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Abstract
Here we present a task developed to probe implicit learning of a complex motor skill. This task addresses limitations related 
to task complexity noted in the literature for methods investigating implicit motor learning, namely the serial reaction time 
task and continuous tracking task. Specifically, the serial reaction time task is limited by the kinematic simplicity of the 
required movement and the continuous tracing task faces time-on-task confounds and limitations in the control of task dif-
ficulty. The task presented herein addresses these issues by employing a kinematically complex multi-articular movement 
that controls factors that contribute to task difficulty: stimulus animation velocity and trajectory complexity. Accordingly, 
our objective was to validate the use of this task in probing implicit motor learning, hypothesizing that participants would 
learn one of the repeating stimuli implicitly. Participants engaged in six blocks of training whereby they first observed and 
then reproduced a seemingly random complex trajectory. Repeated trajectories were embedded amongst random trajectories. 
In line with the hypothesis, error for the repeated trajectories was decreased in comparison to that observed for the random 
trajectories and 73% of participants were unable to identify one of the repeated trajectories, demonstrating the occurrence of 
implicit learning. While the task requires minor alteration to optimize learning, ultimately the findings underline the task’s 
potential to investigate implicit learning of a complex motor skill.

Introduction

Implicit learning, which is characterized by an inability to 
articulate the learning that occurs, has been shown to be a 
critical component of motor learning (for a review on the 
topic please see Destrebecqz & Cleeremans, 2001; Dienes 
et al., 1991; Jamieson et al., 2017; Maresch et al., 2021; 

Nissen & Bullemer, 1987; Rohrmeier & Rebuschat, 2012; 
Sævland & Norman, 2016). Numerous investigations of 
implicit learning have employed the serial reaction time task 
(SRTT; for a review see Schwarb & Schumacher, 2012). In 
the SRTT, simple movements (i.e., sequences of keypresses) 
are practiced, in which a repeating pattern is learned yet 
unable to be reported (Nissen & Bullemer, 1987). Wide-
spread use of this task and modified versions, including 
those employed to reduce the chance of explicit learning 
(e.g., by embedding multiple sequences or sequence types 
during practice; see Kaufman et al., 2010; Kraeutner et al., 
2016; Sanchez & Reber, 2012; Wilkinson & Shanks, 2004 
for examples), have thus demonstrated the robustness of the 
SRTT to investigate implicit learning. However, while the 
SRTT has a motor component (i.e., button presses), the gen-
eralizability of findings from the SRTT to other contexts of 
implicit motor learning may be limited due to the simplic-
ity of the motor component of the skill being learned and 
additional reliance on perceptual learning (i.e., improved 
recognition of the stimulus and the resulting mapping of per-
ceptual cues to movement goals) compared to other complex 
motor tasks (Schwarb & Schumacher, 2012; Wulf & Shea, 
2002). Specifically, SRTTs appear to probe the ability to 
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order discrete actions or chunks of discrete actions, rather 
than execution of a sequential movement whereby the cogni-
tive demands of the SRTT can be increased (see Jiménez & 
Vázquez, 2005; Schvaneveldt & Gomez, 1998; Vandenbos-
sche et al., 2014 for examples) but the motor demands of 
this task remain limited due to the simple kinematic nature 
of the task (Robertson, 2007; Wong & Krakauer, 2019). 
Thus, employing a task that is more representative of the 
kinematic complexity of movements performed in everyday 
life would help to advance our understanding of implicit 
motor learning.

An alternative paradigm to the SRTT, the continuous 
tracking task (CTT) was developed to investigate implicit 
motor learning of a more kinematically complex movement 
(Pew, 1974). Unlike the SRTT, the motor component of the 
CTT is more kinematically demanding, and thus instead 
of mapping a simple motor response to a perceptual cue 
(as in the SRTT), participant performance depends more 
on their ability to execute the necessary action (Pew, 1974; 
Wulf & Schmidt, 1997). In brief, participants are asked to 
track a target moving across a screen by manipulating a joy-
stick (or other hand-driven device) in a seemingly random 
waveform trajectory. Similar to the SRTT, the trajectory is 
segmented into three sections whereby the second segment 
is repeated throughout practice unbeknownst to the partici-
pant. Implicit learning of the repeated segment has been 
demonstrated to occur, evidenced by decreased error of the 
repeated vs. random segments in conjunction with partici-
pants being unaware of the repeated trajectory when queried 
(Pew, 1974; Wulf & Schmidt, 1997). Although the CTT has 
been used in investigations of implicit motor learning in a 
number of domains (for examples see Oliveira et al., 2017; 
Sekiya, 2006; Siengsukon & Boyd, 2008), it has been sub-
ject to criticism due to conflicting evidence demonstrating 
the magnitude of learning (Chambaron et al., 2005; Lang 
et al., 2013; Wulf & Schmidt, 1997).

Criticisms of the CTT noted in previous literature have 
highlighted the structure of the practice trials. Specifically, 
the ordering of the segments is constant throughout training, 
in that the repeated segment always appears in the middle 
position between two random segments. Thus, extraneous 
“time-on-task” confounds may be introduced when assess-
ing learning due to a step-wise degradation in performance 
across the task (Zhu et al., 2014). Further, task difficulty, 
particularly the speed of the target, is not controlled for in 
many cases between the random and repeated segments. Per-
formance improvements to the repeated segment, and thus 
implicit learning, is suggested to be observed only because 
the random segments are more difficult to track than the 
repeated segment (Chambaron et al., 2005; Zhu et al., 2014).

Indeed, in light of the aforementioned design flaws, 
modifications have been made in an attempt to improve the 
CTT (Künzell et al., 2016; Zhu et al., 2014). For instance, 

comparing the average performance across both random seg-
ments vs. the repeated segment is recommended to account 
for time-on-task confounds (Chambaron et al., 2005; Kün-
zell et al., 2016; Wulf & Schmidt, 1997; Zhu et al., 2014). 
However, a critical assumption of this comparison is that the 
decrement in performance is linear. While a linear trend has 
been demonstrated (Zhu et al., 2014), the analyses were lim-
ited by the number of data points included, and models have 
not been tested using exponential or log-linear functions 
previously shown to predict improvements in performance 
(Heathcote et al., 2000; Sanchez & Reber, 2012). Further, 
Künzell et  al. (2016) showed task difficulty modulates 
the success of implicit learning via the CTT. Specifically, 
improvements in performance on the repeated vs. random 
segments were not observed when slow target speeds were 
employed during training. The authors suggested that faster 
target speeds, and thus increased task difficulty, are required 
to detect an effect of learning (Künzell et al., 2016). Impor-
tantly, while target speed is one component of task difficulty, 
task difficulty can also be modulated by increasing the com-
plexity of the trajectory itself. Generally, coefficients of the 
waveform equation are adjusted within a specific range to 
create the complex trajectories, yet previous studies have not 
quantified or reported evidence of controlling for the com-
plexity of these patterns across trials or segments. Thus, as 
task difficulty is shown to modulate the success of implicit 
learning, it is critical to control for task difficulty in terms 
of both target speed and complexity.

Further investigations using the CTT have reduced the 
difficulty of the task by increasing the predictability of 
responses by increasing the amount of available informa-
tion to participants in combination with explicitly informing 
participants of the repeating portion of the task (Broeker 
et al., 2020, 2021). While successfully making the task eas-
ier, these manipulations were likely too extreme and intro-
duced ceiling effects in the data and rendered an implicit vs. 
explicit comparison null (Broeker et al., 2020). Despite the 
advancements made to modulate task difficulty in the CTT, 
the extraneous confounds introduced by the ordering of seg-
ments during training and lack of control of both the speed 
and complexity of the trajectory employed may explain the 
conflicting evidence of detecting implicit learning using the 
CTT (Broeker et al., 2020, 2021; Chambaron et al., 2005; 
Künzell et al., 2016; Lang et al., 2013; Wulf & Schmidt, 
1997; Zhu et al., 2014).

Here, we introduce a task for investigating implicit learn-
ing of a kinematically complex motor skill that allows for 
precise control of stimulus animation velocity and com-
plexity (using both total absolute curvature and to quantify 
trajectory complexity; detailed below), without extraneous 
confounds due to time-on-task. Accordingly, our primary 
objective was to validate this new task for characterizing 
implicit learning of a complex motor skill that relies on 
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improvement to motor execution. For this task, learning is 
defined as a reduction in error between a trajectory drawn 
by the participant on a touchscreen (i.e., the participant 
response) and a stimulus trajectory (Fig. 1). In contrast to 
the CTT, task difficulty can be modulated in our task by 
controlling the stimulus animation velocity and the com-
plexity of the trajectories. During training, participants 
practiced seemingly random complex trajectories animated 
at different velocities that required unilateral arm and hand 
movements, however, two repeated trajectories were embed-
ded throughout training for each participant. Two repeated 
trajectories of similar complexity to the random trajecto-
ries (see Repeated Trajectories) were presented at differ-
ent frequencies, rather than a single repeating segment or 
sequence, to increase the likelihood that the less frequently 
presented stimulus would be learned implicitly. Critically, 
the inclusion of two repeated trajectories creates a within-
participant contrast whereby the repeated trajectory that is 
presented more often is learned explicitly and the second, 
less-repeated trajectory, is learned implicitly. In this context, 
the difference in performance to each repeated trajectory 
defines the contribution of explicit awareness to motor learn-
ing for each participant. This manipulation was based on 
the logic that within task, participants could learn different 
practiced movements with varying levels of conscious recol-
lection. To test this manipulation, participants were queried 
at the end of the experiment with a robust explicit knowledge 
test (detailed in Experimental Procedure). This test made 
classification based solely on recognition that there was a 
repeated stimuli and not the participant’s ability to create 

the repeated trajectory. In this context, a trajectory was 
learned implicitly only if participants could not recognize 
it after training. This comparison directly contrasts those 
employed in the SRTT and CTT that use explicit awareness 
questionnaires to classify individuals as explicit or implicit 
learners and, as a consequence, the contributions of implicit 
and explicit learning is made between participants (H. E. 
Ewolds et al., 2017; Schwarb & Schumacher, 2012). Using 
this within-subject contrast, we hypothesized that implicit 
learning would be observed, whereby participants would not 
recognize at least one repeating trajectory during training, 
as per the recognition test, and the resulting error for both 
repeated trajectories would be decreased in comparison to 
the random trajectories. Secondly, we hypothesized that the 
effect of learning would be larger for trajectories learned 
explicitly versus those that were learned implicitly. These 
learning effects would be denoted in subsequent models by 
credible main effects and interactions of the terms LEARN-
INGTYPE1, that denotes the contrast of implicitly versus 
explicitly learned trajectories, and LEARNINGTYPE2, that 
denotes the contrast of random to repeated trajectories. By 
showing improvements in performance on the repeated vs. 
random trajectories with and without conscious awareness 
while controlling for stimulus animation velocity and trajec-
tory complexity, findings of the current study will gener-
ate new knowledge related to methods for probing implicit 
motor learning of complex skills.

Methodology

Participants

Thirty participants (26 females, 20.5 ± 4.4 years, 25 right-
handed, EHI laterality quotient 0.57 ± 0.51) from the local 
and university community volunteered to participate in the 
study. Participants were recruited via word of mouth, an 
experimental participation system within the Dept. of Psy-
chology and Neuroscience, and via posters placed on the 
university campus and within the local community. Partici-
pants were either provided with a partial course credit, if 
recruited through the experimental participation system, or 
an honorarium for their time. Handedness was determined 
by the Edinburgh Handedness Inventory (Oldfield, 1971). 
All participants were at least 17 years old, reported normal 
hearing, were free of neurological or musculoskeletal disor-
ders that may affect upper limb function, and each provided 
written informed consent. Prior to beginning the experimen-
tal task, all participants verbally confirmed they understood 
the study instructions. The Dalhousie University Health Sci-
ences research ethics board approved the study.

Fig. 1   A visualization from Ingram et  al., 2019 depicting a typical 
trial the proposed paradigm. Note that the feedback pictured is sim-
ply for illustrative purposes and participants did not get any feedback 
about their performance while they were actively tracing the trajec-
tory
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Experimental task

Participants were asked to perform a behavioural task that 
emphasized the execution of complex movements using cus-
tom software developed in the Python (version 2.7.10) pro-
gramming environment. The task was adapted from Ingram 
et al., 2019 (https://​github.​com/​LBRF-​Proje​cts/​Impli​cit_​
CME_​Solom​on2023_​Exper​iment). The experiment involved 
engaging in six blocks of training, followed by an explicit 
knowledge test. All participants performed the experiment 
in a seated position directly in front of a horizontally ori-
ented 24″ touchscreen (Planar PCT2485; 1920 × 1080 reso-
lution) enclosed within a black box to reduce distractions 
and ensure screen illumination was constant across sessions 
and participants. Participants performed the task with their 
dominant hand, with their non-dominant hand resting com-
fortably in their lap. Participants were oriented to a starting 
point represented by a red circle located at the midpoint of 
the lower half of the screen.

During the task, participants engaged in six training 
blocks whereby they were instructed to execute complex 
trajectories that were cued by a white cursor on the screen 
(Ingram et al., 2019). Trials began with the participant tap-
ping a start button to initiate the movement of a white cursor 
originating from the starting point which animates a trajec-
tory that participants subsequently reproduce. Importantly, 
the animation left no trace on the screen for the participants 
to track. Immediately following the animation of the trajec-
tory, participants were instructed to touch the starting point 
to begin reproducing the trajectory they had just observed, 
matching the velocity at which it was animated. A real-
time trace appeared on the screen as participants executed 
their movements. When participants returned to the starting 
point the trial ended. Movement time was operationalized 
as the time between the beginning and end of a participant’s 
response (Ingram et al., 2019).

Task modifications from Ingram et al., 2019 to permit 
the study of implicit learning included the use of a second 
repeated trajectory. Trials consisted of either randomly gen-
erated trajectories or one of two repeated trajectories with 
similar characteristics as those that were randomly gener-
ated (i.e., path length, complexity and curve characteristics; 
described below). The first repeated trajectory accounted 
for 30% of the total trials (R-30 condition), and the sec-
ond repeated trajectory accounted for 20% of the total trials 
(R-20 condition). The remaining 50% of the total trials were 
randomly generated trajectories. During the experimental 
session, a participant performed a total of 180 trials (30 tri-
als per block). Thus, each participant performed 90, 54, and 
36 trajectories for the random, R-30, and R-20 conditions. 
Appearance of the trajectories was pseudorandomized over 
and within the six blocks, such that 15 random, 9 R-30, 
and 6 R-20 trials appeared in each of the six blocks. As an 

overarching objective of the study was to explore the util-
ity of this new task to probe implicit learning of a complex 
motor task, we chose to include two repeated trajectories that 
appeared at different ratios of exposure, similar to Wilkinson 
and Shanks (2004) who sought to minimize the chance of 
explicit learning, to further provide insight on the optimal 
parameters for investigating implicit motor learning.

Trajectories

To construct the complex trajectories, 5 segment end points 
were pseudo randomly generated such that at least one was 
present in each quadrant of the screen (Ingram et al., 2019). 
Curves were animated by generating Bezier curves with 
randomly generated control points that determined curve 
peak magnitude, shift, and shear. Varying trajectory veloci-
ties were achieved by pseudo randomizing three animation 
times (500, 1500, and 2500ms) such that each had equal 
exposure within each trajectory type and within each block 
of practice. Since the path length was able to freely vary, 
the manipulation of animation times created a distribution 
of animation velocity that was used in the statistical analysis 
(trajectory path length/animation time (px/s)).

Repeated trajectories

Five repeated trajectories were selected to ensure their 
characteristics were as similar as possible to the randomly 
generated trajectories: each consisted of five segments with 
the same constraints as described above. To account for fea-
tures that varied for the random trajectories (i.e., path length 
and the two measures of complexity; described below), 
repeated trajectories were selected to fall narrowly within 
half a standard deviation of the median value of the random 
trajectories (Ingram et al., 2019). Additionally we avoided: 
(1) trajectories that came too close to the end position part 
way though the animation to avoid participants accidentally 
ending a trial early; (2) trajectories that included difficult 
to identify vertices (despite the minimum linear acuteness 
constraint); and (3) trajectories in which curves were not 
evenly distributed between quadrants to avoid bias toward a 
particular area of the screen to avoid participants changing 
their positioning over the course of the experiment.

Following selection of the five repeated trajectories to be 
used in the experiment, five different sets were created by 
randomly selecting two of these 5 trajectories for each set. 
The first trajectory randomly selected for each set was the 
R-30 condition trajectory, with the second trajectory selected 
set as the R-20 condition trajectory. The five sets were then 
pseudorandomized and counterbalanced across participants.

https://github.com/LBRF-Projects/Implicit_CME_Solomon2023_Experiment
https://github.com/LBRF-Projects/Implicit_CME_Solomon2023_Experiment
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Complexity measures

As task difficulty is shown to modulate implicit learning 
of a complex movement (Chambaron et al., 2005; Wulf & 
Schmidt, 1997; Zhu et al., 2014), complexity was determined 
for each repeated and random trajectories to ensure similar-
ity (as described above). Specifically, trajectory complexity 
was characterized using two complimentary measures: total 
absolute curvature (TAC) and approximate entropy (ApEn). 
TAC is a measure of the magnitude of curvature over the 
course of a trajectory. Curvature has been used to charac-
terize movement complexity in previous work (Wong et al., 
2016) whereby, when controlling for speed, more curved 
movements involve greater and more frequent changes in 
muscle activity (Brown & Cooke, 1990; Cooke & Brown, 
1994). As the trajectories in the current study involved 
discontinuities at segment end points (vertices), TAC was 
approximated by taking the sum of the absolute value of 
the point-by-point turning angle. ApEn is a measure of the 
predictability of a sequence (Pincus, 1991), and is useful 
for characterizing biological motion even in short data sets 
when used appropriately (Yentes et al., 2013). Respectively, 
TAC and ApEn allow for characterization of kinematic com-
plexity operationalized as the magnitude and irregularity of 
a trajectory’s curvature.

Experimental procedure

At the outset of the study, participants completed the Edin-
burgh Handedness Inventory (Oldfield, 1971) to determine 
their dominant hand, which was used to complete the experi-
ment. As described above, the participant first observed the 
trajectory and then was asked to replicate the trajectory 
matching as closely as possible its shape and velocity. The 
end of each block was cued by on-screen text, indicating 
that the participant could take a break and to continue when 
ready, as well as reminding the participant to try their best to 
match the velocity of the observed trajectory when executing 
their movements.

Immediately following the six blocks, participants com-
pleted an explicit knowledge test to determine the nature of 
the learning that had occurred which was divided into two 
steps: a recognition test and a free recall test. In the recog-
nition test, participants were first informed that there might 
have been two trajectories that repeated during the training. 
Participants were then asked to respond “yes” or “no” to 
the question: “Do you think you learned a repeating figure 
during the practice blocks”? Importantly, participants were 
instructed “it was okay if they did not think they learned 
a repeating figure”. If a participant responded “yes”, they 
were then entered into a free recall test where they were 
asked to generate on the touchscreen the trajectory that they 
learned (i.e., like the trials throughout training but without 

a prompt). They were then asked to repeat the recognition 
test by responding “yes” or “no” to the question: “Do you 
think you learned another repeating figure during the train-
ing blocks”? Again, participants were instructed “it was 
okay if they did not think they learned another repeating 
figure”. If a participant responded “yes” to this second ques-
tion, they were then asked if they could generate the second 
trajectory that they learned in a free recall test. Participants 
who answered “no” to the first question were not asked if 
they learned a second repeating trajectory. The trajecto-
ries generated as part of this test were recorded and stored 
for offline analysis to determine whether participants had 
acquired explicit knowledge (see Characterizing the nature 
of learning).

Data analysis

Preprocessing

Preprocessing was performed as per Ingram et al., 2019. 
Briefly, error was measured as the ordered point-by-point 
Euclidean distance between the stimulus and response 
trajectories. We ensured participants were not penalized 
for natural variation in movement velocity using dynamic 
time warping (DTW) to optimally transform participant 
response trajectories onto stimulus trajectories (Giorgino, 
2009), allowing for error measures that are insensitive to 
local compression or stretches due to variability in timing. 
Additionally, it is possible that two different responses result 
in a similar error magnitude despite one having a more accu-
rate “shape”, as such, participant responses were subject to 
an adjusted Procrustes transformation using the stimulus 
trajectory as a template (Goodall, 1991). Procrustes trans-
formation has been used in the analysis of human movement 
in previous literature and accounts for natural variations in 
movement by freely adjusting size and spatial location of the 
trajectory while preserving its shape (Kadmon Harpaz et al. 
2014). The adjustments made to the Procrustes transforma-
tion were to constrain the rotation and scaling components 
such that they identified solutions to each component that 
required minimal scaling and rotation. These adjustments 
were made to correct a behaviour where poorly reproduced 
stimuli would result in the original Procrustes transforma-
tions massively shrinking and rotating the response trajec-
tories to achieve a mathematical best fit.

Procrustes and DTW transformed participant response 
trajectories were finally compared to the stimulus trajectory 
by calculating the distance between associated points in each 
time series. Error for a given trial was calculated as the mean 
of this point-by-point distance. Response velocity of each 
trial was calculated as the total path length divided by the 
movement time.
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Characterising the nature of learning

The nature of learning was characterized via the explicit 
knowledge test. As described above, participants were first 
made aware that there may have been two repeating trajec-
tories and were asked if they thought they learned either of 
these trajectories using a recognition and free recall test for 
each explicitly learned trajectory. If participants answered 
“yes” to the recognition test, they were asked to generate the 
trajectory/trajectories on the touchscreen. Explicit learning 
of each repeated trajectory was determined to occur if the 
participant identified that they recognized a repeating trajec-
tory during training (i.e., answering “Yes” on the recogni-
tion test). To identify which trajectory was recalled, each 
generated trajectory was compared against both the R-20 
and R-30 trajectories using the analysis described above. 
The more accurate comparison of the generated trajectory 
against the stimulus (R-20 or R-30) was identified as the 
explicitly recalled trajectory. This factor was operationalized 
as learning type which was a refactoring of trajectory condi-
tion (R-20, R-30 and random) as either “implicit”, “explicit” 
or “random” based on results of the explicit learning test.

Group analysis

To investigate the success of implicit learning (our primary 
objective), a Bayesian linear mixed model was conducted 
using the brms and stan packages in R (R version 4.12.0: 
brms version 2.17.0 (Bürkner, 2017). Interpretation of the 
results was made based on the continuum of the relative 
credibility of all effects revealed by the model, according 
to the Bayesian Analysis Reporting Guidelines (Kruschke, 
2021). To facilitate this process, all variables were scaled to 
unit variance (mean = 0, sd = 1) and weakly informed regu-
larizing priors assuming the mean would fall within 2 stand-
ard deviations of the data observed were used for all models.

In this model, error was predicted using exposure (the 
number of times a participant completed a trial of each tra-
jectory type), animation velocity (how quickly a trajectory 
was animated on screen: see Trajectories), learning type 
(implicit, explicit, or random: see Characterizing the nature 
of learning) and complexity (TAC; see Complexity meas-
ures) as fixed effects. Random slopes for exposure, learning 
type and animation velocity were nested within a random 
intercept for each participant. A Helmert contrast was set 
for learning type to: (1) differentiate performance on the 
random trajectories and either repeated trajectory; and (2) 

Error = Exposure ∗ LearningType ∗ AnimationVelocity

+ Complexity + (1 + Exposure ∗ AnimationVelocity

∗ LearningType|Participant)

differentiate the implicit from explicitly learned trajectories. 
Notably, the interactions of complexity with the other fixed 
effects were removed as there was only a single value for 
complexity at the implicit and explicit levels of learning 
type.

Participant error, animation velocity and complexity were 
log transformed when the distribution of raw values was 
heavily skewed and standardized to allow for intuitive priors. 
Uniformed but regularized priors were used throughout, and 
the final model is as follows:

All available data from each trial of each participant were 
fit to the model using Hamiltonian Monte Carlo sampling as 
implemented in Rstan and posterior densities for error were 
simulated using the derived generative model. The poste-
rior distribution was then sampled, back transformed to their 
original scale and mean to visualize the credible effects from 
the model to aid in their interpretations.

Transparency and openness

We report all data exclusions, manipulations, and meas-
ures in the study. The analysis code, experimental code and 
data can be found at at https://​osf.​io/​v45pq/ (https://​doi.​
org/​10.​17605/​OSF.​IO/​V45PQ). The analysis was written, 
performed and visualizations made in R version 4.12.0 and 
uses the following packages: brms version 2.17.0 (Bürkner, 
2017), tidybayes version 3.0.2, (Kay, 2023), emmeans ver-
sion 1.7.2 (Lenth et al., 2023), parameters version 0.19.0 
(Lüdecke et al., 2020) modelr version 0.1.8. (Wickham, 
2023), TSEntropies version 0.9, vegan version 2.5–7 
(Oksanen et al., 2023) and dtw version 1.22–3 (Giorgino, 
2009). The study was not pre-registered.

Errori = N(ui, �)

ui = Bexposure[i] ∗ BLearningType[i] ∗ BAnimationVelocity[i]

+ BComplexity[i] + (1 + BExposure[i] ∗ BAnimationVelocity[i]

∗ BLearningType[i]|BParticpant[i]∕)

Beffect ∼ N(0,2)

Bparticipant ∼ N(0, �participant)

�participant ∼ Exponential(1)

� ∼ Exponential(1)

https://osf.io/v45pq/
https://doi.org/10.17605/OSF.IO/V45PQ
https://doi.org/10.17605/OSF.IO/V45PQ
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Results

Of the 30 participants, eight participants demonstrated 
explicit knowledge of both trajectories and one learned 
both trajectories implicitly. The remaining 21 participants 
recalled one of the two trajectories with 17 participants 
recalling the R-30 trajectory, and four participants dem-
onstrated explicit knowledge of the R-20 trajectory. Given 
that 8.67 ± 11.34 (mean ± S.D.) trials per participant were 
removed, only the first 30 exposures were modeled to ensure 

that there were an even number of observations for each 
trajectory at each value of exposure.

The raw data is plotted in Fig. 2, visualizing the cate-
gorical predictors in the model. The Bayesian linear mixed 
model of this data reveal credible effects of learning type, 
animation velocity and the interaction of learning type and 
animation velocity (Table 1).

Only the highest order interaction credible terms in the 
model were interpreted and visualized. The credible inter-
action of learning type and animation velocity demon-
strates that at low velocities, the accuracy of participants 

Fig. 2   Mean trajectory error attained on exposures to trajectories 
learned implicitly (dark grey) and explicitly (light grey). Randomly 
generated trajectories are presented in black. Exposures were capped 

at 30 as participants were only exposed to 30 trials of the R-20 tra-
jectory. Notably, the difference in mean trajectory error is consistent 
over the last 25 exposures. Bars represent standard deviation

Table 1   Model parameter 
summary predicting mean 
trajectory error from the first 
30 exposures to each trajectory 
type

Credible effects are denoted with an asterisk and region of practical equivalence percentage is shortened to 
ROPE %

Parameter Coefficient 90% HDPI Probability of 
direction

Rope %

Exposure − 0.00 [− 0.01, 0.00] 0.81 1
Learning type 1 (implicit_vs_explicit) 0.12 [− 0.08, 0.33] 0.83 0.41
Learning type 2* (random_vs_repeated) 0.70 [0.53, 0.86] 1 0
Animation velocity* 0.50 [0.41, 0.58] 1 0
Complexity* 0.23 [0.20, 0.27] 1 0
Exposure: learning type 1 0.01 [− 0.00, 0.02] 0.85 1
Exposure: learning type 2 0.00 [− 0.01, 0.01] 0.52 1
Exposure: animation velocity 0.00 [− 0.00, 0.00] 0.56 1
Learning type 1: Animation velocity − 0.06 [− 0.25, 0.13] 0.68 0.58
Learning type 2: Animation velocity* 0.36 [0.22, 0.50] 1 0
Exposure: learning type 1: animation velocity 0.00 [− 0.01, 0.01] 0.63 1
Exposure: learning type 2: animation velocity − 0.01 [− 0.02, 0.00] 0.94 1
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is similar regardless of the trajectory’s learning type, but 
as the animation velocity increases the random trajectories 
were much harder to draw than either repeated trajectory, 
implicit or explicit, leading to better overall performance on 
the repeated figures in comparison to the randomly gener-
ated ones (Fig. 3). A three way-interaction between exposure 
learning type and animation velocity was also present, but 
the effect was contained entirely in the ROPE. Therefore, the 
effect was not large enough to meaningfully impact the result 
and it was not interpreted. The credible effect of complex-
ity demonstrates that as complexity increased so did error 
(Fig. 4). This relationship indicates that as the trajectories 
became more complex, they became difficult to produce 
regardless of the velocity in which they were presented.

A credible interaction notably absent from the previous 
model was any effect or interaction with exposure. As such, 
it was simple to conclude that participants started on the task 
with differing levels of performance for each learned trajec-
tory. This is however unlikely as participants were naïve to 
the task. A closer inspection of the raw data from the first 5 
exposures to each learning type reveals a floor effect in the 
data where the performance gains on either repeated trajec-
tory happen within the first few trials (Figs. 2 and 5).

The model was re-applied to a subset of the full dataset 
(the first five exposures to trajectories of each learning type) 
and revealed a credible interaction of exposure, learning 
type and animation velocity and a main effect of complexity 
(Table 2). One participant was removed from this analysis 
due to a high number of mistrials in the selected range of 
exposures, leaving 29 participants in the analysis. The effect 
of complexity once again shows that as complexity of the 

trajectories increases, so does participant error (Fig. 6). The 
interaction of exposure, learning type and animation veloc-
ity shows that at the experiment onset, the speed accuracy 
relationship is similar across the random versus repeated 
trajectories (Fig. 7). As participants become exposed to the 
repeated trajectories the speed accuracy relationship shifts 
downwards whereas in the random trajectories participants 
become steadily worse at drawing the faster animated tra-
jectories but improve on those that animated slowly (Fig. 7). 
This improvement of performance is what leads to the credi-
ble effect of learning type in the results from the full dataset, 

Fig. 3   The credible interaction between animation velocity and learn-
ing type when predicting mean trajectory error [median ± 90% HDPI] 
for random (black) trajectories and those trajectories learned implic-
itly (dark grey) and explicitly (light grey). As velocity increased the 
repeated trajectories were re-created more accurately than randomly 
generated trajectories

Fig. 4   The credible effect of complexity on mean trajectory error 
[median ± 90% HDPI]. As complexity increases the trajectories 
become harder to re-create

Fig. 5   Mean trajectory error on the first five exposures to trajectories 
learned implicitly (dark grey) and explicitly (light grey). Randomly 
generated trajectories are presented in black. Performance on the 
repeated trajectories appears to decrease as a function of exposure, 
whereas the mean trajectory error on the random trajectory is consist-
ent across exposures. Bars represent standard deviation
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however, this interaction effect in the first 5 exposures is of 
a small magnitude as indicated by the effect being partly 
contained in the ROPE.

Discussion

The primary objective of this study was to validate the use 
of a task in probing implicit learning of complex move-
ments. Specifically, we sought to assess the occurrence of 
implicit learning following training of a unilateral com-
plex upper limb motor task in which repeated trajectories 
were embedded amongst random trajectories. As hypoth-
esized, error for the repeated trajectories was decreased in 
comparison to that observed for the random trajectories 

as determined by the highly credible interaction between 
animation velocity and learning type 2 in the full data-
set (Table 1 and Fig. 3). Akin to the findings of Ingram 
et al., 2019, increasing the stimulus animation velocity 
increased error on the task, suggesting that the stimulus 
animation velocity manipulation produced the intended 
effect, but also highlighting that at low stimulus animation 
velocities the task is likely too easy as all trajectories are 
performed similarly (see Limitations). However, this per-
formance improvement is realized early in the experiment 
as evidenced by a smaller, credible three-way interaction 
between exposure, learning type and animation veloc-
ity (Table 2 and Fig. 7). Further, 73% of all participants 
included in the final analyses were unable to identify at 
least one of the repeated trajectories. Thus, it is evident 
that a specific performance improvement to the repeated 
trajectories occurred following training, and that implicit 
learning resulted in similar performance gains to explicit 
learning on the task, in contrast to our second hypothesis. 
In addition to the noted learning effects, credible effects 
of complexity and stimulus animation velocity in both 
models (Tables 1 and 2) demonstrate that both measures 
of mediating task difficulty worked as intended, whereby 
faster animation velocities and more complex trajectories 
led to higher error in participant responses. By address-
ing limitations noted in the literature for other methods of 
investigating implicit motor learning (namely the SRTT 
and CTT), the task employed here included specific char-
acteristics to probe implicit learning of a complex motor 
skill. Below we discuss these findings in the context of 
previous investigations of implicit learning, with a specific 
focus on task design.

Table 2   Model parameter 
summary predicting mean 
trajectory error from the first 
30 exposures to each trajectory 
type

Credible effects are denoted with an asterisk and region of practical equivalence percentage is shortened to 
ROPE %

Parameter Coefficient 90% HDPI Probability of 
direction

Rope %

Exposure − 0.04 [− 0.11, 0.03] 0.84 0.92
Learning type 1 (implicit_vs_explicit) − 0.01 [− 0.44, 0.41] 0.51 0.31
Learning type 2 (random_vs_repeated)* 0.30 [− 0.06, 0.65] 0.91 0.16
Animation velocity* 0.40 [0.22, 0.58] 1 0
Complexity* 0.24 [0.13, 0.36] 1 0
Exposure: learning type 1 0.02 [− 0.15, 0.20] 0.58 0.66
Exposure: learning type 2* 0.15 [0.01, 0.29] 0.95 0.27
Exposure: animation velocity* 0.06 [− 0.02, 0.13] 0.90 0.84
Learning type 1: animation velocity − 0.21 [− 0.64, 0.22] 0.78 0.23
Learning type 2: animation velocity 0.03 [− 0.33, 0.37] 0.55 0.37
Exposure: learning type 1: animation velocity − 0.04 [− 0.22, 0.14] 0.64 0.63
Exposure: learning type 2: animation velocity* 0.13 [− 0.02, 0.28] 0.92 0.36

Fig. 6   The credible effect of complexity on mean trajectory error 
over the first 5 exposures to each trajectory [median ± 90% HDPI]. As 
complexity increases the trajectories become harder to re-create
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Task characteristics

It is well established that the SRTT is robust to investigate 
implicit learning. As highlighted previously however, the 
nature of the SRTT makes it amenable more to investigating 
the perceptual, as opposed to motor, component of implicit 
learning. Specifically, the motor component of the SRTT 
and SRTT-like paradigms remains fixed even considering 
changes in task complexity; when mapping a kinematically 
simple movement such as a button press to a particular per-
ceptual cue, increasing the attentional load such as in dual-
task scenarios or perceptual complexity such as by length-
ening the sequence increases task complexity, yet the motor 
component of the task does not change. Indeed, modified 
versions of the SRTT have shown reductions in the resulting 
implicit learning as cognitive demands of the task increased 
(Jiménez & Vázquez, 2005; Sanchez & Reber, 2012; Schu-
macher & Schwarb, 2009; Vandenbossche et al., 2014). For 
example, Sanchez and Reber (2012) systematically increased 
the length of the repeated sequence to examine the upper 
limit of implicit ability. Arguably, investigations such as 
this probe the upper limit of perceptual learning, as while 
the cognitive demands can be increased, the motor demands 
are fixed. Thus, as possible manipulations within this task 
impact cognitive demands, the SRTT is optimal for investi-
gating implicit learning of perceptual-motor skills.

Our task, similar to the CTT, allows for implicit learning 
to be investigated specifically in the motor domain. While 
one could argue that reproducing trajectories does not paral-
lel movements encountered in everyday life, the intent was 
to develop a task consisting of multi-articular, kinemati-
cally complex movements where performance was limited 
by the ability to execute the movement. Indeed, the move-
ment employed in our task involves the shoulder, elbow, 
and wrist joint as well as the muscles acting on these joints. 
And unlike the SRTT, participants do not map a particu-
lar motor response to a perceptual cue (e.g., press button 
1 in response to cue “1”). Rather, they engage the ‘motor 
program’ required for the given trajectory and the required 
encoding of the specific movement to the effector is more 
complex in nature.

Further, we sought to rigorously control for task difficulty 
in relation to both the animation velocity and complexity of 
the stimuli, as task difficulty is shown to be a key parameter 
in optimizing paradigms to probe implicit learning. In par-
ticular, we introduced manipulations that allow for a wide 
range of stimulus animation velocities and account for their 
effect when interpreting learning. Further, we employed 
TAC and ApEn to quantify the magnitude and irregularity 
of each trajectory’s curvature to precisely control for kin-
ematic complexity across all trajectory types (Pincus, 1991; 
Wong et al., 2016; Yentes et al., 2013). Thus, in conjunction 
with the specific practice effect detected for the repeating 

Fig. 7   The credible interaction between exposure, animation 
velocity and learning type when predicting mean trajectory error 
[median ± 90% HDPI] for random trajectories (black) and those tra-
jectories learning implicitly (dark grey) and explicitly (light grey). 
The subplots represent each of the first 5 exposures to each trajec-

tory type increasing from right to left. With more exposure to either 
repeated trajectory (implicit or explicit), the trajectories were drawn 
more accurately when the stimulus was animated at high velocities in 
comparison to random trajectories
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trajectories, employing the different stimulus animation 
velocities equally across trajectory types and controlling for 
complexity by characterizing the magnitude and irregular-
ity of a trajectory’s curvature ensured that robust implicit 
learning was detected without being artificially induced from 
variability in task difficulty. As indicated above, these design 
features were determined based on previous modifications 
and limitations noted above for the CTT. In particular, stim-
uli speed has been shown to modulate implicit learning via 
the CTT and that complexity, a critical component of task 
difficulty, has yet to be quantified in the CTT (Chambaron 
et al., 2005; Lang et al., 2013). The lack of a credible effect 
containing learning type (implicit vs. explicit) and stimulus 
animation velocity demonstrates that in this task the impact 
of stimulus animation velocity was not impactful when com-
paring implicitly to explicitly learned trajectories. Rather, 
stimulus animation velocity plays a vital role in learning 
as performance improvements were realized largely on 
repeated trajectories that animated quickly in comparison 
to random trajectories at similar animation velocities. Impor-
tantly, as the present task allows for the precise control of 
kinematic complexity and stimulus animation velocity, the 
ideal parameters for probing implicit motor learning can be 
further investigated using this task by incrementally manipu-
lating these parameters during training.

As this study represented the initial examination of this 
new task, we included two repeated trajectories (R-30 and 
R-20) to probe the optimal parameters of exposure for 
investigating implicit motor learning that also minimized 
the occurrence of explicit learning, in a manner similar to 
that of Wilkinson and Shanks (2004). The repeated trajec-
tories appeared equally across blocks at their given ratio of 
exposure. Additionally, we employed a pseudorandomized 
trial-by-trial design based on previous criticisms of the 
CTT. Employing a pseudorandomized design ensured that 
no extraneous time-on-task confounds were present as the 
ordering of the repeated vs. random trajectories are not con-
sistent (Zhu et al., 2014). Using two repeated trajectories 
created a valuable contrast whereby it is possible to com-
pare implicit and explicit learning on the task. Interestingly, 
the difference in implicit and explicit learning on this task 
was minimal, demonstrating that explicit knowledge of a 
practiced trajectory did not lead to improved performance. 
Importantly, the ability to change the ratio of repeated vs. 
random conditions allows for the further exploration of the 
ideal exposure parameter in investigating implicit motor 
learning, as exposure can be titrated to determine the lower 
bound of exposure in which no learning occurs (Kraeutner 
et al., 2016; Sanchez & Reber, 2012). The flexibility in the 
task to allow for user defined repeated trajectories will help 
optimize the parameter space for learning (complexity, expo-
sure ratio, number of repeated trajectories and stimulus ani-
mation velocity). In this study, the repeated trajectory was 

likely too easy to perform, hence the lack of credible effects 
of exposure in the model of the entire dataset and a need to 
model the first few trials independently.

Analysis characteristics

In addition to task characteristics related to difficulty and 
design, the current work extends upon the previous investi-
gations of implicit motor learning by employing a nuanced 
analysis of measuring trajectory error. In particular, inves-
tigations of implicit motor learning employing the CTT 
assess error as root mean square error, generally in screen 
pixels, between the participant controlled cursor (i.e., the 
participant response) and stimuli locations calculated for 
each segment (see Künzell et al., 2016; Zhu et al., 2014 
for examples). The issue with using root mean square error 
as an outcome in the CTT is that it does not account for 
the mechanism underlying error on the task (Böttcher et al., 
2023). For example, in the CTT the root mean square error 
can be minimized when the participant’s tracing aligns with 
the stimulus or if the participant’s response intersects the 
stimulus travelling in the opposite direction. Without inter-
preting the temporal domain of the task it is not possible to 
determine if this instance of low root mean square error is 
due to the participant’s good performance or their lack of 
ability to predict the direction of the stimulus. Two attempts 
have been made two correct for this ambiguity by account-
ing for changes in the amount of error over the length of a 
trial. The approaches included using correlation to quantify 
the relationship between the stimulus and response inde-
pendently of the magnitude of error or by calculating the 
deviation in time between paired samples from participant 
responses and the stimuli (Böttcher et al., 2023; Yang et al., 
2017). Our task accounts for the temporal errors using a dif-
ferent approach in comparison to these new analyses for the 
CTT, whereby two mathematical transformations are applied 
to the response trajectories to minimize temporal and spatial 
differences prior to calculating error metrics which allow for 
a more sensitive assessment. Specifically, Procrustes trans-
formations ensured participants were not penalized for error 
in scaling, rotation, or translation (Kadmon Harpaz et al., 
2014). Further, as stimuli were animated and sampled at 
a constant frequency, DTW transformations accounted for 
natural variations in movement velocity in the response tra-
jectories as previously described (Giorgino, 2009). Follow-
ing these transformations, both error for each trajectory and 
response velocity was determined for each trial, and velocity 
was accounted for in the model before making conclusions 
about performance. Additionally, the Procrustes analysis 
produces outcome variables for each transformation that can 
be modelled to interpret how participants are improving their 
performance over training.
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Limitations

Given the growing number of paradigms in the field of 
motor learning, it is vital to ensure that tasks being devel-
oped need to add theoretical value to the literature while 
meeting standards for accuracy and replicability (Rangana-
than et al., 2021). Ranganathan et al., 2021 provides a set 
of guidelines that should be considered when developing 
paradigms. These guidelines are grouped into three sections 
(design, data collection/analysis and dissemination) that are 
further divided into nine constructs. Of these constructs, the 
task described herein potentially falls short of two of these 
constructs: degree of relevance and measurement issues 
specific to learning. Degree of relevance is a construct that 
describes how well a paradigm captures its core construct 
of interest and how well the findings might generalize to 
similar tasks. Given that eight participants were able to cor-
rectly identify both repeating trajectories and did not express 
implicit skill acquisition, it could be interpreted that this task 
has an issue measuring its core construct, implicit learning. 
However, the rates of explicit learning noted for this task are 
similar to those observed for the SRTT and CTT highlight-
ing the need for further task optimization when investigating 
implicit learning (Ewolds et al., 2021; Vandenbossche et al., 
2014). Interestingly, we did not observe an effect of learning 
type on task performance between the repeated trajectories 
(explicit vs. implicit). While investigating these differences 
is out of the scope of the current investigation, this finding 
is in line with Sekiya (2006), who demonstrated equivalent 
learning under implicit and explicit conditions via the CTT. 
Furthermore, while the task described in this study and the 
CTT require movement that is more kinematically complex 
and less familiar than the movement used in an SSRT, these 
laboratory-based tasks are not the most naturalistic move-
ments. To generalize to a broader range of settings, future 
study designs should consider using tasks that require mul-
tiple limbs, high degrees of coordination, the involvement 
of locomotion or interactions with a dynamic environment 
to quantify implicit learning.

A potential second shortcoming of the task in relation to 
the guidelines of Ranganathan et al., 2021 is that the results 
highlight a measurement issue related to learning whereby 
there is a floor effect in the data as the rate of learning is 
too fast (Table 2 and Fig. 7). These floor effects have also 
been reported in the CTT where Broeker et al., 2021 also 
found that participant responses plateaued at an early stage 
of the experiment. To address this is issue, the task needs 
to be further optimized by manipulating both the complex-
ity of repeated stimuli and the velocity at which they are 
presented, which is a unique feature of our task. Based on 
the current results, it would be imperative to increase task 
difficulty by either removing the slower animation velocities 

or increasing the complexity of the trajectories to slow the 
rate of learning.

Conclusion

The current study validates the use of a task in probing 
implicit learning of complex movements, by demonstrat-
ing improvements in performance to repeated trajectories 
of an upper-limb task regardless of participant’s level of 
recognition of the trajectories. In alignment with previous 
investigations of implicit motor learning using the SRTT 
and CTT, a reduction in error was observed for the implic-
itly learned repeated trajectories relative to the random tra-
jectories (Schwarb & Schumacher, 2012; Wulf & Schmidt, 
1997). However, the structure of this task ensured that no 
extraneous confounds due to time-on-task were introduced 
and allowed for the precise control of task difficulty across 
trajectory types, by altering the stimulus animation veloc-
ity and trajectory complexity. In addition, assessing both 
stimulus animation velocity and error, calculated following 
mathematical transformations of the response using DTW 
and Procrustes analyses, allowed for a nuanced analysis of 
performance. The advantages of this task also lend them-
selves to clinical populations where an impact of task on 
implicit learning has been noted, but the effects are not well 
understood since the majority of research in these popula-
tions has been completed using SRTTs (Kal et al., 2016). A 
small number of studies in clinical populations have been 
done using more ecologically valid complex movements 
including balance tests, walking paradigms and the CTT, 
albeit with varying results (Boyd & Winstein, 2004; Jie 
et al., 2021; Orrell et al., 2006). The paradigm highlighted 
in this study would further our understanding of implicit 
learning of complex movements in clinical populations by 
providing a means to test implicit learning that is self-paced 
(in comparison to the CTT) which may account for slowed 
perceptual and motor processes in the affected populations 
(Godefroy et al., 2010). While the task parameters (stimulus 
animation velocity and trajectory complexity) require opti-
mization to eliminate the floor effect in the data and iden-
tify differences in performance between implicit and explicit 
learning, findings suggest the present task has promising 
for investigating implicit learning of a complex motor skill. 
Future research should systematically manipulate complex-
ity, animation velocity, and ratios of random to repeated tra-
jectories to further determine the ideal parameters to probe 
implicit motor learning.
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