes from that of the behavior
they produce. There is also a serious and possibly in-
tractable identifiability problem, in that many different
mechanisms may give rise to similar patterns of behav-
ior. Anderson goes on to argue that the hypothesis that
human cognition constitutes an optimal response to the
information-processing demands of the environment
provides a useful constraint on the kinds of mental
mechanism we might propose. This argument is similar
to Marr’s (1982) view that an understanding of algo-
rithmic procedures is incomplete without some insight
into what the algorithm in question has been designed
(or has evolved) to achieve. A similar argument may
apply to the study of human intelligence. At the very
least, an optimization perspective suggests what intelli-
gence might be for.
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