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Abstract Phase congruency is a low-level invariant
property of image features. Interest in low-level image
invariants has been limited. This is surprising, consid-
ering the fundamental importance of being able to ob-
tain reliable results from low-level image operations in
order to successfully perform any higher level opera-
tions. However, an impediment to the use of phase
congruency to detect features has been its sensitivity to
noise. This paper extends the theory behind the calcu-
lation of phase congruency in a number of ways. An
effective method of noise compensation is presented that
only assumes that the noise power spectrum is approx-
imately constant. Problems with the localization of
features are addressed by introducing a new, more sen-
sitive measure of phase congruency. The existing theory
that has been developed for 1D signals is extended to
allow the calculation of phase congruency in 2D images.
Finally, it is argued that high-pass filtering should be
used to obtain image information at different scales.
With this approach, the choice of scale only affects the
relative significance of features without degrading their
localization.

Introduction

The ability to construct measures of image features that
remain constant over wide ranges of viewing conditions
is an important goal of any visual system, whether it is a
biological system or a computer based system. Such
invariant quantities provide powerful tools for the
analysis of images, allowing image processing algo-
rithms to work more reliably and over wider classes of
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images. The work presented in this paper concentrates
on invariant feature detection in low-level or early vi-
sion. While the work described in this paper is biologi-
cally inspired, its intended application is in computer
vision. However, it is hoped that the issues involved in
producing an effective implementation of an invariant
low-level feature detector will be of interest to those
working in human vision.

Some effort has been devoted to investigating in-
variant measures of higher level structures in images; for
example, Hu (1962) developed a series of invariant
moments for recognizing binary objects. More recently,
there has been considerable interest in geometric in-
variance, the study of geometric properties of objects
that remain invariant to imaging transformations. A
collection of papers in this area can be found in the book
by Mundy and Zisserman (1992). However, little atten-
tion has been paid to the invariant quantities that might
exist in low-level or early vision for tasks such as feature
detection or feature matching. Some limited exceptions
to this include the work of Koenderink and van Doorn
(1975), who recognized the importance of differential
invariants associated with motion fields, and Florack,
ter Harr Romeny and Koenderink (1992), who propose
differential invariants for characterizing a number of
image contour properties.

The human visual system is able to reliably identify
the significance of image features under widely varying
conditions. If the illumination of a scene is changed by
several orders of magnitude, our interpretation of it will
be largely unchanged. Similarly, our interpretation is not
greatly affected by changes in spatial magnification,
though not to the same degree of tolerance we have for
illumination changes. Thus, in the detection of low-level
image features, the main form of invariance that is re-
quired is invariance to image illumination and contrast,
and to a lesser extent, image magnification. Ultimately,
one has to make a decision as to whether a feature is
significant or not — the thresholding problem. If one has
an invariant measure of the significance of features, the
thresholding problem is greatly eased.



The thresholding problem has plagued computer
vision. Gradient based edge detection methods such as
those developed by Sobel (Pringle, 1969), Marr and
Hildreth (1980), Canny (1983, 1986), and others are
sensitive to variations in image illumination, blurring,
and magnification. The image gradient values that cor-
respond to significant edges are usually determined
empirically. Efforts to determine threshold values auto-
matically have been very limited and not very successful
(Canny, 1983; Fleck, 1992a, 1992b; Kundu and Pal,
1986). Achieving invariance with feature detectors de-
veloped in the spatial domain of an image is difficult
because it is hard to avoid using dimensional measures
such as intensity gradients, contrast levels, or equivalent
quantities.

In the search for low-level invariant quantities in
images, the approach taken here is to make use of data
from representations of the image in the frequency do-
main. A model of feature perception called the Local
Energy Model has been developed by Morrone, Ross,
Burr, and Owens (1986) and Morrone and Owens
(1987). This model postulates that features are perceived
at points in an image where the Fourier components are
maximally in phase. Other work on this model of feature
perception can be found in Morrone and Burr (1988),
Owens, Venkatesh, and Ross (1989), Venkatesh and
Owens (1990), Kovesi (1991, 1993, 1996a), Owens
(1994), Morrone, Navangione, and Burr (1995), and
Robbins and Owens (1997). A wide range of feature
types give rise to points of high phase congruency. These
include step edges, line and roof edges, and Mach bands.
Morrone and Burr (1988) show that this model suc-
cessfully explains a number of psychophysical effects in
human feature perception.

Almost all work done so far has concentrated on
finding points of maximal phase congruency by looking
for maxima in local energy. Local energy is a quantity
that is proportional to phase congruency and is readily
calculated. However, local energy is a dimensional
quantity that depends on local contrast. One is unable to
specify beforehand what level of local energy corre-
sponds to a significant feature — the thresholding prob-
lem again.

This paper concentrates on the issues in calculating
phase congruency itself — a dimensionless measure.
Values of phase congruency vary from a maximum of 1,
indicating a very significant feature, down to 0, indi-
cating no significance. This allows one to specify a
threshold to pick out features before an image is seen.
However, so far, phase congruency has not been used
successfully for feature detection for the following rea-
sons:

1. Being a normalized quantity, phase congruency is
highly sensitive to noise.

2. The calculation of phase congruency is ill-condi-
tioned if all the frequency components of the signal
are very small, or if there is only one (or nearly only
one) frequency component present in the signal.
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3. The existing measure of phase congruency does not
provide good localization of features.

The greatest problem is the sensitivity of phase con-
gruency to noise. Any system that uses normalization to
provide invariance to contrast and illumination must
inevitably suffer from sensitivity to noise. This indeed
must be of concern to biological visual systems.

The paper is organized as follows: After introducing
the relationship between local energy and phase con-
gruency it is shown how phase congruency can be cal-
culated from a bank of spatial filters in quadrature. The
primary problem of sensitivity to noise is then ad-
dressed. Problems in the localization of features are
considered next. It is shown that it is important to
consider the spread of frequencies present at a point of
phase congruency. In addition a new, more sensitive,
measure of phase congruency is presented. This is fol-
lowed by a section covering the issues involved in ex-
tending this theory to 2D images. Finally, the issue of
analysis at different scales is considered, and it is argued
that high-pass filtering should be used to obtain image
information at different scales instead of the more
usually applied low-pass filtering.

Local energy and phase congruency

The local energy model postulates that features are
perceived at points of maximum phase congruency in an
image. For example, when one looks at the Fourier se-
ries that makes up a square wave, all the Fourier com-
ponents are sine waves that are exactly in phase at the
point of the step. Similarly, one finds that phase con-
gruency is a maximum at the peaks of a triangular wave.

Congruency of phase at any angle produces a clearly
perceived feature. Figure 2 shows a grating constructed
from the series

s(x)—z(znlmsin[(ZnJrl)and)] (1)

n=0

where ¢, the offset at which congruence of phase occurs,
is varied from 0 to 7/2.

Fig. 1 Construction of square and triangular waveforms from their
Fourier series. In both diagrams the first few terms of the respective
Fourier series are plotted with broken lines, the sum of these terms
is the solid line. Notice how the Fourier components are all in phase
at the point of the step in the square wave, and at the peaks and
troughs of the triangular wave
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Fig.2 Interpolation of a step feature to a line feature by continuously
varying the angle of congruence of phase from 0 at the top to n/2 at
the bottom. Profiles of this grating corresponding to congruence of
phase at 0, /6, /3 and ©/2 are shown on the right

Morrone and Owens (1987) define the phase con-
gruency function in terms of the Fourier series expan-
sion of a signal at some location x as

> An ©08(,(x) — p(x))
] Z” A, (2)

where A4, represents the amplitude of the »n™ Fourier
component, and ¢, (x) represents the /ocal phase of the
Fourier component at position x. The value of ¢(x) that
maximizes this equation is the amplitude weighted mean
local phase angle of all the Fourier terms at the point
being considered.

As it stands, phase congruency is a rather awkward
quantity to calculate. As an alternative to this, Venk-
atesh and Owens (1989) show that points of maximum
phase congruency can be calculated equivalently by
searching for peaks in the local energy function. The
local energy function is defined for a one-dimensional
luminance profile, /(x), as

PC(x) = maxg,)c02x

E(x) = \/F(x) + H?(x) (3)
where F(x) is the signal /(x) with its DC component
removed, and H(x) is the Hilbert transform of F(x) [a
90-degree phase shift of F(x)]. Typically, approximations
to the components F(x) and H(x) are obtained by con-
volving the signal with a quadrature pair of filters.
Venkatesh and Owens show that energy is equal to phase
congruency scaled by the sum of the Fourier amplitudes,

that is
E() = PC(x) 4, (4)

Thus, the local energy function is directly proportional
to the phase congruency function, so peaks in local en-
ergy will correspond to peaks in phase congruency.
The calculation of energy from spatial filters in
quadrature pairs has been central to many models of
human visual perception, for example, those proposed
by Heeger (1987, 1988, 1992) and Adelson and Bergen
(1985). Other researchers who have studied the use of
local energy for feature detection are Perona and Malik
(1990), Freeman (1992), and Ronse (1993, 1997).
Rosenthaler, Heitger, Kubler, and Heydt (1992) make a
comprehensive study of the behaviour of local energy at
2D image feature points. Wang and Jenkin (1992) use
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Fig. 3 Polar diagram showing the Fourier components at a
location in the signal plotted head to tail. This arrangement
illustrates the construction of energy, the sum of the Fourier
amplitudes, and phase congruency from the Fourier components of
a signal. The noise circle represents the level of E(x) one can expect
just from the noise in the signal

complex Gabor filters to detect edges and bars in images.
They recognize that step edges and bars have specific
local phase properties which can be detected using filters
in quadrature; however, they do not connect the signif-
icance of high local energy with the concept of phase
congruency. It should also be noted that Grossman
(1998) recognized that wavelets could be used for the
detection of discontinuities. He recognized the fact that
discontinuities have no intrinsic scale, and this is re-
flected in the wavelet coefficient values. However, here
too, the connection with the concept of phase congru-
ency was not made.

The relationship between phase congruency, local
energy, and the sum of the Fourier amplitudes can be
seen geometrically in Fig. 3. The local Fourier compo-
nents are plotted as complex vectors adding head to tail.
The sum of these components projected onto the real
axis represent F(x), the original signal with DC com-
ponent removed, and the projection onto the imaginary
axis represents H(x), the Hilbert transform. The mag-
nitude of the vector from the origin to the end point is
the total energy, E(x). One can see that E(x) is equal
to >, A4,cos(p,(x) — ¢(x)). Phase congruency is the
ratio of E(x) to the overall path length taken by the local
Fourier components in reaching the end point. Thus,
one can clearly see that the degree of phase congruency
is independent of the overall magnitude of the signal.
This provides invariance to variations in image illumi-
nation and/or contrast.

Referring to Fig. 2, one can see the following prob-
lems in the calculation of phase congruency:

1. The calculation of phase congruency becomes ill-
conditioned if all the Fourier amplitudes are very
small (3,4, ~ E(x) ~0).



2. If the value of E(x) falls within the “circle of noise,”
values of phase congruency lose all significance.

3. If there is only one (or nearly only one) frequency
component present in the signal phase, congruency
degenerates to a value of one (>, 4, = E(x)).

4. The definition of phase congruency as provided by
Equation 2 does not provide good localization, as this
function only varies with the cosine of a phase devi-
ation, rather than say, phase deviation itself.

The problem of phase congruency becoming ill-condi-
tioned if all the Fourier amplitudes are very small can be
addressed by adding a small positive constant, ¢, to the
denominator of the expression for phase congruency.
Thus,

_ E
PC(X)_ZnAn(x)+8 (5)
where E(x) = \/F(x)* + H(x)*. The appropriate value of

¢ depends on the precision with which we are able
to extract frequency information from our signal; it does
not depend on the signal itself.

The other problems in the calculation of phase con-
gruency, particularly its sensitivity to noise, are ad-
dressed in subsequent sections. However, first it is
explained how phase congruency can be calculated from
the outputs of filters in quadrature.

Calculating phase congruency via filters in quadrature

In a biological system, localized frequency information
is available through banks of filters in quadrature tuned
to different spatial frequencies. Logarithmic Gabor
functions, as suggested by Field (1987), are a convenient
filter model to use. These are filters having a Gaussian
transfer function when viewed on the logarithmic fre-
quency scale. Log Gabor filters allow arbitrarily large
bandwidth filters to be constructed while still main-
taining a zero DC component in the even-symmetric
filter. (A zero DC value cannot be maintained in Gabor
functions for bandwidths over 1 octave.) On the linear
frequency scale, the log Gabor function has a transfer
function of the form

—(log(e/wo))?
G (a)) = e 2(log(x/mo))?

(6)
where w, is the filter’s centre frequency. To obtain
constant shape ratio filters' the term x/wy must also be
held constant for varying wy. For example, a x/wy value
of .75 will result in a filter bandwidth of approximately
one octave, and a value of .55 will result in a two-octave
bandwidth. It is of interest to note that the spatial extent
of log Gabor filters appears to be minimized when they
are constructed with a bandwidth of approximately two
octaves (Kovesi 1996a).

IThat is, filters that are all geometric scaling of some reference
filter.
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Fig. 4 Even and odd log Gabor wavelets, each having a bandwidth
of two octaves

The design of the filter bank needs to be such that the
transfer function of each filter overlaps sufficiently with
its neighbours so that the sum of all the transfer func-
tions forms a relatively uniform coverage of the spec-
trum. We wish to retain a broad range of frequencies in
our signal because phase congruency is only of interest if
it occurs over a wide range of frequencies.

If we let I denote the signal and M¢ and M? denote
the even-symmetric (cosine) and odd-symmetric (sine)
filters at a scale n, we can think of the responses of each
quadrature pair of filters as forming a response vector:

[en(x); 0n(x)] = [1(x)+M;, 1 (x) M) (7)

The amplitude of the transform at a given filter scale is
given by
en<x>2 + o, (x)z

An(x) = (8)

and the phase is given by

bn(x) = atan2(0,(x), €,(x)) ©)

At each point x in a signal, we will have an array of these
response vectors, one vector for each scale of filter?.
These response vectors form the basis of our localized
representation of the signal, and they can be used in
exactly the same way as Fourier components can be used
to calculate phase congruency.

An estimate of F(x) can be formed by summing the
even filter convolutions. Similarly, H (x) can be estimated
from the odd filter convolutions:

F(x) > ) ealx) (10)
H(x) ~ Zon(x) and (11)
> Anx) 2 "y en®) + oalx)? (12)

With these three components we are able to calculate
phase congruency.

Noise

The crucial problem with phase congruency is its re-
sponse to noise. Figure 5 illustrates the phase congru-
ency of a step function with and without noise. In the

2 Note that from now on, n will be used to refer to filter scale.
(Previously, n denoted frequency in the Fourier series of a signal.)
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Fig. 5 Phase congruency of a step function with and without noise

vicinity of the step, phase congruency is only high at the
point of the step. However, away from the step, the
fluctuations due to noise are considered to be significant
relative to the surrounding signal (which is noise). This
will occur no matter how small the noise level is. This is
the price one pays for using a normalized measure such
as phase congruency.

The human visual system can adjust to illumination
variations of several orders of magnitude. Clearly, some
kind of adaption and normalization must take place,
and somehow this is done without inducing great sen-
sitivity to noise. Any adaptive system that uses some
kind of normalization of the signal must be capable of
identifying, and compensating for, noise in the signal.

To compensate for the effect of noise in the calcula-
tion of phase congruency, we need to identify the level of
E(x) that arises naturally from noise in the image (the
“circle of noise” in Fig. 3) Once this is determined, phase
congruency can then be calculated with respect to the
amount that E(x) exceeds this noise level. It is possible to
estimate the level of E(x) induced by noise if we make the
following three assumptions: Image noise is additive, the
noise power spectrum is constant, and features, such as
edges, only occur at isolated locations in an image. While
these assumptions may be considered simplistic, given
the limited and sometimes conflicting data on the nature
of noise in real images — see, for example, Fleck (1992b)
and Mclvor (1990) — it can be argued that one has little
basis on which to build a more formal model.

In the following discussion we shall use the following
expression for energy:

() (5

where ¢, and o, are the outputs of the even and odd
symmetric filters at scale n. Energy is the magnitude of a
vector sum (Fig. 3). If our noise is Gaussian with ran-
dom phase, each vector in this sum will be made up of
two independent normally distributed variables. Thus,
the distribution of the position of each vector will be a
2D Gaussian centred on the origin.

(13)

The distribution of the sum of these vectors is
obtained by successively convolving the position
distributions for the noise vectors at each scale. As
these are all 2D Gaussians, the final distribution of the
end position of the energy vector will also be Gauss-
ian. However, what we are interested in is the distri-
bution of the magnitude of the energy vector. This will
have a Rayleigh distribution (Weisstein, 1998) of the
form:

o

o
3

a
Q)

(14)

where ¢% is the variance of the Gaussian distribution
describing the position of the total energy vector. The
mean of the Rayleigh distribution is:

n
Hgr = 0g 2 (15)
and its variance is given by:

4 —
6122 =— naé (16)

If one can determine an expected value of energy due
to noise, we can use this as an estimate of the mean of
the energy’s Rayleigh distribution and hence determine
its variance. A noise threshold can then be set in terms
of a specified number of standard deviations above the
mean.

Rather than construct the expected value of E, it is
more convenient to estimate E’. Note that while E
will have a Rayleigh distribution, E?> will have a »°
distribution with two degrees of freedom. The ex-
pected value of E? will correspond to the 2nd moment
of the Rayleigh distribution with respect to the origin,
this is:

F(E?) = 202 (17)

where E denotes the expected value. The expected value
for E? in terms of our filter responses is

F(E?) = E (Z en> 2+ <Z on> 2

n n

(o)) oe((5e)

+ [E (2 Z(e,ej —|— 0i0j)>

i<j

= 2F (Z:e")z +4[E<Z(e,~e_,))

i<j

(18)

this last step being possible because the distributions of
e, and o, are identical, but independent.

Given that e, is obtained by convolving the noise
signal g with a filter M,, and denoting the Fourier
transform Z (f') = f we obtain:



E(E®) = 2F (Z(Mn * g)2> +4EF (Z(M xg) - (M, * g))

n i<j

=2F (Z(Mn : gf)

n

+4[E<Z=9«*1(A;Ii~é)*(1‘;fj'ﬁ)>

i<j
= 2|é|2[E<ZM3> + 4[E<_Z 714 - (M, *A%-))
= 2|9|2[E<ZM3> +4|92E<Z<M- -M») (19)

Note that we are assuming that g has zero mean and |g|
is constant. The components of Equation 19 involving
the filters M, can be evaluated numerically, but what we
do not know is the amplitude of the noise spectrum, |g|.
However, we can estimate |g| from the response of the
smallest scale filter pair in the wavelet bank as follows.

The smallest scale filter has the largest bandwidth,
and as such will give the strongest noise response. Only
at feature points will the response differ from the
background noise response, but the regions where it will
be responding to features will be small due to the small
spatial extent of the filter. Thus, the distribution of the
squared amplitude response from the smallest scale filter
pair across the whole image will be primarily the noise
distribution, a scaled 2 DOF »? distribution, with some
contamination as a result of the response of the filters to
feature points in the image.

We can obtain a robust estimate of the mean of the
squared amplitude response of the smallest scale filter
via the median response. The median of a 2 DOF >
distribution is the value x such that:

X

1 o 1
/Ee- —5 (20)
0
= median = -2 In(1/2) . (21)

Noting that the mean of a 2 DOF #? distribution is 2, we
obtain:

—median(43)
In(1/2)

where N is the index of the smallest scale filter. This
allows us to form the estimate:

E(4y) = (22)

. E(43)
- EOLR)

91 (23)

This can be substituted back into Equation 19 to obtain
a value for E(E?), then, using Equations 17, 16, and 15,
we can obtain the mean p; and variance o% of the
Rayleigh distribution describing the noise energy re-
sponse.
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Fig. 6 Noise compensated phase congruency of two step profiles

The radius, T of the noise circle (shown in Fig. 3) is
taken to be the mean noise response plus some multiple,
k, of OR

T = up + kog (24)

where typically % is in the range 2 to 3. If we subtract this
estimated noise effect from the local energy before nor-
malizing it by the sum of the wavelet response ampli-
tudes, we will eliminate spurious responses to noise.
Thus, we modify the expression for phase congruency to
the following:
pee) — LE0) =T
2onAn(x) +é
where | | denotes that the enclosed quantity is equal to
itself when its value is positive, and zero otherwise. This
approach to noise compensation has parallels to Don-
oho’s techniques for de-noising via soft thresholding
(Donoho, 1992).

The phase congruency of a legitimate feature will be
reduced according to the magnitude of the noise’s local
energy relative to the feature. Thus, we end up with a
measure of confidence that the feature is significant
relative to the level of noise. Figure 6 shows the results
of processing two noisy step profiles. In both cases, a k&
value of 3 was used to estimate the maximum influence
of noise no local energy.

(25)

The importance of frequency spread

Clearly, a point of phase congruency is only significant if
it occurs over a wide range of frequencies. In the de-
generate case where there is only one frequency com-
ponent (a pure sine wave), phase congruency will be 1
everywhere. A more common situation is where a fea-
ture has undergone Gaussian smoothing. The smoothing
reduces the high frequency components in the signal and
reduces the frequency spread.

Thus, as a measure of feature significance, phase
congruency should be weighted by some measure of the
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Fig. 7 Frequency spread weighting function with a cut-off value of
0.4 and y value of 10

spread of frequencies present. What, then, is a significant
distribution of frequencies? The amplitude spectrum of a
square wave is of the form 1/w. With a set of geometri-
cally scaled filters, the bandwidth of each filter is pro-
portional to its centre frequency. On a spectrum of this
kind, the net result is that filter responses are uniform,
independent of filter centre frequency. Field (1987) points
out that in many cases, images of natural scenes have
overall spectral distributions that fall of inversely pro-
portional to frequency, and for this reason he also ad-
vocates the use of geometrically scaled filter banks.
Under these conditions, filters at all scales will, on aver-
age, be responding with equal magnitudes. This is likely
to maximize the precision of any computation (numerical
or neural) that we make with the filter outputs.

However, if one considers a delta function (corre-
sponding to a line feature), which has a uniform am-
plitude spectrum, the distribution of filter responses will
be strongly skewed to the high frequency end. On the
other hand, for a triangular waveform, where the am-
plitude spectrum falls off at 1/w?, the distribution of the
filter amplitude responses will be strongly skewed to the
low frequency end.

Thus, the difficulty we face here is that there is no one
ideal distribution of filter responses. All we can say is
that the distribution of filter responses should not be too
narrow in some general sense. We can also say that a
uniform distribution is of particular significance, as step
discontinuities are common in images.

Accordingly, we can construct a weighting function
that devalues phase congruency at locations where the
spread of filter responses is narrow. A measure of filter
response spread can be generated by taking the sum of
the amplitudes of the responses and dividing by the
highest individual response to obtain some notional
“width” of the distribution. If this is then normalized by
the number of scales being used, we obtain a fractional
measure of spread that varies between 0 and 1. This
spread is given by:

-4 (E5)

where N is the total number of scales being considered,
Apmax(x) is the amplitude of the filter pair having maxi-
mum response at x, and ¢ is used to avoid division by

(26)

Tpi iz 0
phase deviation

pi/2 pi

Fig. 8 Comparison between cos(x) (dotted line) and cos(x) —
[sin(x)| (solid line)

zero and to discount the result should both > 4,(x) and
Amax(x) be very small.

A phase congruency weighting function can then be
constructed by applying a sigmoid function to the filter
response spread value, namely:

1
T+ erle—s)
where ¢ is the “cut-off” value of filter response spread,
below which phase congruency values become penalized,
and v is a gain factor that controls the sharpness of the
cut-off. Note the sigmoid function has been merely

chosen for its simplicity and ease of manipulation.
Thus,

W (x) (27)

W(x)|E(x) - T]
2 nAn(x) +&

Weighting by frequency spread, as well as reducing
spurious responses where the frequency spread is low,
has the additional benefit of sharpening the localiza-
tion of features, especially those that have been
smoothed.

PC(x) = (28)

A new measure of phase congruency

Even with a addition of frequency spread weighting, one
finds that the localization of phase congruency remains
poor on blurred features. The reason for this is evident
when one studies the expression for energy. Energy is
proportional to the cosine of the deviation of phase
angle, ¢,(x) from the overall mean phase angle, ¢(x).
While the cosine function is maximized when ¢, (x) =
¢(x), it requires a significant difference between ¢, (x)
and ¢(x) before its value falls appreciably.

If one incorporates the sine of the phase difference, in
addition to the cosine, we can construct a more sensitive
phase deviation measure:

AD(x) = cos(¢h, (x) — $(x)) — [ sin(¢, (x) — ¢(x))]

Figure 8 plots this function along with the cosine func-
tion for comparison. The function falls very nearly lin-
early as phase deviation moves from 0 to £7/2. Thus, a
near direct measure of phase deviation is obtained.

(29)



Fig. 9 Raw phase congruency
calculated on the Boat image
comparing the localization
achieved with phase congruency
measures PC; (/eft) and

PC; (right)

Using this new measure of phase deviation, A®(x), a
new measure of phase congruency can be defined as:

_ Zn W(x) LAn(x)A(Dn(x) — TJ
2nAn(x) +¢

where, as before, ¢ is a small constant to avoid division
by zero and T is the estimated noise influence®. Note
that this expression for phase congruency is called
PC5(x) to distinguish it from the previous definition of
phase congruency, which will now be referred to as
PCy ()C)

The calculation of PC»(x) requires the calculation of
the cosine and sine of (¢,(x) — ¢(x)). The unit vector
representing the direction of the weighted mean phase
angle, ¢(x) is given by:

(Be(x), B (x)) =

PCz(x)

(30)

1
(F(x)* + H(x)*)

(F(x),H(x)) (1)

Now, using the magnitude of dot and cross products
between the filter response vectors, one can calculate the

3 This equation for phase congruency does not lend itself readily to
the noise analysis described in section 4 (Noise). In practice, it is
found that the analysis used in that section approximately applies
to the PC, measure, but typically the noise effect is overestimated.
This can be compensated for by rescaling the value for T calculated
in Equation 24 by a factor of 0.5 to 0.7.
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new weighted phase deviation measure directly from the
filter outputs:

Ay(x)(cos(¢,(x) — $(x)) — |sin(¢, (x) — d(x))])

= (en(x) - be(x) + 0u(x) - §,(x))
= len(x) - §,(x) — 04 (x) - b (x)] (32)

Figure 9 provides an example of how the PC, measure
produces a more localized response to features and al-
lows better detection of the detail in images. Other
measures similar to the PC, measure could be devised.
However, the advantage of the expression derived above
is that one obtains an approximation to the absolute
phase deviation directly from the filter outputs, without
having to employ inverse trigonometric functions.

Extension to two dimensions

So far, our discussion has been limited to signals in one
dimension. Calculation of phase congruency requires the
formation of a 90° phase shift of the signal, which we
have done using odd-symmetric filters. As one cannot
construct rotationally symmetric odd-symmetric filters,
one is forced to analyze a two-dimensional image by
applying our one-dimensional analysis over several ori-
entations and combining the results in some way. There
are two issues to be resolved: The shape of the filters in
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two dimensions, and the way in which the results from
each orientation are combined.

2D filter design

A logical way to construct 2D filters in the frequency
domain is to use polar-separable 2D Gaussians. In the
radial direction, along the frequency axis, the filters are
log Gaussians with geometrically increasing centre fre-
quencies and bandwidths. In the angular direction, the
filters have Gaussian cross-sections. Thus, the cross-
section of the transfer function in the angular direction is:

(0-0p)°

GlO)=e i (33)

where 0, is the orientation angle of the filter, and gy is
the standard deviation of the Gaussian spreading func-
tion in the angular direction. This is set to be some fixed
ratio of the orientation spacing between the filters to
ensure even coverage of the spectrum in all orientations.
The final arrangement of filters results in a “‘rosette’ of
overlapping polar-separable 2D Gaussians in the fre-
quency plane.

There is a good reason for choosing a Gaussian
spreading function in the angular direction. We are in-
terested in the phase information in the image, and the
important thing to ensure is that convolution with the
spreading function does not corrupt this phase data.
Any funtion convolved with a Gaussian undergoes am-
plitude modulation of its components, but phase is un-
affected. If, on the other hand, we were to, say, use a
rectangular spreading function, some phase angles in the
signal would be reversed because the transfer function
(as sine function) has negative values. Phase congruency
at features would then be corrupted.

Combining data over several orientations

The approach that has been adopted is as follows: At
each location in the image we calculate energy, E(x) in
each orientation, compensate for the influence of noise,
apply the weighting for frequency spread, and then form
the sum over all orientations. This sum of energies is
then normalized by dividing by the sum over all orien-
tations and scales of the amplitudes of the individual
filter responses at that location in the image. This pro-
duces the following equation for 2D phase congruency:

_ 0 2 Wo(X) [ Ao (X)A®,, (x) — T, |
>0 2nAno(x) + &

where o denotes the index over orientations. It is also
important that the normalization of energy to form
phase congruency is done after summing energies over
all orientations. This ensures that the result from each
orientation contributes to the overall normalised result
in proportion to its energy. Notice in the equation above
that noise compensation is performed in each orienta-

PCs(x) (34)

tion idependently. This has been found to give signifi-
cantly better results. The perceived noise content as
deduced from the average power response of the smallest
scale filter pair can vary significantly with orientation.
This is due to the correlation in noise along scan lines
that can occur in the digitization of an image.

Scale via high-pass filtering

The traditional approach to analyzing an image at dif-
ferent scales is to consider various low-pass or band-
passed versions of the image. A major problem with this
approach to multi-scale analysis is that the number of
features present in an image, and their locations, vary
with the scale used. It seems very unsatisfactory for the
location of a feature to depend on the scale at which it is
analyzed. Feature locations should not be a function of the
scale of analysis, only the relative significance of features
should change.

Much of the thinking about scale has been strongly
influenced by the problems in applying differential op-
erators to images and the need to suppress noise. The
use of phase congruency to measure feature significance
allows one to consider an alternative interpretation of
feature scale. Phase congruency at some point in a signal
depends on how the feature is built up from the local
frequency components. Depending on the size of the
analysis window, features some distance from the point
of interest may contribute to the local frequency com-
ponents considered to be present. Thus, features are not
considered in isolation, but in context with their sur-
rounding features.

Therefore, as far as phase congruency, the natural
scale parameter to vary is the size of the window in the
image over which we perform the local frequency anal-
ysis. In the context of our use of filters to calculate phase
congruency, the scale of analysis is specified by the
spatial extent of the largest filter in the filter bank. With
this approach, we are using high-pass filtering to specify
the analysis scale. We cut out low frequency components
(those having wavelengths larger than the window size),
while leaving the high frequency components intact.

If we use a small analysis window, each feature will be
treated with a great degree of independence from other
features in the image. We will only be comparing each
feature to a small number of other features that are
nearby, and hence each feature is likely to be perceived
more important locally. At the largest scale (window size
equal to image size), each feature is considered in rela-
tion to all other features, and we obtain a sense of global
significance for each feature.

In summary, it is proposed that multi-scale analysis
be done by considering phase congruency of differing
high-passed versions of an image. The high-pass images
are constructed from the sum of band-passed images,
with the sum ranging from the highest frequency band
down to some cut-off frequency. With this approach, no
matter what scale we consider, all features are localized



Fig. 10 Analysis at different
scales. a A 1D signal and two
different low-pass versions of
the signal. b Two different
band-pass versions of the sig-
nal. ¢ Two different high-pass
versions of the signal. d Phase
congruency at both scales of
high-pass filtering shown in c.
Note that the number and lo-
cation of features as measured
by phase congruency remains
constant, and only their relative
significance varies with scale.
Under low-pass and band-pass
filtering, the number and loca-
tions of features varies

signal

precisely and in a stable manner. There is no “drift” of
features that occurs with low-pass filtering. All that
changes with analysis at different scales is the relative
significance of features (Fig. 10).

Experimental results

The performance of the phase congruency detector is
demonstrated on two test images and on two real images
on the following pages. For comparison, the output of
the Canny detector is also presented. The implementa-
tion of the Canny detector used here follows the modi-
fications suggested by Fleck (1992a). The raw, gradient
magnitude image is displayed so that comparison can be
made without having to consider any artifacts that may
be introduced by non-maximal suppression and thres-
holding processes. The purpose of providing this com-
parison is to illustrate some of the qualitative differences
in performance between the two detectors. Quantitative
comparisons are difficult, because the design objectives
of the two detectors are completely different. One of
them is seeking to localize step edges, and the other is
seeking to identify points of phase congruency.

The main qualitative difference between the two de-
tectors is the wide range of response values from the
Canny operator relative to the phase congruency de-
tector. This illustrates the difficulty of threshold selec-
tion for the Canny operator. The other obvious
difference is that the Canny detector produces twin re-
sponses on features that have congruency of phase at

0.4
0.2
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angles other than 0 degrees (that is, features other than
step edges), whereas the phase congruency detector
produces a single uniform response no matter what the
angle of congruence is (Fig. 11). This illustrates the
difficulty in specifying quantitative performance criteria
for feature detectors that are relevant to human visual
perception. The Canny operator was developed to op-
timally detect step edges in the presence of noise.
Clearly, this performance criterion has nothing to do
with human visual perception.

It should be emphasized that all the results presented
on the following pages were obtained by applying the
same parameter and threshold values to every image.
The uniformity of the results demonstrates the invariant
properties of phase congruency.

The raw phase congruency images were obtained by
applying Equation 34 to the images with following pa-
rameters: Local frequency information was obtained us-
ing two octave bandwidth filters over four scales and six
orientations. The wavelength of the smallest scale filters
was 3 pixels, the scaling between successive filters was 2.
The filters were constructed directly in the frequency do-
main as polar separable functions — a logarithmic
Gaussian function in the radial direction and a Gaussian
in the angular direction. In the angular direction, the ratio
between the angular spacing of the filters and angular
standard deviation of the Gaussians was 1.2. This results
in a coverage of the spectrum that varies by less than 1%.
A noise compensation k£ value of 2.0 was used. The fre-
quency spread weighting function cut-off fraction ¢, was
set at 0.4, and the gain parameter y, was set at 10. The
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Fig. 11 Output of the Canny detector (/eft) and phase congruency
operator (right) on the grating shown in Fig. 2. The grating
interpolates a step profile at the top (congruence of phase at 0
degrees) to a line feature at the bottom (congruence of phase at 90
degrees). Where the congruence of phase occurs at angles away from
0 degrees, the Canny detector sees two features rather than one

Fig. 12 Illustration of noise compensation. a Test image with
additive Gaussian noise. b Raw phase congruency on noise-free
image. ¢ Canny edge strength on noisy image. d Raw phase
congruency on noisy image. In this example, additive Gaussian
noise with a standard deviation of 40 grey levels has been applied to a
256 grey level test image. The noise has been successfully ignored in
the smooth regions of the image, though the “confidence” of the
measured phase congruency at features has been reduced. Notice
how phase congruency marks the line features with a single response,
not two, as the Canny operator does, and that the magnitude of the
phase congruency response is largely independent of local contrast

value of ¢, the small constant used to prevent division by
zero in the case where local energy in the image becomes
very small, was set at 0.01. None of these parameter values
are particularly critical. The phase congruency feature
maps were obtained by performing non-maximal sup-
pression on the raw phase congruency images followed by
hysteresis thresholding with upper and lower hysteresis
threshold values fixed at phase congruency values of 0.3
and 0.15.

Fig. 13 Mandrill image. a Original image. b Phase congruency
feature map. ¢ Canny edge strength image. d Raw phase
congruency image. This image is largely made up of line features,
and this highlights the difference between phase congruence and
first derivative edge operators. The Canny detector marks edges
around all the hairs, while phase congruency marks the hairs
directly as line features

Fig. 14 Goldhill image. a Original image. b Phase congruency
feature map. ¢ Canny edge strength image. d Raw phase
congruency image. This image illustrates the ability of the PC,
measure to pick out fine features. The window panes and roof tiles
in the nearer houses are clearly marked



MATLAB code for performing the calculation of
phase congruency, non-maximal suppression, and hys-
teresis thresholding is provided by Kovesi (1996b) for
those wishing to replicate the results presented here.

Conclusion

We have argued for the importance of invariant low-
level feature detectors in vision. These are building
blocks of higher-level processes. Invariance in the out-
puts of low-level operators ensures reliability of these
subsegent higher-level operations. Phase congruency
provides a low-level invariant measure of the signifi-
cance of features, but its sensitivity to noise highlights
the fundamental problem of noise that any visual system
must overcome if it is to use any form of normalization
to achieve invariance to contrast.

This paper extends the theory behind the calculation
of phase congruency in a number of ways. An effective
method of noise compensation is presented that only
assumes that the noise power spectrum is approximately
constant. Problems with the localization of features are
addressed by introducing a new, more sensitive measure
of phase congruency. It is shown that weighting phase
congruency by some measure of the spread of the fre-
quencies present at a feature is also important. It is
observed that when geometrically scaled filters are used,
a uniform distribution of responses is a particularly
significant one. This distribution matches typical spec-
tral statistics of images and corresponds to the distri-
bution that arises at step discontinuities. It has also been
shown how phase congruency can be calculated via log
Gabor filters, and the particular issues in calculating
phase congruency in 2D images are covered.

Another contribution of this work is to offer a new
approach to the concept of scale in image analysis. The
natural scale parameter to vary in the calculation of
phase congruency is the size of the analysis window over
which to calculate local frequency information. Thus,
under these conditions, scale is varied using high-pass
filtering rather than low-pass or band-pass filtering. The
significant advantage of this approach is that feature
locations remain constant over scale, and only their
significance relative to each other varies.

Invariant measures are important in low-level vision.
Phase information is a good basis on which to construct
such measures.
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ANNOUNCEMENT

The Department of Psychology at Humboldt-University,
Berlin, Germany, will celebrate its 100th anniversary on
11 and 12 January 2001. Over the years, the department
has been home to many well-known and influential
psychologists, including Ebbinghaus, Kohler, Stumpf,
Gottschaldt, Wertheimer, Lewin, and Klix.

Part of the 100th anniversary celebration will be a
scientific program with internationally known psycholo-
gists from diverse areas of psychology. Speakers include

P.B. Baltes, M. Denis, M. Heidelberger, W. Kintsch,
F. Klix, J. Kruschke, D. Magnusson, R. Néditinen,
L. Squire, B. Velichkovsky, and K. Zimmer.

The Department of Psychology invites all interested
scientists to attend the 2-day celebration. Detailed
information is available under: http://www.psycholo-
gie.hu-berlin.de/ or can be obtained from Peter A.
Frensch (e-mail: psy.direktor@psychologie.hu-berlin.de;
Tel.: 49 +30-20246622).



