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Abstract
A neurobiologically constrained deep neural network mimicking cortical area function relevant for sensorimotor, linguis-
tic and conceptual processing was used to investigate the putative biological mechanisms underlying conceptual category 
formation and semantic feature extraction. Networks were trained to learn neural patterns representing specific objects and 
actions relevant to semantically ‘ground’ concrete and abstract concepts. Grounding sets consisted of three grounding pat-
terns with neurons representing specific perceptual or action-related features; neurons were either unique to one pattern or 
shared between patterns of the same set. Concrete categories were modelled as pattern triplets overlapping in their ‘shared 
neurons’, thus implementing semantic feature sharing of all instances of a category. In contrast, abstract concepts had partially 
shared feature neurons common to only pairs of category instances, thus, exhibiting family resemblance, but lacking full 
feature overlap. Stimulation with concrete and abstract conceptual patterns and biologically realistic unsupervised learning 
caused formation of strongly connected cell assemblies (CAs) specific to individual grounding patterns, whose neurons were 
spread out across all areas of the deep network. After learning, the shared neurons of the instances of concrete concepts 
were more prominent in central areas when compared with peripheral sensorimotor ones, whereas for abstract concepts 
the converse pattern of results was observed, with central areas exhibiting relatively fewer neurons shared between pairs of 
category members. We interpret these results in light of the current knowledge about the relative difficulty children show 
when learning abstract words. Implications for future neurocomputational modelling experiments as well as neurobiological 
theories of semantic representation are discussed.

Introduction

Here, we address the question how concepts are represented 
in the mind1 and brain. We do this by specifying putative 
neurobiological correlates of concepts, spelt out in the lan-
guage of the brain, that is, in terms of nerve cells, neuronal 
groups and their structure and connectivity. We specifically 
focus on the mechanisms by which specific instances of per-
ceptions and actions can lead to the build-up of conceptual 

category representations which do not stand for the individ-
ual entities, i.e. perceptuo-motor experiences or memories 
thereof, but, instead, for whole classes of objects or actions. 
We also address putative differences in the neurobiological 
mechanisms underlying concrete and abstract concepts.

This investigation is performed by mimicking the learn-
ing of actions and perceptions within a neuronal network 
model, which replicates structural and functional aspects of 
relevant anatomical structures of the human brain. We stim-
ulate this brain-constrained network model (Pulvermüller 
et al., 2021) with stimulation patterns of different degrees of 
similarity and observe and describe the resulting assemblage 
of neuronal circuits within the network. We then draw care-
ful conclusions on the putative mechanistic basis of concepts 
and putative differences between abstract and concrete con-
cepts, in terms of their underlying neuronal circuits.
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Current semantic theories do already offer multiple ways 
to address conceptual mechanisms at abstract levels. Seman-
tic feature models use pairs of semantic features and fea-
ture values to characterize concepts. A BACHELOR (we 
use terms in capitals to refer to conceptual entities) would 
thereby be characterized as + HUMAN, + MALE, + ADULT 
and -MARRIED. Features can be concrete or abstract, so 
that a concrete concept, such as REDNESS, would exhibit 
the feature + RED and abstract concepts, such as CAUSE 
or DEMOCRACY, are characterized by the abstract fea-
tures + CAUSAL or + DEMOCRATIC. This sometimes cir-
cular approach delivers systematic descriptions of meaning 
and may allow for economic descriptions of the semantics of 
huge vocabularies with a limited set of features. However, it 
does not address the question of how concepts relate to the 
real world in which children have to learn at least some key 
concepts from experiences (Harnad, 1990; Vincent‐Lamarre 
et al., 2016). And even if one is inclined to hold that con-
cepts are given to humans a priori, there would be need to 
connect concrete objects or actions with the internal a priori 
entities by learning. It has been pointed out that the seman-
tic feature approach does not offer an explanation for such 
conceptual learning and, apart from this issue, is at vari-
ance with a range of facts known from language use (Lakoff, 
1987; Löbner, 2013).

As an alternative model of conceptual relationships 
and content, distributional semantic models use informa-
tion about the frequent contexts in which words expressing 
concepts appear for defining these concepts (Landauer & 
Dumais, 1997; Lund & Kevin, 1997; Lund & Burgess, 1996; 
see Lenci, 2018, for a recent review). This strategy rests on 
the assumption that conceptual and semantic knowledge are 
due to the memorized contexts in which words appear (see 
Schwanenflugel et al., 1988). However, in order to extract 
meaning from context, it is necessary to have semantic and 
conceptual information for the contexts available in the first 
place and this is not explained by an account defining con-
cepts in terms of contexts per se (Searle, 1980). Therefore, 
distributional information alone cannot suffice to explain 
concepts, as it runs into the so-called symbol grounding 
problem (Harnad, 1990). The same argument also applies 
for semantic feature models, where each semantic feature 
would need to be grounded in the entities it is about.

Note that, whereas semantic theories defining the mean-
ing of symbols in terms of symbolic context or other sym-
bols (e.g. for semantic features) run into the grounding 
problem, semantic theories relying primarily on grounding 
are themselves problematic, because most words and sym-
bols (ca. 80%) are typically learnt not in real life situations 
where reference objects and actions are present in the envi-
ronment of the communicating individuals, but rather from 
texts (Kintsch, 1974, 1998). So-called ‘hybrid models’ of 
semantics and concepts (Andrews et al., 2009; Davis & Yee, 

2021; Glenberg & Robertson, 2000; Harnad, 1990; Louw-
erse & Jeuniaux, 2010) take into account both relevant facts, 
that at least some concepts and symbols require conceptual 
‘grounding’ in specific sensorimotor information from the 
world, that is, in concept-related objects, actions or their 
features, and that, after such grounding has happened, dis-
tributional or other types of learning relating symbols to 
symbols can function via contextual transfer of conceptual 
information. The learning of symbolic meaning by way of 
previously grounded symbols is sometimes called ‘indirect 
grounding’, ‘grounding transfer’ or ‘symbolic theft’ and is 
now supported by ample evidence both from behavioural 
experiments and computational models (e.g. Cangelosi & 
Riga, 2006; Cangelosi et al., 2002; Günther, et al., 2020a, 
b) and even cognitive robotics (Cangelosi & Stramandinoli, 
2018). According to one estimate, a minimum of 10% of 
words of a vocabulary must be directly grounded in entities 
in the world, so as to allow for conceptual learning based on 
distributional learning and ‘symbolic theft’ (Blondin Massé 
et al., 2008). Therefore, the question remains how at least a 
basic ‘grounding kernel’ of directly grounded concepts can 
be established.

The concept DEMOCRACY, for example, can be 
explained purely through verbal description by making 
reference to the concepts of PARLIAMENT, VOTING, 
EQUALITY, BALLOTS, BALLOT BOXES, etc. However, 
these in turn would require grounding on specific sensori-
motor information again—the information that democracy 
involves voting and that votes can be recorded on a ballot is 
of no help if one does not know what voting and ballots are. 
Alternatively, DEMOCRACY could be directly grounded 
through sensory experiences, e.g. images of parliament 
meetings, rooms of people informally voting by raising their 
hands, parliament buildings and/or motor experiences, such 
as knowing what it is like to cast a ballot, raising one’s hand 
or similar (see also Fig. 1 for an illustration).

For concrete concepts, conceptual grounding is straight-
forward to explain. The concept of a specific person can 
be grounded in the visual image of that person or in spe-
cific features of her or him, such as a particular shape of the 
mouth, timbre of the voice or odor. Similarly, a categorial 
concept can be grounded in typical and therefore frequently 
encountered features of the category members, for example 
the fur, long tail and pointed ears of instances of the concept 
CAT. It has been claimed that categories are typically char-
acterized by shared features of all category members (Locke, 
1847) and, although this position has been criticized repeat-
edly (Lakoff, 1987; Rosch & Mervis, 1975; Wittgenstein, 
1953), it provided a useful rationale for the semantic feature 
approach mentioned above. In some semantic frameworks, 
it is established to describe the meaning of category terms 
by way of shared semantic features (Löbner, 2013), even 
though this strategy seems to work reasonably well only for 
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quite concrete and narrowly defined concepts (see “Discus-
sion” below).

Large categorial concepts (such as ANIMAL, GAME) 
and abstract words more generally can, in many cases, not 
be easily described in terms of common sensory or motor 

Fig. 1   Schematic illustration of a structural difference between con-
crete (left) and abstract (right) concepts (semantic feature overlap vs. 
family resemblance). We model the semantic features of any given 
concept as being represented in 3 grounding patterns per modal-
ity (sensory and motor), with 12 neurons per grounding pattern (i.e. 
24 per grounding pattern across both modalities). Note, however, 
that we only show one modality here for simplification. However, 
the procedures were identical for grounding patterns used as input 
to *V1 and *M1L (see also Fig.  2D). Left panel: concrete concepts 
were modelled as containing 12 neurons per grounding pattern in 
total, 6 shared between all three (representing semantic features) 
and 6 unique to each instance (representing instance-specific percep-
tual or action-related features). In the example of HAMMER, the 6 
shared and therefore ‘semantic’ neurons represent general visual fea-
tures, such as shape features including long handle, head attached at 
a 90-degree angle along with general action-related ones, including 
typical motor trajectories characterizing the beating with a hammer. 
The 6 instance-specific sensory and motor neurons represent unique 
features of each hammer exemplar, including idiosyncratic proper-
ties (e.g. differing sizes, materials, shapes of the head, presence or 
absence of a wedge), along with specificities of the way each ham-

mer requires sensorimotor adjustment to these individual properties 
when being used. Right panel: abstract concepts were modelled by an 
implementation of family resemblance, whereby each grounding pat-
tern of an instance is represented by 12 neurons, 4 shared between 
two instances and 4 unique to only one instance. In the example of 
DEMOCRACY, pairwise shared neurons might represent hand 
actions involved in casting a vote (shared between i2/i3) or the vis-
ual image of several people coming together (shared between i1/i2). 
Unique features might represent differences in the hand movements 
for raising ones hand vs. throwing a ballot in a ballot box (i2 vs i3) 
or differences in the size and layout between an official parliament 
room and a smaller room where people cast votes in an informal set-
ting. For each panel, the top half of the figure with overlapping ovals 
shows a schematic depiction of how we modelled differences between 
concrete and abstract concepts, whereas the lower half shows spe-
cific examples of actual grounding patterns (12 neurons active out of 
a 25 × 25 grid) used in the model; see “Methods” for details. Photo-
graphs were obtained from the world wide web, and were published 
under a CC0 license (https://​creat​iveco​mmons.​org/​share-​your-​work/​
public-​domain/​cc0/)

https://creativecommons.org/share-your-work/public-domain/cc0/
https://creativecommons.org/share-your-work/public-domain/cc0/
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and, hence, semantic, features (Yee, 2019). It has been 
argued that peculiarities of abstract concepts relate to their 
different ontological status that “abstract entities are not in 
spacetime whereas concrete entities are” (Dummett, 1981; 
Hale, 1988). However, leaving aside the highly philosophi-
cal question about their ontological status, it is undeniable 
that both abstract and concrete concepts are in fact concepts 
and therefore, in one sense, not in the world, where space 
and time apply, but rather ‘in the mind’. In addition, both 
concrete and abstract concepts need to be applied in real 
life to make claims or confirm vs. reject them. After all, 
whether the statement “this is DEMOCRACY” (or “DEMO-
CRATIC”) is correctly applied in light of the practice of 
voting at a specific election is an empirical issue—and this 
question is comparable to (although more complex than) 
that of whether this animal is a CAT. Hence, as statements 
with both abstract and concrete terms need to potentially 
undergo verification or falsification, there need to be crite-
ria for matching concepts with entities in the world or their 
features (Frege, 1892; Locke, 1847). Psychological experi-
ments where subjects are asked to list their situational asso-
ciations for concrete and abstract concepts further confirm 
that both are intrinsically linked to background situational 
information and that these links are central to their content 
(Barsalou & Wiemer-Hastings, 2005). Therefore, it is estab-
lished that also abstract terms need to be grounded, although 
their grounding process may somewhat differ from that of 
concrete terms.

In search of specific differences between concrete and 
abstract concepts and their grounding in ‘world relationship’, 
psychologists and linguists have highlighted several features. 
The dual coding theory postulates that abstract concepts and 
words are represented in a verbal system, whereas only con-
crete ones are represented by both verbal and imagistic codes 
(Paivio, 1971, 1991). However, given the situational links 
of abstract concepts documented empirically (Barsalou & 
Wiemer-Hastings, 2005), it appears partly problematic to 
exclude an imagistic code for abstract entities. A difference 
may lie in qualitatively different imagistic codes for the two 
concept types, with concrete concepts offering relatively 
more sensory and motor associations and abstract terms 
more emotional–affective information associated with them 
(Kousta et al., 2011; Vigliocco et al., 2014). However, this 
position seems to be driven by concepts that are abstract 
because they relate to internal emotional states, for example 
JOY, SORROW, LOVE and AGONY, but not abstract men-
tal terms, such as LOGIC, CAUSE, NUMEROCITY and 
PROOF. A similar perspective views external and internal 
attributes as relatively more crucial for concrete and abstract 
concepts, respectively, based on the fact that study partici-
pants tend to describe concrete concepts (e.g. BIRD) using 
concrete action- and perception-related words (“beach”, 

“fly”, “food”), whereas, for abstract concept description (e.g. 
TRUE), more abstract (“introspective”) terms are applied 
(“belief”, “think”, “idea”) (Barsalou & Wiemer-Hastings, 
2005). However, this proposal rests on the presupposition 
that introspection offers a pathway to semantic grounding of 
novel unknown symbols, a claim that is controversial (Baker 
& Hacker, 2008; Gebauer, 2013). In one view, the ground-
ing of inner states and emotions relies on neurocognitive 
systems for motor movements and actions (Dreyer & Pul-
vermüller, 2018; Moseley et al., 2012), thus, casting doubt 
on the feasibility of inner vs. external grounding distinctions.

All of these aforementioned approaches interlink differ-
ent domains of semantic content (linguistic vs. imagistic, 
sensorimotor vs. emotional, external vs. internal) with con-
crete and abstract concepts, but do not postulate a principal 
structural difference between them. From a grounding per-
spective, one may argue that, possibly, primarily concrete 
concepts are grounded directly in action and perception, 
whereas grounding of abstract concepts is indirect, through 
context, a position that seemingly fits with experimental 
results (Günther, et al., 2020a, 2020b; Wiemer‐Hastings 
& Xu, 2005; Zdrazilova & Pexman, 2013; Zwaan, 2016). 
Still, also this position may not capture the most important 
differences, especially as very concrete terms are easily 
derived from contextual information (e.g. Harnad’s famous 
example ZEBRA, grounded in the conjunction of STRIPED 
and HORSELIKENESS) and, clearly, both abstract and con-
crete concepts are amenable to an analysis in terms of dis-
tributional semantics. That abstract terms are exclusively 
grounded indirectly in contexts may not appear as a fully 
convincing proposal, because in order to ground an abstract 
term like “truth” indirectly in contexts including “belief”, 
“think” and “idea”, at least some of the equally abstract con-
text words need to be grounded directly. In order for this 
approach to work, it would be necessary to assume that at 
least some abstract concepts are grounded in the context of 
expressions related to objects and actions (Stramandinoli 
et al., 2017), but this position raises the question why, in 
this case, grounding could not be direct, that is, in the object 
perceptions and action performances themselves. Such direct 
grounding of highly abstract concepts is certainly possible, 
as recently illustrated using the example concept of CAU-
SATION (Pulvermüller, 2018b) and regression to the mean. 
These arguments render the idea of differential direct vs 
indirect grounding of concrete and abstract concepts not 
fully convincing.

A structural description of the difference between con-
crete and abstract concepts goes back to the observation 
of a property called family resemblance (Baker & Hacker, 
2008; Wittgenstein, 1953). As mentioned above, the clas-
sic approach to category structure, that a distinctive set of 
semantic features are shared between the members of a 
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category, fails in case of large or relatively abstract catego-
ries. For example, consider the concept BIRD, where some 
category members indeed lack the core features of FLYING 
and HAVING FEATHERS; or the concept GAME, where 
features, such as GROUP ACTIVITY, PLEASANTNESS 
and COMPETITIVITY apply to subgroups of instantia-
tions, but not to the entire set of activities falling under the 
term. There is a tension amongst semantic frameworks, 
where one fraction advocates, in spite of these counter-
examples, the classic idea of common semantic features 
defining a concept, while the other fraction advocates the 
general applicability of family resemblance. Pulvermüller 
(2013, 2018b) proposed to apply the family resemblance 
feature for distinguishing abstract from concrete concepts 
and for characterizing a gradual abstract–concrete dimen-
sion. Concrete concepts are seen as sharing a set of com-
mon semantic features, whereas abstract ones are charac-
terized by partial feature sharing, so that semantic features 
are common to just a subset of instantiations falling under 
a given category.

Figure 1 schematically illustrates this difference between 
full vs. partial semantic feature overlap. In this display, 
each small circle represents an individual neuronal element 
thought to carry one specific perceptual/sensory or action-
related/motor feature activated by one or more instances 
of a concept. One can classify these neurons into unique 
neurons (present in only one instance of the category) and 
shared neurons (present in more than 1 instance). The latter 
will also be called ‘semantic feature’ neurons here. Concrete 
concepts or categories (we use these terms interchangeably), 
are characterized by a core set of semantic neurons shared 
by all (or almost all) instances, whereas abstract concepts 
include no (or a minimal) core set, but rather semantic fea-
ture neurons only partially shared by a subset of instances 
(in this case, 2 out of 3). We take this structural difference 
as a key for the distinction between concrete and abstract 
categories from which other differentiating features (such as 
the tightness or looseness of the semantic links to real world 
instances) may follow.

We would like to remark that, when contrasting the 
structure of abstract and concrete concepts using simple 
paradigmatic examples, we see these extremes as ends of 
a continuum, not as a binary distinction. There is broad 
agreement that—generally speaking—concrete concepts 
tend to be characterized by many shared features and hence 
are quite homogenous in their feature distribution, whereas 
abstract concepts are more heterogeneous. Several other 
authors have made theoretical distinctions that seem to rely 
on this important aspect. For example, Lupyan and Mirman 
(2013) conducted a study with aphasia patients and distin-
guished low-dimensional vs. high-dimensional categoriza-
tion tasks. In their study, “high-dimensional” categories had 
many shared semantic features among category members, 

whereas “low-dimensional” categories shared only one or 
a few features. A similar distinction has also been made by 
other authors (Kloos & Sloutsky, 2008; Sloutsky, 2010), 
calling it statistical density. Note that both these proposals 
from other authors bear some resemblance to the distinction 
between semantic feature overlap and family resemblance 
made here; a crucial difference still remains, however, as 
family resemblance entails a qualitatively different semantic 
structure and sharing of semantic features. Aside from this 
point, a rating study by Granito et al. (2015) showed that 
while quantitative differences in feature sharedness play an 
important role for distinguishing abstract from concrete con-
cepts, other dimensions, such as effector relatedness might 
be additionally important. Furthermore, even in the domain 
of concrete concepts alone, non-prototypical representatives 
of a category may not share the entire spectrum of what may 
appear to be the set of fully-shared features (for discussion, 
see, for example, Pulvermüller, 2018a).

For simulating processes and representations underly-
ing concrete and abstract concepts in the human brain, we 
here use a model of both peri-sylvian language areas along 
with areas further away from the sylvian fissure, including 
dorsal motor and planning related frontal areas as well as 
ventral visual perceptually related visual areas in temporal 
and occipital lobe. The model has previously been applied to 
study processes underlying learning of words with concrete 
meanings, including action- and object-related concepts 
(Garagnani & Pulvermüller, 2016; Tomasello et al., 2017, 
2018, 2019). This model incorporates a range of neuroana-
tomical and physiological properties known to be important 
for sensorimotor, conceptual and language processing in the 
human brain, along with a mechanisms for unsupervised 
Hebbian learning (see “Methods”).

We use this ‘brain-constrained’ model of relevant cortical 
areas and their connectivity to investigate putative neuro-
biological mechanisms of concept formation. In addition, 
we will highlight any changes in the emerging conceptual 
model representations as a consequence of the highlighted 
structural difference in conceptual structure between con-
crete and abstract concepts, i.e. full feature overlap vs family 
resemblance, aiming at characterizing putative differences 
in the neurobiological correlates of these concept types. The 
results will be considered in light of experimental findings 
revealed by behavioural, neurophysiological and neuroimag-
ing studies.

Methods

Building on earlier modelling work (Tomasello et al., 2018, 
2019), we used a neuroanatomically grounded, neurophysi-
ologically plausible computational model with spiking neu-
rons and 12 model areas representing visual and motor as 
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well as auditory and articulatory areas in frontal, temporal 
and occipital cortices that are known to be important for 
processing words and their meaning.

Model architecture2

We adopted a model architecture constrained by neurobio-
logical information and previously applied to explore neural 
mechanisms of semantic learning (Tomasello et al., 2017, 
2018, 2019). The following brain constraints were applied 
to the model (Pulvermüller et al., 2021):

	 (i)	 Neurophysiological dynamics of spiking pyramidal 
cells including temporal integration (summation) of 
inputs, threshold-based probabilistic spiking, and 
adaptation (Connors et al., 1982; Matthews, 2001) 

were implemented (following Tomasello et  al., 
2018);

	 (ii)	 Synaptic weights were modified by way of unsuper-
vised Hebbian-type learning, including both long-
term potentiation (LTP) and long-term depression 
(LTD) (Artola & Singer, 1993) (following Garagnani 
et al., 2008);

	 (iii)	 Global and local activity regulation (Braitenberg, 
1978; Yuille & Geiger, 2003) and control were real-
ized by area-specific and local inhibition (following 
Knoblauch & Palm, 2002);

	 (iv)	 12 areas commonly distinguished in inferior and dor-
solateral frontal, superior temporal and ventral tem-
poral and occipital cortex were modelled (following 
Garagnani & Pulvermüller, 2016);

	 (v)	 Within-area connectivity included local excitatory 
and inhibitory connections (see also (iii)) excitatory 
connections were sparse, random and initially weak, 
exhibiting a neighbourhood bias towards close-by 
links (Braitenberg & Schüz, 1998; Kaas, 1997) (fol-
lowing Garagnani et al., 2008);

	 (vi)	 Between-area connectivity was implemented in 
accordance with neuroanatomical studies (see 
Table 1, following Tomasello et al., 2018) and fol-
lowing general anatomical principles (following 
Schomers et al., 2017; Tomasello et al., 2017);

	(vii)	 Inherent baseline noise (white noise) was constantly 
present in all neurons of all areas during learning and 
while recording the network response to learnt pat-
terns. In addition, peri-sylvian areas not receiving a 
specific pattern as input during learning received fur-
ther uncorrelated white noise activation to simulate 
variable inputs (following Garagnani & Pulvermül-
ler, 2016; Tomasello et al., 2019).

Further details about the implementation, including the 
equations implemented in the simulation software used, are 
provided in the Appendix.

Simulated brain areas and their connectivity 
structure3

The spiking network model mimicked 12 different cortical 
areas with area-intrinsic connections and mutual connec-
tions between them. Note that we refer to model brain areas 
using an asterisk (e.g. *V1). Six areas were modelled for the 
left peri-sylvian language cortex including the primary audi-
tory cortex (*A1), auditory belt (*AB) and modality-general 
parabelt areas (*PB) constituting the auditory system and 
the inferior part of primary motor cortex (*M1i), inferior 

Fig. 2   A Structure and connectivity of the neural network model. 12 
brain areas were modelled in total, including areas in frontal, tempo-
ral, and occipital cortex. Peri-sylvian areas comprise an inferior–fron-
tal articulatory (red colors) and a superior temporal auditory system 
(blue colors) and extra-sylvian areas comprise a lateral dorsal hand-
motor system (yellow/brown) and a visual ‘what’ stream of object 
processing (green). Numbers refer to Brodmann Areas (BAs) and the 
arrows represent long distance cortico-cortical connections as docu-
mented by neuroanatomical studies (see Table 2 for neuroanatomical 
evidence). B Schematic depiction of the brain areas modelled (using 
the same coloring for different brain areas as in panel A), along with 
their connectivity structure. The different colors of arrows (black, 
blue, purple) stand for “next-neighbour” connections linking corti-
cally adjacent areas within each system (black arrows) and “jumping 
links” between nonadjacent cortical areas within each system (blue 
links) as well as “long distance links” between pairs of multimodal 
areas PB, PFi, AT and PFL (purple links). C An example of a single 
excitatory cell (labelled ‘e’; purple) and its micro-connectivity struc-
ture is shown. Within-area excitatory links (in grey) to and from cell 
e are limited to a local (19 × 19) neighbourhood of other neural ele-
ments (blue cells, light grey shaded area). Lateral inhibition between 
e and neighbouring excitatory elements is realized as follows: the 
underlying cell i inhibits e in proportion to the total excitatory input it 
receives from the 5 × 5 neighbourhood (dark grey shaded area); using 
analogous connections (not depicted), e inhibits all of its neighbours. 
Connections to other adjacent areas (black arrows) and non-adjacent 
areas (purple arrows) are also shown. D Training procedures are illus-
trated with the example of 3 related grounding patterns belonging to 
the same concept. On a given training trial, the motor and sensory 
component of a grounding pattern was provided as input to *V1 and 
*M1L, respectively, i.e. 12 neurons were activated in each area for 
16 time steps. Peri-sylvian areas (*A1 and *M1i) always received 
uncorrelated noise as input. Note that during training, the 30 different 
grounding patterns belonging to 10 concepts were always randomly 
intermixed (indicated by the three dots between successive grounding 
patterns of the same concept). Panel A, B, parts of panel D and part 
of the descriptions have been adapted and modified from Tomasello 
et al., (2019) and panel C has been adapted and modified from Garag-
nani et  al., (2017), both published under a CC-BY license (https://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/)

◂

2  This section has been adapted from Tomasello et. al. (2019), as we 
used the same model architecture and connectivity features here.

3  This section has been adapted from Tomasello et al. (2019), as we 
used the same model architecture and connectivity features here.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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premotor (*PMi) and multimodal prefrontal motor cortex 
(*PFi) representing the articulatory system (i.e. inferior 
face-motor areas). In addition, six extra-sylvian areas were 
modelled including the primary visual cortex (V1), temporo-
occipital (TO) and anterior–temporal areas (AT) for the ven-
tral visual system and the dorsolateral fronto-central motor 
(*M1L), premotor (*PML) and prefrontal cortices (*PFL) for 
the dorsolateral action system.

The network’s between-area connectivity structure 
reflects existing anatomical pathways between correspond-
ing cortical areas revealed by neuroanatomical studies using 
diffusion tensor and diffusion-weighted imaging (DTI/DWI) 
in humans and nonhuman primates that are discussed in 
detail in a previous study (Tomasello et al., 2018) and sum-
marized in Table 1. In summary, these anatomical pathways 
were modelled between adjacent cortical areas within each 
of the 4 ‘streams’ (see black arrows in Fig. 2) and between 
all pairs of multimodal areas (*PB, *PFi, *AT and *PFL) 
through the long distance cortico-cortical connections (pur-
ple arrows). In addition, as a previous neurocomputational 
study (Schomers et  al., 2017) demonstrated the impor-
tance of non-adjacent ‘jumping’ links for verbal short-term 
memory, such second-next-neighbour links (skipping one 
intermediate area) were also included within the superior 
and inferior temporal and the superior and inferior frontal 
processing streams (blue arrows).

Concrete and abstract grounding patterns

Children may be able to learn object- and action-related 
concepts just by perceiving instances of these concepts and 
by recognizing the similarities between them (Bornstein & 
Mash, 2010). It is possible that, in this learning process, 
some inborn category information comes in, but we here 
adopt the weakest assumption, namely that the categorial 
structure of the encountered entities is sufficient for cat-
egory building. Therefore, we created patterns aimed at 
representing object perception and action execution to be 
used for stimulation in visual and motor extra-sylvian brain 
areas (*V1 and *M1L) while allowing the model to ‘learn’, 
that is, to modify synaptic weights according to biological 
learning principles. This strategy is based on the assumption 
that, when children acquire concepts, they often (i) expe-
rience visual perceptual patterns of the referent (modelled 
as *V1 activation here) and/or (ii) carry out actions (Bald-
win, 1995) (modelled as *M1L activation). Note that unlike 
earlier simulations on object and action concepts with the 
same model architecture used here (Garagnani et al., 2017; 
Tomasello et al., 2018), we did not make any distinction 
between action- and visually-related components of mean-
ing, but rather treated all concepts as containing both com-
ponents, as many concepts—both concrete and abstract—
might involve both components (see Harpaintner et al., 2020 

for recent fMRI evidence and Kiefer & Harpaintner, 2020, 
for a recent review). As such, we take every grounding pat-
tern to consist equally of sensory and motor components 
used as input in *V1 and *M1L and the simulated concepts 
can therefore be assumed to be grounded in both percep-
tion and action knowledge. The concrete concept of HAM-
MER, for example, contains both visually-related semantic 
features (knowledge about what it looks like) and action-
related semantic features (knowledge about what it feels like 
to use a hammer). However, this rationale is not restricted 
to concrete concepts. A similar argument can be applied to 
abstract concepts with a family–resemblance relationship, 
e.g. DEMOCRACY, which may contain visual/perceptual 
aspects (perceptions of elections, raised hands, voting bal-
lots, parliament buildings etc.) and action aspects (action 
of casting a ballot, raising one’s hand to vote etc.). The pat-
terns presented to *V1 and to *M1L can be viewed as two 
sub-components (visual and motor, respectively) of a sin-
gle sensorimotor pattern extending equally across *V1 and 
*M1L. Thus, in contrast to earlier studies (e.g. Garagnani & 
Pulvermüller, 2016; Tomasello et al., 2017) we here did not 
specifically investigate differences between processing of 
object and action meaning, for example. Rather, we treated 
all concepts (both concrete and abstract) as containing refer-
ent instances including both visual and motor information.

In order to model effects related to semantic category 
learning, we created ‘grounding sets’ of grounding patterns 
each thought to represent 1 object and/or action. For each 
grounding set representing one semantic concept/category, 
we created 3 grounding patterns, whereby triplets of pat-
terns showed different similarity structures for concrete and 
abstract concepts, exhibiting either full sharing of neuronal 
elements or family resemblance. There were 10 concepts per 
semantic category (abstract/concrete) and thus 30 instances 
of grounding patterns overall for each semantic category 
type. Based on the learning of the 3 related grounding pat-
terns, we expected the model to learn and build representa-
tions of the 3 object/action instances (which the 3 ground-
ing patterns stand for) and, crucially, a representation of the 
generalized semantic concepts themselves, either concrete 
or abstract.

Each grounding pattern consisted of 12 ‘active’ cells in 
*V1 and 12 *M1L each (i.e. 12 ‘active’ out of the possible 
625 neurons per area). Between the different concepts, there 
was never any overlap in the neurons making up ground-
ing patterns and different models were built for concrete 
and abstract simulations (i.e. each individual model either 
received concrete or abstract grounding patterns, but never 
both types mixed in the same model). An example of 3 
grounding patterns and their similarity structures is given 
in Fig. 1 and follows the idea outlined in the introduction 
that concrete concepts have feature overlap neurons which 
all instances of a grounding pattern representing a concept 
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have in common (top panel). In contrast, for abstract con-
cepts, there were no neurons common to all three instances, 
only neurons that 2 out of 3 instances had in common, i.e. 
pairwise shared neurons resulting in a family–resemblance 
structure (bottom panel). In addition to shared neurons, 
which we also call semantic neurons, both concrete and 
abstract concepts also had unique neurons only occurring 
in one grounding pattern. These can be thought to represent 
perceptual or action features that are not essential for defin-
ing the concept, but rather individual variations of instances 
of a concept (e.g. in the case of a concrete concept like 
HAMMER, specific colors or shapes of individual hammers 
that constitute some variation within the category but are 
not essential features). Therefore, we do not consider these 
‘idiosyncratic neurons’ semantic or conceptual in nature.

For the purpose of the present simulations, we had to 
quantify the number and relationship of specific percep-
tion/action-related and shared semantic neurons for each 
concept type. Specific numbers of unique and shared neu-
rons were chosen such that abstract and concrete concepts 
were matched both on the number of individual neurons per 
grounding pattern (12) and the number of distinct neurons 
occurring across the entire grounding set (24). Specifically, 
for concrete concepts there were 6 shared neurons (shared 
by all three grounding patterns) and 6 unique neurons 
per grounding pattern (6 + 3*6 = 24 distinct neurons); for 
abstract concepts, there were 4 pairwise overlapping neu-
rons in 3 pair constellations of instances (i1·i2, i1·i3, i2·i3) 
and 4 unique neurons per instance (4*3 + 4*3 = 24 distinct 
neurons; for an illustration, see Fig. 1, bottom). Note that 
the matching in this respect means that concrete concepts’ 
grounding sets had fewer shared input pattern neurons in 
total (6) than abstract concepts (12). However, when each 
grounding pattern was activated once, the 6 concrete seman-
tic feature neurons were activated 3 times each (18 activa-
tions) and the 12 abstract semantic feature neurons twice (24 
activations overall). There were also more unique neurons 
for concrete than for abstract concepts in a grounding set (18 
vs. 12). We note that these differences may lead to biases in 
the results, which we will address in the Discussion. Still, 
the matched conceptual structure implementations will 
enable us to draw careful conclusions on the distribution of 
unique and shared semantic neurons for each concept type.

Training procedures

We ran a total of 12 instantiations of the model for each 
semantic type, comparable to running 12 human par-
ticipants in an experiment, each with identical training 
patterns and procedures. To implement the equivalent of 
some random variation as would be present across indi-
vidual human participants, we randomized for each model 
all synaptic links (and corresponding weights) between 

cells in connected areas (and within areas) before training 
(model initialization). The same set of initial randomized 
synaptic links and weights was then used to train a model 
with concrete patterns and with abstract patterns, but in 
separate model instances. Separate instantiations were 
used for the learning of concrete and abstract concepts to 
avoid interference between the two types of conceptual 
representations. Due to the shared initial randomized syn-
aptic links (and in spite of the different networks for con-
ceptual types), this amounts to a “within-subject” design, 
with each of the 12 model instantiation pairs representing 
one “subject”.

Each training trial consisted of randomly choosing one 
of the 30 sensorimotor patterns (consisting of 12 ‘active’ 
neurons per area, described in detail above) and present-
ing it as input to extra-sylvian primary areas (*V1 and 
*M1L) continuously for 16 time steps. In contrast to ear-
lier studies (Garagnani & Pulvermüller, 2016; Tomasello 
et al., 2018), we did not intend to study effects of asso-
ciating perceptuo-motor patterns with ‘word form’ pat-
tern in peri-sylvian areas here, because it is sometimes 
assumed that concepts are learned before these are linked 
to language (Akhtar & Tomasello, 1996). Therefore, dur-
ing conceptual learning, no correlated input was given to 
the language part of the model, the peri-sylvian primary 
areas *A1 and *M1i; instead, uncorrelated white noise 
stimulation was applied to these at all times, assuming 
that acoustic inputs and articulatory activity are unrelated 
to the conceptual patterns. The absence of input patterns to 
peri-sylvian areas (which would reflect “linguistic labels”) 
was a deliberate choice, as the scope of the present simula-
tions was to map the similarity structure of the instances 
of concrete and abstract concepts and observe the con-
sequences within a brain-constrained neural architecture. 
We are aware of the fact that after conceptual learning, 
linguistic learning (e.g. by always associating the variable 
conceptual instances with identical “verbal labels” in peri-
sylvian areas) may add to and refine any neurobiological 
representations formed; this issue was outside the scope of 
the present work, but is currently being followed up (see 
“Discussion”).

To avoid possible contamination between successively 
presented stimulus patterns, an interstimulus interval (ISI) 
followed each pattern presentation. This ISI lasted until 
global inhibition in areas *A1 and *PB had returned below 
a specific threshold so that network activity had returned to 
a baseline value to prevent one trial from affecting the next 
one. During these ISIs the only input to the network was 
baseline white noise, simulating the spontaneous baseline 
neuronal firing observed in real neurons. Instead of stimu-
lus patterns, white noise was also presented as input to all 
primary model areas (*V1, *M1L, *A1, *M1i) during ISIs. 
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Training continued until 4000 repetitions of each instance of 
a pattern had occurred, i.e. 12,000 repetitions per concept.

Testing procedures

After learning, a testing phase was implemented to exam-
ine the result of learning and to assess any representations 
of concrete and abstract concepts that may have emerged. 
To this end, each of the 30 trained sensorimotor grounding 
patterns were again presented to the extra-sylvian primary 
areas, *V1 and *M1L, recording the resulting instance CA 
(activated neurons in response to a single grounding pat-
tern). In a second step, the resulting CAs were also analyzed 
with special attention to cell assembly overlap across the 3 
related instance CAs (see Fig. 3 for specific examples for 
a concrete and abstract concept and the online version of 
Fig. 3 for the full data).

Prior to the presentation of each pattern, a global network 
reset was carried out, upon which the membrane potential 
of all excitatory and inhibitory cells was set to 0, to ensure 
that neuronal activity of a previously presented pattern did 
not affect results. Subsequently, each sensorimotor ground-
ing pattern was presented for 2 time steps to extra-sylvian 
areas *V1 and *M1L and network responses were recorded 
during stimulation and the subsequent 28 time steps (30 
time steps total). During the 2 time steps of pattern presen-
tation, no baseline noise was present in any area; during the 
subsequent 28 time steps of the recording phase, baseline 
noise stimulation was present in all model areas again, as 
during training. However, in contrast to the training phase, 
no uncorrelated white noise was given as input to the peri-
sylvian areas (*A1, *M1i) during testing.

Data analysis

Cell assembly circuit definition

To identify the neurons making up the distributed cell 
assembly (CA) circuits that had formed across model areas 
in response to each of the 30 grounding patterns, previously 
established procedures (Garagnani & Pulvermüller, 2016; 
Garagnani et al., 2017; Schomers et al., 2017) were applied. 

Fig. 3   Examples of the network correlates of a concrete (top panel, 
A) and an abstract concept (bottom panel, B). For each type of con-
cept, the neural correlates (cell assemblies, CAs) of each of the 
3 instances (instance-CAs, top 3 rows) as well as an overlay of the 
entire concept-CA (bottom row) are shown. The 12 areas depicted are 
arranged in the same way as the model areas depicted in Fig. 2B (i.e. 
extra-sylvian areas on top, peri-sylvian areas on the bottom). The 4 
central “hub” areas are shown as closer together because these areas 
are particularly strongly linked to each other (see Fig. 2A). Note that 
active neurons in the primary extra-sylvian areas (top left, *V1; top 
right, *M1L) are simply a consequence of the input of the ground-
ing patterns during testing, whereas neurons in the other areas reflect 
the activation of CAs that emerged as a consequence of learning. The 
bottom part of each panel shows the overlay map with neurons being 
part of more than 1 CA (additive color mixing; neurons included in 
all 3 CAs in black). We assume that these non-unique neurons shared 
between more than one instance representations are key to the rep-
resentation of a concept (see also Fig.  1). While this figure shows 
only one specific example of a concrete and abstract concept each, 
an interactive version allowing to view the full data set is available 
at https://​osf.​io/​cmhx6/

▸

https://osf.io/cmhx6/


2543Psychological Research (2022) 86:2533–2559	

1 3

An excitatory neuron (or e-cell) was considered to be part 
of the CA circuit of a grounding pattern if and only if, on at 
least two time steps, its firing rate exceeded 75% of the fir-
ing rate of the maximally responsive cell in a given area in 
response to that pattern (provided the maximally responsive 
cell’s firing rate was at least 0.01, to avoid spurious results 
when the overall activity in an area was close to zero). As 
during training, we only used single grounding patterns at a 
time as input in the test phase, i.e. the response of the model 
to a previously-learnt pattern was recorded on a per-instance 
basis.

Sharedness calculation

To obtain clues on the network-internal correlates of con-
ceptual processing, we focused, in a second step, on the 
analysis of the overlap structure of grounding pattern CAs. 
For each model area, neurons were classified according to 
whether they were activated by just 1 grounding patterns 
or whether they responded to 2 or 3, thus being part of the 
pair- or triple-wise shared overlap of grounding CAs. The 
shared or semantic neurons will be interpreted in the con-
text of concrete and abstract concept representations. Note 
that the overlap structure of grounding patterns fed into the 
network already enforced specific overlaps between the cell 
assemblies forming in the network, but, strictly speaking, 
only the stimulated primary areas were directly influenced 
by this. How the stimulation patterns and their similarity 
structure influenced the similarity structure of the learnt cell 
assemblies expanding throughout the model network was a 
central question.

Statistical analysis

To statistically test for the presence of significant differ-
ences in the CA circuit sizes and distributions of shared CA 
neurons across the model areas, we performed a repeated-
measures 4-way analysis of variance (ANOVA) with the fac-
tors SemanticType (two levels: Concrete vs. Abstract) and 
the topographical variables PeriExtra (two levels: Peri-syl-
vian = {*A1, *AB, *PB, *M1i, *PMi, *PFi}, Extra-sylvian 
cortex = {*V1, *TO, *AT, *M1L, *PML, *PFL}), Tempo(ral)
Frontal (TempFront) (2 levels: temporal areas = {*A1, 
*AB, *PB, *V1, *TO, *AT}, frontal areas = {*M1L, *PML, 
*PFL, *M1i, *PMi, *PFi}) and Centrality (three levels: 
Primary = {*A1, *V1, *M1L, *M1i}, Secondary = {*TO, 
*AB, *PML, *PMi} and Central = {*PB, *AT, *PFL, *PFi} 
areas). Note that although abstract and concrete models were 
run separately, due to the shared initial randomized syn-
aptic links between pairs of abstract and concrete models 
(see “Training procedures”), we treated SemanticType as a 
“within-subject” factor.

All data processing, statistical analyses and figure crea-
tion was performed using Python (version 3.7), numpy 
(version 1.19.2; Harris et al., 2020), pandas (version 1.1.5; 
McKinney, 2010), matplotlib (version 3.3.2; Hunter, 2007), 
seaborn (version 0.11.0; Waskom, 2021), scipy (version 
1.5.2; Virtanen et al., 2020) and statsmodels (version 0.12.1; 
Seabold & Perktold, 2010). The significance threshold was 
adjusted to a conservative critical p of 0.01.

Results

After the grounding patterns had been presented repeatedly 
(4000 presentations per pattern) while Hebbian correlation 
learning was effective, the network had developed strongly 
connected neuron ensembles or cell assemblies (CAs) for 
each grounding pattern. Figure 3 shows, for illustrative pur-
poses, the neural correlates (cell assemblies, CAs) for one 
specific example each of a concrete concept (Fig. 3A) and 
an abstract concept (Fig. 3B). Note that the full CA data for 
all 10 concrete and 10 abstract concepts can be interactively 
viewed in an online version of the figure at https://​osf.​io/​
cmhx6/. In each panel of Fig. 3, the top three rows show 
the instance-CAs, that is, the neural correlate of one indi-
vidual sensorimotor pattern, whereas the bottom row shows 
an “overlay map” of the three related instance-CAs. Neurons 
present in only one instance-CA are shown in one of the main 
colors (blue, green, red). These CAs were scattered across 
the entire extra-sylvian part of the network architecture and 
even extended into connector hub peri-sylvian areas (*PFi, 
*PB). As argued in the Introduction, we consider features 
that are shared between instances of a concept to be semantic 
or conceptual. Therefore, at the neuronal level, we asked 
which neurons can represent such shared semantic features. 
These are the neurons included in more than one instance 
CA. The bottom parts of the left and right panels of Fig. 3 
show these ‘shared’ neurons in colors resulting from addi-
tive color mixing (cyan = blue + green, magenta = blue + red, 
yellow = red + green, white = blue + red + green); neurons 
that are part of all 3 instance-CAs are colored black. It can 
be seen that for concrete concepts, the triple-shared neurons 
are distributed across all extra-sylvian areas, even perhaps 
with a tendency to increase in number towards the middle 
of the network. In contrast, the grounding sets of abstract 
concepts yielded very few triple-overlap neurons (in black), 
which is unsurprising, because the grounding patterns did 
not include them either. However, it may appear that, for 
abstract concepts, there are fewer shared conceptual neu-
rons towards the middle of the network as compared with 
the primary areas. Further analyses focused on quantitative 
analysis of the distribution of unique and conceptual neurons 
across network areas.

https://osf.io/cmhx6/
https://osf.io/cmhx6/
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Quantitative analysis of instance‑CAs (Fig. 4)

In a first step, we analyzed the sizes of the emerging cell 
assembly (CA) sizes in extra-sylvian model areas in response 
to stimulating all the learnt grounding patterns after training, 
calculating the number of CA neurons separately for each 
instance of a concept (instance CAs). Figure 4 shows the 
average number of neurons in instance CAs. As the 4-way 
repeated measures ANOVA (SemanticType(2) × PeriEx-
tra(2) × TempFront(2) × Centrality(3)) revealed a significant 
4-way interaction (F(2,22) = 8.5, p = 0.0019), we performed 
further ANOVAs for extra- and peri-sylvian areas separately. 
For the ANOVA for peri-sylvian areas, we excluded the pri-
mary areas *A1 and *M1L as these contained virtually no 
activated neurons at all (average CA sizes 0 or 0.01). The 
3-way ANOVA (SemanticType(2) × TempFront(2) × Central-
ity(2 levels only; secondary vs. central) showed a significant 
main effect of SemanticType (F(1,11) = 120, p < 0.0001) and 
Centrality (F(1,11) = 1973, p < 0.0001), but no interactions.

The 3-way ANOVA (SemanticType(2) × Temp-
Front(2) × Centrality(3)) on the extra-sylvian CAs showed 
main effects of SemanticType (F(1,11) = 14.8, p = 0.0027) 
and Centrality (F(2,22) = 103, p < 0.0001), but no signifi-
cant interactions. Bonferroni-corrected paired t tests for 
the three levels of Centrality (3 comparisons: primary vs. 
secondary; secondary vs. central; primary vs. central, criti-
cal p = 0.0033) showed that overall CA sizes were not sig-
nificantly different between primary and central areas (pri-
mary areas: m = 12.16, central areas m = 12.27, p = 0.0118), 
but significantly larger in secondary areas (m = 12.92), 

both compared to primary (p < 0.0001) and central areas 
(p < 0.0001). Numerical inspection showed that although 
this peak in CA sizes was found in secondary areas for both 
concrete and abstract concepts, CA sizes in central areas 
decreased again compared to those in secondary areas more 
strongly for abstract than concrete concepts, although, as 
noted above, this interaction between SemanticType and 
Centrality was not significant. In summary, we see the typi-
cal overall “belly shape” (inverse U shape) of cell assemblies 
(more neurons in secondary and central areas) which has 
been shown in several previous simulation studies (Garag-
nani & Pulvermüller, 2016; Tomasello et al., 2017, 2018), 
and numerically, a slightly more pronounced “belly shape” 
for concrete than for abstract concepts, although these effects 
were small and nonsignificant. We note that further investi-
gations about this shape feature were done in the context of 
analyzing CAs in the context of the three related instance-
CAs (see next section) rather than as isolated instances.

Neural correlates of concepts (Figs. 5, 6, 7, 8)

It was crucial to distinguish those parts of the representa-
tions of objects, actions and scenes that relate to specific sen-
sory or motor features of these entities from those properties 
that reflect general conceptual features common to all or at 
least a subsection of the instances of a concept. Therefore, 
further analyses focused on the distinction between ‘unique’ 
instance-specific neurons thought to represent specific sen-
sorimotor but not conceptual properties and ‘shared’ neurons 
thought to index features common to conceptual instances, 

Fig. 4   Average number of neurons in instance-CAs (cell assemblies activated in all 12 model areas in response to individual grounding patterns 
as input to *V1 and *M1L in the testing phase). Error bars show 95% confidence intervals
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which are therefore represent conceptual properties. Since, 
in our present simulations, each concept was learnt on the 
basis of 3 grounding patterns including both specific and 
shared neurons, we investigated the distribution of specific 
and shared neurons between concrete and abstract concepts. 
To this end, we quantified for each neuron activated by the 
instances of a concept whether it was unique (occurring in 
one instance only) or shared with at least one other instance 
(neuron counts by sharedness—Fig. 5). In this approach, 
sharedness is an index of conceptual status (rather than sin-
gle-exemplar relatedness).

We restricted further analysis to the extra-sylvian areas 
and considered sharedness as a binary factor only (unique—
occurrence in 1 instance-CA, shared—occurrence in 2 or 
3 instance-CAs) (Fig. 6A). For statistical analysis, we also 
considered centrality as a binary factor, distinguishing pri-
mary and central connector hub areas only. The secondary 
areas were omitted because they frequently occupied an 
intermediary role, which complicated the analysis without 
producing additional relevant results.

A 2 × 2 × 2 ANOVA with factors SemanticType, Cen-
trality and Sharedness revealed significant main effects 
of SemanticType (F(1,11) = 1646, p < 0.0001), Centrality 

(F(1,11) = 227, p < 0.0001) and Sharedness (F(1,11) = 5569, 
p < 0.0001) as well as significant interactions between 
SemanticType and Centrality (F(1,11) = 1646, p < 0.0001), 
SemanticType and Sharedness (F(1,11) = 260, p < 0.0001), 
Centrality and Sharedness (F(1,11) = 80.7, p < 0.0001) 
and a significant three-way interaction (F(1,11) = 2518, 
p < 0.0001). Bonferroni-corrected paired t tests (8 compari-
sons, critical p = 0.00125) between semantic types showed 
that the number of shared neurons in central areas was not 
significantly different between abstract and concrete con-
cept representations (p = 0.16), whereas, in primary areas, a 
significant difference was found (p < 0.0001) (see Fig. 6B). 
Comparisons on the difference in number of neurons for pri-
mary vs. central areas for the same combination of Seman-
ticType and Sharedness were all significant (p < 0.0001) (see 
colored bars below Fig. 6B).

To further pin down the relevant semantic differences, 
we focused on the relative change in shared (and thus con-
ceptual) neurons only from primary areas to central areas, 
setting the number in primary areas as baseline (0) and 
expressing the number in central areas in % change from this 
baseline (Fig. 6C). Bonferroni-corrected t tests revealed that 
the number of shared conceptual neurons was significantly 

Fig. 5   No of neurons involved in the processing of concrete and 
abstract concepts. Instance-specific neurons activated in response to 
only single grounding pattern have “sharedness” (across the CA rep-
resenting the entire concept) of ‘1’. Semantic neurons activated in 
response to two or three different grounding patterns of one concept 
are labelled ‘2’ or ‘3’. The diagram shows how many unique (shared-
ness 1) and semantic (sharedness 2 or 3) neurons are present in the 

different areas of the network. Note that neuron distribution in the 
stimulated primary areas *V1 and *M1L is simply a result of the pre-
defined stimulation patterns (Fig. 1), but that the number of specific 
and shared semantic neurons across all other areas is the result of 
the learning process and changed in different ways for concrete and 
abstract concepts. Error bars show 95% confidence intervals
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higher in central areas when compared with baseline (pri-
mary areas) for concrete concepts (+ 42.3%, SEM = 1.89%, 
p < 0.0001), whereas for abstract ones, there was a signifi-
cant decrease (-21.1%, SEM = 0.74%, p < 0.0001).

An alternative way to summarize this differing distribu-
tion of unique vs. shared neurons is shown in Fig. 7, which 
is the proportion of shared neurons in each triplet of related 
instance CAs. Looking at the distribution of shared neu-
rons across extra-sylvian areas from a distance, it seems that 
concrete concept processing involves a “belly” of relatively 
high shared neuron densities towards the middle of the net-
work architecture (inverse U shape). In contrast, abstract 

concept representations have fewer shared neurons towards 
the middle of the network, thus leading to a “slim” distribu-
tion (U shape). An ANOVA with factors SemanticType(2) 
and Centrality(3) revealed a main effect of SemanticType 
(F(1,11) = 844, p < 0.0001), Centrality (F(2,22) = 160, 
p < 0.0001) and a significant interaction (F(2,22) = 211, 
p < 0.0001). Thus, in the CA circuits that developed in 
more central network layers, the proportion of shared neu-
rons for abstract concepts was lower than the proportion 
in the grounding sets supplied as training input, indicating 
that the emerging CA circuits rely relatively more strongly 
on unique features. The converse was observed for concrete 

Fig. 6   Distribution of unique instance specific and shared seman-
tic neurons across the model’s 6 extra-sylvian areas. ‘Unique neu-
rons’ are specific to one instance representation (or cell assembly). 
‘Shared neurons’ are part of more than one instance representations/
cell assembly. A The numbers of unique and shared neurons are 
shown per areas for concrete and abstract concepts. B The same data 
as in panel (A) but collapsed into primary (M1L, V1) and central 
areas (AT, PFL). Significant interactions (see main text for details) 
showed that for unique neurons, the relative pattern flips when mov-
ing from primary to central model areas. In contrast, for shared neu-
rons, although abstract concepts start out with more shared neurons 

than concrete ones, they result in similar numbers in central areas. 
C To further illustrate in particular the divergence of the change in 
shared neurons from primary to central areas, we also calculated this 
change in percentage, indicating that the shared-by-all neurons pre-
sent in grounding sets of concrete concepts lead to an increase of 
shared neurons in the resulting concept CAs whereas for abstract con-
cepts, the pairwise shared neurons in grounding patterns decrease in 
the instance CAs in central semantic hub areas. See main text for a 
discussion of the role of unique and shared neurons in the neuronal 
concept representations of abstract and concrete concepts. Error bars 
show 95% confidence intervals
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concepts: although their grounding sets contained more 
unique features than shared ones, the relative contribution 
of these unique features decreased towards central network 
layers, thus statistically supporting their “belly shape”. This 
visual observation was confirmed by Bonferroni-corrected 
paired t tests (12 comparisons, critical p = 0.0008) in each 
area, which confirmed that in primary areas shared neuron 
proportion was higher for abstract than concrete concepts 
whereas the converse was true in the four secondary and 
central areas (all p < 0.0001).

The same Bonferroni-corrected paired t tests were also 
run comparing concrete concepts with only 2000 train-
ing trials (tt) to abstract concepts with 4000 training trials 
(Fig. 8) to address a possible confound related to the fact 
that the shared neurons of concrete concepts occur in 3 out 
of 3 grounding patterns, whereas those for abstract concepts 
occur only in 2 out of 3 (see Fig. 8 and “Discussion” section 
on “putative shortcomings” for more detail).

Discussion

We used a neurobiologically constrained model of peri-
sylvian and extra-sylvian cortex to simulate the putative 
brain mechanisms underlying conceptual category pro-
cessing along with possible differences between concrete 
and abstract concepts. The simulations rest on the assump-
tion that, at least in some cases, categories are learnt and 
grounded based on experiences of instances of a category, 
i.e. objects, actions and circumstances that fall under the 
category, and by mapping the similarity structure of these 
instances on neuronal matter. Different similarity structures 
were implemented for concrete and abstract categories, 
with the former sharing semantic features across all cate-
gory instances and the latter exhibiting family resemblance 
with only partially shared features (see “Introduction” and 
Fig. 1). Taking the neuronal correlates of generally and par-
tially shared features as the mechanistic basis of category 

representations, we found that the learning of category 
instances entailed the formation of neuronal category cor-
relates which were distributed across all sensory and motor 
areas through which instance-related information was pro-
cessed and extended into areas in the centre of the network 
where information from different modalities converge. These 
central and multimodal ‘connector hub’ areas even exhibited 
larger semantic/conceptual neuron numbers than the modal-
ity specific primary areas in the case of concrete concepts 
(thus showing a ‘belly’ shape). However, in the case of 
abstract concept representations, the central connector hub 
areas carried relatively fewer conceptual/semantic neurons 
(‘slim’ shape) (see Figs. 5 and 6).

The belly-like and slim shapes of conceptual represen-
tations of conceptual categories have functional implica-
tions. Cell assemblies with numerous and strongly inter-
linked neurons in their centre may function as a unit, as a 
closed system. If sufficiently stimulated, they will activate 
as a whole (ignition) and after ignition, activity may persist 
and reverberate in the circuit for some time; the term ‘cell 
assembly’ or ‘conceptual circuit’ can be applied in this case 
(Braitenberg, 1978; Pulvermüller & Garagnani, 2014; Pul-
vermüller et al., 2014). If only sparse and weak links are 
present in the centre of an ensemble, the functional unity 
of the ensemble is not guaranteed (Schomers et al., 2017). 
Therefore, it appears that conceptual grounding builds solid 
representations of concrete concepts, but not necessarily 
ones for abstract categories.

Putative shortcomings

This result emerged from a study where concepts were 
mapped based on the similarities of their instances. No 
verbal labels were associated with the conceptual instances 
and hence no explicit feedback was given to the network 
about whether individual instances belonged to a specific 
category or not. Although concept learning can, in principle, 
take place even without verbal labels, as shown by evidence 

Fig. 7   Proportion of shared neurons divided by the total number of 
neurons in instance-related cell assembly neurons across extra-sylvian 
areas. For concrete concepts, a “belly” shape (inverse U-shape) can 
be seen such that this proportion is higher in secondary and central 

areas than in primary areas which receive input. The converse, a 
“slim” shape (U-shape) is seen for abstract concepts, where propor-
tion of shared neurons decreases in secondary and central areas. Error 
bars show 95% confidence intervals
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from infants (Behl-Chadha, 1996; Bomba & Siqueland, 
1983; Quinn et al., 1993) and non-human animals (Cook 
& Smith, 2006; Smith et al., 2008; Zentall et al., 2008), 
humans typically learn concepts in conjunction with a verbal 
label. The lack of verbal information is an obvious short-
coming of this work and calls for further simulations where 
instances are co-presented with symbols. It may well be that 
the lack in ‘belliness’ and the possible functional deficit in 
abstract concept processing, which our results indicate, can 
be remediated by verbal label information, which we are 
currently investigating in a follow-up study. Still, we should 
insist that the current simulations are important because they 
set a baseline of conceptual mappings without additional 
information from labels which may be important for future 
investigation. Against these results, any conceptual learning 
including feedback can fruitfully be interpreted.

A possible confound in our results is that the belly-shape 
of concrete and slimness of abstract concepts representations 
could be a consequence of not properly matched numbers 
of activations of neurons and representations in our present 
simulations. Although for obtaining the main results, each 
grounding pattern was presented 4000 times, the number of 
activations of shared neurons differed between conceptual 
types. Each semantic neuron of abstract concepts was acti-
vated twice, thus resulting in 8000 activations overall, but 
12,000 activations resulted for concrete conceptual neurons, 
which were part of all three conceptual instance representa-
tions. This imbalance could account in part for the slimness 
or ‘belliness’ of representations.

To address this putative limitation, we compared the pro-
portion of shared neurons for the abstract models after 4000 
training trials per grounding pattern (i.e. 8000 per shared 
neuron) with the concrete models with reduced learning, 
after only 2000 training trials per grounding pattern, thus 
resulting in 6000 activations per shared neuron. Despite 

the fact that this comparison overcompensates the ‘dis-
advantage’ of shared neuron activations when comparing 
abstract and concrete models of identical total training trials, 
we nonetheless observed the same pattern of results with 
almost identical results for the 2000 and 4000 training trial 
simulations of concrete concepts (see Fig. 8). Regardless of 
the number of learning trials, concrete concepts showed the 
same belly-shaped distribution of shared semantic neurons 
across areas, thus contrasting in the same way with the pro-
portion of semantic neurons in abstract conceptual neuron 
distributions. In other words, the pattern of more ‘semantic’ 
neurons for concrete concepts in central areas persists even 
when the semantic neurons of concrete grounding patterns 
are activated less frequently than those of abstract ground-
ing patterns, ruling out that the semantic slimness/belliness 
effects observed are a result of such a confound.

More generally speaking, we would like to note that for 
any neural network simulation, results are specific to the 
network type and features used and this also applies here. 
This caveat would equally apply to behavioural experiments, 
where typically many parameters of an experiment (such 
as size of stimuli or interstimulus intervals) are also fixed 
throughout an experiment. Although we explicitly addressed 
the possible confound of number of repetitions here, we can-
not rule out that some of our results depend on specific val-
ues of other parameters or network features, as is always the 
case for neurocomputational results.

The role of shared neurons

The shared neurons can be seen as reflecting semantic fea-
tures (see “Introduction” and first paragraph of Results sec-
tion) and our results show that only for concrete concepts 
do new semantic neurons arise in the central network areas. 
Interestingly, in the case of concrete concepts, central areas 

Fig. 8   Same data as in Fig. 7 (proportion of shared neurons divided 
by the total number of neurons in instance-related cell assembly 
neurons), but with an additional control condition included (con-
crete concepts with only 2000 training trials (tt) instead of 4000). As 
outlined in the Methods and Discussion section, due to the fact that 
shared neurons occur in 3 out of 3 grounding patterns for concrete 
concepts, but only 2 out of 3 for abstract concepts, the shared neu-
rons of concrete concepts are presented more often when comparing 

data for 4000 training trials for both semantic categories. These data 
show that even when reducing training trials for concrete concepts to 
2000, thus actually giving the shared neurons in concrete concepts a 
slight disadvantage (overcompensating for this confound), the ‘belly’ 
vs. ‘slim’ shape for concrete and abstract concepts is still present, rul-
ing out that semantic slimness effects are a result of the differential 
frequency of shared neuron presentations alone. Error bars show 95% 
confidence intervals
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exhibit 42% more such shared neurons than present in pri-
mary areas, as imposed by the similarity structure of ground-
ing patterns. In sharp contrast to this increase, the shared 
neurons of abstract concepts actually decreased by 21% in 
central areas compared to primary areas (Fig. 6B). The lack 
of any semantic overlap neurons shared across all pattern 
instances in the grounding sets for abstract concepts seems 
to present a severe impediment to developing neuronal repre-
sentations that have a large proportion of shared neurons. It 
is noteworthy that this ‘disadvantage’ is present despite the 
fact that abstract concepts (compared to concrete ones) actu-
ally have more shared neurons in their grounding patterns, 
both at the level of an individual grounding pattern (8/12 vs. 
6/12) as well as across the grounding set (12/24 vs. 6/24). 
The qualitative difference in sharedness (pairwise overlap 
for abstract concepts vs. semantic feature neurons for con-
crete concepts) might therefore be the decisive factor which 
prevents abstract concepts from developing a strong cell 
assembly based on shared neurons. In contrast, the concrete 
concept representations actually develop new shared neurons 
in central model areas despite starting out with fewer shared 
neurons in the grounding patterns than in those for abstract 
concepts. Considering that we get similar results even when 
comparing concrete models with fewer repetitions per shared 
neuron, this suggests that only the shared-by-all neurons pre-
sent in the grounding sets of concrete concepts can form the 
basis of strong CAs, whereas family resemblance appears 
insufficient, even when given a relative advantage in terms 
of number of repetitions (see Fig. 8). Note, however, that we 
here did not systematically disentangle differences in quali-
tative and quantitative overlap, i.e. these two factors were 
confounded in our design and we therefore cannot state with 
certainty whether the effects observed here reflect family 
resemblance per se or rather degree of overlap without fam-
ily resemblance. Nonetheless, as the two frequently come 
together, we believe that the present results provide a reason-
able advance in understanding. As outlined in the Methods 
section, we here chose the specific numbers of overlap such 
that both semantic types were matched for total number of 
neurons per grounding pattern (12 per area) and total num-
ber of distinct neurons occurring in the entire grounding 
set (24 per area). Matching the absolute or relative number 
of shared neurons in grounding patterns between semantic 
types would have meant giving up this matching in terms of 
total number of neurons. Future investigations should further 
elucidate the relative influence of qualitative vs. quantitative 
differences in overlap structure on our results.

The role of unique neurons

Given that to our knowledge this is the first neurocom-
putational study to investigate processes underlying 
perceptual concept formation for concrete and abstract 

family–resemblance concepts, we cannot, based on the pre-
sent results alone, provide a definitive explanation for the 
observation that the number of unique neurons in secondary 
and central areas is so much lower for concrete concepts 
than for abstract concepts even though the grounding pat-
terns in primary areas actually contain more unique neurons 
for concrete than abstract concepts. Further neural network 
experiments will be necessary to elucidate the mechanisms 
explaining this (somewhat paradoxical) dissociation. How-
ever, the following tentative explanation can be offered: 
concrete pattern triplets have neurons shared between all 
three instances (shared-by-all), which, because they are acti-
vated most frequently, become dominant within the neuronal 
population activated by the concept instances and therefore 
lead to a relative suppression of the unique neurons. One 
might say that a strong core of conceptual neurons emerges 
from each concrete category (pattern triplet). In contrast, 
for abstract pattern triplets, there are no neurons shared 
between all three instance representations. Hence there are 
no neurons in the emerging CA sufficiently active to exert 
suppression of the emergence of new unique neurons in 
deeper (more central) layers. Instead, the unique neurons 
can contribute relatively more strongly to CA activation. 
One implication of this suggestion is that representations of 
abstract concepts are more strongly reliant on the unique fea-
tures, although it is unclear if this means that unique features 
are more important for abstract concepts per se or simply 
play a larger role in the emerging representation because 
of less ‘suppression’ due to shared-by-all neurons being 
almost (but not completely, see Fig. 5) absent. One could 
interpret the unique features as representing to some extent 
contextual features, i.e. each situation or context in which a 
concept is experienced is different and therefore each situ-
ation/context is associated with its own unique features. As 
such, the greater reliance on unique neurons observed in 
our simulations fits with assumptions immanent to context 
availability theory (Schwanenflugel et al., 1988, 1992) and 
related theories (Davis et al., 2020), supported by experi-
mental evidence showing that processing abstract concepts 
is more dependent on relevant contexts (Schwanenflugel, 
1991; Wilson-Mendenhall et al., 2013) than processing 
concrete concepts. One might argue that concrete concepts 
possess shared-by-all neurons which encode semantic fea-
tures that are central to the meaning of the concept and are 
therefore relatively independent of context (but note that the 
representation of concrete concepts is by no means entirely 
independent of context, see Yee & Thompson-Schill, 2016 
for review). In contrast, abstract concepts developed more 
unique neurons and fewer and only partially shared ones. 
We interpret this to mean that the semantic representation 
of an abstract concept is weaker and hence on its own less 
sufficient for understanding a concept. As such, our model 
fits with the observation that concrete concepts are relatively 
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easier to understand on their own, whereas abstract concepts 
might require more contextual information to complement 
the information from the stored semantic representation in 
order to be fully understood. Note, however that the present 
simulation does not explicitly model ‘context’ and hence 
does not allow us to test the context dependency of abstract 
concepts directly, although this too could be a subject of 
future investigation.

Another way to think about this effect in terms of infor-
mational content is this: for concrete concepts, the unique 
features represent relatively "minor details" that differ 
between instances of the same concept. For example, in the 
case of the concept HAMMER, the length, material and 
color of the handle, shape and size of the head etc. would be 
such "minor details" represented in unique features. These 
“minor details” would all be important for distinguishing 
different kinds of hammers, but would not “make or break” 
the category membership, i.e. what makes an object a ham-
mer does not depend on such “minor details”. As such, the 
unique features for concrete concepts do not influence the 
shared semantic features of the concept (which instead is 
represented in the shared-by-all semantic feature overlap 
neurons). In contrast, the unique features might play a much 
more integral role for defining abstract concepts because 
these do not have the strong shared-by-all neurons, only fam-
ily resemblance shared-by-2 neurons. 

Category differences in language acquisition

We now turn to a not yet fully understood fact known from 
language acquisition and neurocognitive research, which 
may be open to a mechanistic explanation suggested by the 
current results. It is well known that young children learn 
category names for concrete objects much earlier than 
abstract terms; action-related words seem to be learnt later 
than concrete object words, but still before the abstract ones 
(Au et al., 1994; Bassano, 2000; Bergelson & Swingley, 
2013; Gentner & Boroditsky, 2001; Kauschke & Hofmeister, 
2002). We note that most empirical evidence on this ques-
tion is indirect, as it typically is based on findings that nouns 
are learned earlier than verbs as evidence for concrete words 
being learnt before abstract words, but this might be con-
founded (for review, see Vigliocco et al., 2011). Further-
more, even assuming that infants’ early words are predomi-
nantly concrete object words, it is unclear whether this really 
reflects greater difficulty in learning abstract words or the 
fact that caretakers tend to predominantly use object words. 
As a further caveat, considerable cross-linguistic variation 
appears to be present in the noun dominance in early lan-
guage acquisition (e.g. Kauschke et al., 2007; Tardif et al., 
1997) and to what extent (concrete) noun bias is a universal 

phenomenon or rather purely language specific is a topic of 
great debate (for review, see Waxman et al., 2013). Novel 
data (Setoh et al., 2021) suggests, however, that the early 
noun dominance is indeed a widespread phenomenon with 
cross-linguistic differences exerting only a minor effect. 
Assuming that priority of object words in early language 
acquisition is indeed a fundamental feature of human lan-
guage learning, one reason for this priority of the concrete 
could lie in the teaching strategies of adults or the persis-
tence of solid objects, which, in contrast to instances of 
abstract concepts, do not change in a fast, situation-depend-
ent manner. However, it may also be that it is systematically 
more difficult to build abstract conceptual representations 
compared with concrete ones. One reason for this could lie 
in the different conceptual structures discussed in the pre-
sent work (feature sharing vs family resemblance) and their 
neurocomputational implications studied by the simulations, 
in particular the relatively weaker neuronal representations 
of abstract concepts in central connector hub areas. As 
generally-shared semantic features are missing for abstract 
categories, conceptual learning may require not only more 
time but putatively additional qualitative factors enabling 
the formation of strongly connected concept representations. 
One possibility is that experiences with many more variable 
instances are required than for concrete concepts. A further 
possibility is that linguistic information (for example, associ-
ating concepts with verbal labels) plays an important role in 
abstract concept formation (Borghi & Zarcone, 2016; Dove, 
2018; Dove et al., 2020; Lupyan & Clark, 2015; Waxman & 
Markow, 1995), where for the shared-feature concrete con-
cepts no linguistic enhancer is required. However, we wish 
to stress that these suggestions call for more work, both at 
the experimental side and at the neural simulation end.

We should also emphasize that the late learning of 
abstract concepts can be explained by alternative approaches. 
Considering the proposal by Barsalou and Wiemer-Hast-
ings (2005) that reference to internal states and processes is 
required for and plays a great role in abstract concept learn-
ing, it appears as plausible that such a process may just per 
se be more demanding than the reference to concrete objects 
accessible to the entire community. Even if one acknowl-
edges that internal states can only be assessed and labeled 
if action-based criteria are available (see “Introduction”), 
such grounding of inner state concepts in action could imply 
a greater learning effort than the inter-linking of concrete 
objects with shared properties. Still, also in this framework, 
a mechanistic explanation is desirable and it may turn out 
that the structural difference between shared features and 
family resemblance plays a role here too.
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Future research needs

The reported simulations indicate that the role of unique 
features might differ between concrete and abstract concepts. 
These simulations build a causal chain from conceptual 
structure (feature sharing vs family resemblance) to neuro-
biological mechanisms, but as we have already mentioned, 
various aspects of this model are calling for further research. 
Here, we would like to highlight that we suggested that the 
neuronal representations of concrete concepts are somewhat 
more strongly represented, not only in terms of quantity of 
shared neurons but also in terms of function, as compared 
with abstract ones. To confirm this, further simulations are 
necessary targeting the dynamics of neuronal activation—in 
view of variable cognitive processes, including the spontane-
ous ‘coming to mind’ of a concept.

Regarding causality, we should also mention the follow-
ing: the present simulation data alone show that different 
overlap structure in grounding patterns causes different over-
lap structure in cell assemblies, but does not allow us to draw 
any causal conclusions about the functional role that unique 
and shared neurons in the central layers of the model play 
in the activation of a concepts’ CA. One possible avenue for 
further investigation of this topic would be to leave out the 
unique neurons in the testing phase, i.e. train the model on 
shared and unique neurons (as we have done here), but then 
only stimulate with the subset of neurons that was shared 
and test how this reduced stimulation might differentially 
impair cell assembly activation for concrete and abstract 
concepts. Similarly, selective lesioning of shared or unique 
neurons in the deeper layers could be done to investigate the 
relative causal contribution of these neurons to the activa-
tion of a CA.

Finally, another important limitation is that our present 
modelling approach does not allow specifying at what level 
of specificity in the hierarchy we are modelling seman-
tic categories and their members. However, this apparent 
limitation can also be seen as an advantage, as the results 
generalize to several levels of the conceptual hierarchy. 
Although we introduced our simulations as reflecting basic-
level concepts with 3 object instances each, the hierarchy 
implemented in the model can also be interpreted to reflect a 
domain-level category and 3 basic level categories included 
in that domain, i.e. it could either be viewed as a basic-
level category with three individual members (e.g. concept 
CHAIR with 3 instances of chairs differing in some details) 
or a domain-level category with different basic-level con-
cepts making up that category (e.g. concept FURNITURE 
with 3 members CHAIR, SOFA and TABLE).

The way we model concepts as consisting of grounding 
patterns with equal numbers of static sensory and motor 
features is obviously also another important limitation that 
should be considered when interpreting our findings. Real 

concepts—both concrete and abstract—will likely differ in 
the relative contribution of sensory and/or motor features 
and findings from previous simulations (which were done 
for concrete concepts only) have indicated that topological 
differences in the cell assemblies exist for object vs. action 
words (Garagnani & Pulvermüller, 2016; Tomasello et al., 
2017, 2018), leaving open the question of what would hap-
pen to abstract concepts which are grounded either purely 
in sensory or purely in motor features. Approaches that 
view the difference between abstract and concrete concepts 
in the relationship to internal states, such as emotions and 
affects, are therefore not covered by this approach. The 
reason for omitting this difference is our conviction that 
any ‘grounding in emotion’ is by necessity grounding 
in action, so that any emotional grounding in so-called 
‘internal states’ is in fact realized as and based on action 
grounding (see e.g. Moseley & Pulvermüller, 2018). 
Because, in this perspective, abstract emotion concepts 
and entirely concrete action concepts would share the same 
systems, modelling the abstract/concrete difference by dif-
ferent brain systems appears as not fruitful.

A further possible point of criticism could be that we 
model concepts as static patterns only, whereas situational 
information associated with the experience of a scene over 
time is important. However, we do not believe that this is a 
valid criticism as the ‘instance patterns’ can each be seen 
as representations of situated information about an object, 
action or event. Going one step further, each individual 
instance could also be modelled as a range of similar but 
slightly different neural activation patterns, which could 
render the simulations one further step more realistic. The 
model mechanistically shows and explains how category 
representations can develop on the basis of variable situ-
ated experiences of objects, actions and events that to a 
degree share features.

Conclusion

We here provide a neuroanatomically grounded compu-
tational model of the acquisition of concrete and abstract 
concepts through unsupervised Hebbian learning. The 
instances of concrete concepts were realized by overlap-
ping sets of semantic features, whereas abstract concepts 
were realized by feature sets without common overlap, 
i.e. family resemblance. Robust neuronal conceptual rep-
resentations emerged only in the case of concrete concepts. 
These circuits rely on large numbers of neurons in the neu-
ral network's central connector hub areas, which respond 
to shared semantic features of the conceptual category. For 
abstract concepts, more volatile representations emerged, 
consisting predominantly of unique, or idiosyncratic, fea-
ture neurons. Our findings also motivate novel hypotheses 
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to be tested in future simulation and/or neuroimaging stud-
ies, in particular concerning a possible influence of verbal 
labels on conceptual learning.

Appendix

Structure and function of the spiking neuron model 
(adapted from Tomasello et al., 2018 and Garagnani 
et al., 2017)

Each of the 12 model areas consists of two layers of artifi-
cial neuron-like elements (“cells”), 625 excitatory and 625 
inhibitory (e- and i-cells), thus resulting in 15,000 cells in 
total (see Fig. 1C). Each e-cell models a single representa-
tive pyramidal spiking neuron situated in a local patch of 
the cortex and the underlying i-cell represents the cluster 
of inhibitory interneurons located within the same cortical 
column (Eggert & van Hemmen, 2000; Wilson & Cowan, 
1972). The state of each cell x at time t is uniquely defined 
by its membrane potential V(x,t), specified by the following 
equation:

where VIn (x,t) (defined by Eq. 2) is the net input acting upon 
cell x at time t (sum of all inhibitory and excitatory postsyn-
aptic potentials—I/EPSPs; inhibitory synapses are given a 
negative sign), τ is the membrane’s time constant, k1, k2 are 
scaling values (see Table 1 for the specific parameter values 
used here) and η(·,t) is a white noise process with uniform 
distribution over [− 0.5,0.5].

(1)� ⋅
dV(x, t)

dt
= −V(x, t) + k1(VIn(x, t) + k2�(x, t))

In Eq. (2), y varies over all cells in the network, wx,y is 
the weight of the link from y to x and � (y,t) is y’s current 
output (1 or 0), as defined below Eq. (3); ωG(Ax,t) is the 
area-specific (or “global”) inhibition for area A where cell 
x is located (see explanation below and Eq. 6): this term is 
identical for all excitatory cells x in A and absent for inhibi-
tory cells (kG is a scaling constant). The weights of inhibi-
tory synapses are assigned a negative sign. Note that noise is 
an inherent property of each model cell, intended to mimic 
the spontaneous activity (baseline firing) of real neurons. 
Therefore, noise was constantly present in all areas, in equal 
amounts (inhibitory cells have k2 = 0, i.e. the noise is gener-
ated by the excitatory cells). The output (or transformation 
function) ϕ of an excitatory cell e is defined as follows:

Thus, an excitatory cell e spikes (= 1) whenever its mem-
brane potential V(e,t) overcomes a fixed threshold thresh by 
the quantity αω(e,t) (where α is a constant and ω is defined 
below). Inhibitory cells are graded response neurons, for 
simplicity, as they intend to represent the average impact of 
a cluster of local interneurons; the output ϕ(i,t) of an inhibi-
tory neuron i is 0 if V(i,t) < 0 and V(i,t) otherwise.

To simulate neuronal adaptation (Kandel et al., 2000), the 
function ω(·,t) is defined so as to track the cell’s most recent 
firing-rate activity. More precisely, the amount of adaptation 
(e,t) of cell e at time t is defined by:

(2)VIn(x, t) = −kGωG(Ax, t) +
∑
∀y

wx,y ⋅ �(y, t)

(3)𝜙(e, t)

{
1 if(V(e, t) − 𝛼𝜔(e, t)) > thresh

0 otherwise

Table 1   Parameter values used 
for the simulations

Equation numbers refer to the equations in the appendix, where further details about the mathematical 
implementation of the model are described

Equation (1) Time constant (excitatory cells)
Time constant (inhibitory cells)
Total input rescaling factor
Noise amplitude
Global inhibition strength

τ = 2.5 (time steps)
τ = 5 (time steps)
k1 = 0.01
k2 = 7√(24/∆t)
kG = 0.80

Equation (3) Spiking threshold Thresh = 0.18
Adaptation strength α = 8.0

Equation (4) Adaption time constant τADAPT  = 10 (time steps)
Equation (5) Rate-estimate time constant τFavg = 30 (time steps, training)

τFavg = 5 (time steps, testing)
Equation (6) Global inhibition time constant τGLOB = 12 (time steps)
Equation (7) Postsynaptic potential thresholds for θ+ = 0.15 (LTP)

θ− = 0.14 (LTD)
Presynaptic output activity required for any 

synaptic change:
θpre = 0.05

Learning rate Δw = 0.0008
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where �ADAPT is the “adaptation” time constant. The solution 
(e,t) of Eq. (4) is the low-pass-filtered output ϕ of cell e, 
which provides an estimate of the cell’s most recent firing-
rate history. A cell’s average firing activity is also used to 
specify the network’s Hebbian plasticity rule (see Eq. (7) 
below); in this context, the (estimated) instantaneous mean 
firing rate ωE(e,t) of an excitatory neuron e is defined as:

(4)�ADAPT ⋅

d�(e, t)

dt
= −�(e, t) + �(e, t)

To regulate and control activity in the network, local 
and area-specific inhibition is implemented (Bibbig et al., 
1995; Palm, 1982; Wennekers et  al., 2006), realizing, 
respectively, local and global competition mechanisms 
(Duncan, 1996, 2006). More precisely, the input VIn(e,t) 
(defined in Eq.  2) to each excitatory cell of the same 
area includes an area-specific (“global”) inhibition term 

(5)�Favg ⋅
d�E(e, t)

dt
= −�E(e, t) + �(e, t)

Table 2   Connectivity structure of the modelled cortical areas

Reprinted from Tomasello et al. (2018)

Modelled areas References

Between-area connectivity (black arrows)
 Peri-sylvian system
  A1, AB, PB Kaas and Hackett (2000), Pandya (1995), Rauschecker and Tian (2000)
  PFi, PMi, M1i Pandya and Yeterian (1985), Young et al., (1995)

 Extra-sylvian system
  V1, TO, AT Bressler et. al. (1993), Distler et. al. (1993)
  PFL, PML, M1L Arikuni et. al. (1988), Dum and Strick (2002, 2005), Lu et. al. (1994), 

Pandya and Yeterian (1985), Rizzolatti and Luppino (2001)
 Between system
  AT, PB Gierhan (2013)
  PFi, PFL Yeterian et. al. (2012)

Long distance cortico-cortical connections (purple arrows)
 Peri-sylvian system
  PFi, PB Catani et. al. (2005), Makris and Pandya (2009), Meyer et. al. (1999), 

Parker et. al. (2005), Paus et. al. (2001), Rilling et. al. (2008), Romanski 
et. al. (1999a, 1999b)

 Extra-sylvian system
  AT, PFL Bauer and Jones (1976), Chafee and Goldman-Rakic (2000), Eacott and 

Gaffan (1992), Fuster et. al. (1985), Parker (1998), Ungerleider et. al. 
(1989), Webster et. al. (1994)

 Between system
  PB, PFL Pandya and Barnes (1987); Romanski et. al. (1999a, 1999b), Romanski et. 

al. (1999a, 1999b)
  AT, PFi Pandya and Barnes (1987), Petrides and Pandya (2009), Rilling (2014), 

Romanski (2007), Ungerleider et. al. (1989), Webster et. al. (1994)
High-order “jumping” links (blue arrows)
 Peri-sylvian system (Rilling & Van Den Heuvel, 2018; Rilling et al., 2008, 2012; Thiebaut de Schotten et al., 2012)
  A1, PB Pandya and Yeterian (1985), Young et. al. (1994)
  PB, PMi Rilling et. al. (2008), Saur et. al. (2008)
  AB, PFi Kaas and Hackett (2000), Petrides and Pandya (2009), Rauschecker and 

Scott (2009), Romanski et. al. (1999a, 1999b)
  PFi, M1i Deacon (1992), Guye et. al. (2003), Young et. al. (1995)

 Extra-sylvian system (see also (Thiebaut de Schotten et al., 2012)
  V1, AT Catani et al., (2003), Wakana et. al. (2004)
  AT, PML Bauer and Fuster (1978), Chafee and Goldman-Rakic (2000), Fuster et. al. 

(1985), Pandya and Barnes (1987), Seltzer and Pandya (1989)
  TO, PFL Bauer and Jones (1976), Fuster and Jervey (1981), Fuster et. al. (1985), 

Makris and Pandya (2009), Seltzer and Pandya (1989)
  PFL, M1L Deacon (1992), Guye et. al. (2003), Young et. al. (1995)
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kGωG(e,t) (with kG a constant and ωG(e,t) defined below) 
subtracted from the total I/EPSPs postsynaptic potentials 
VIn in input to the cell; this regulatory mechanism ensures 
that area (and network) activity is maintained within phys-
iological levels (Braitenberg & Schüz, 1998):

Excitatory links within and between (possibly non-adja-
cent) model areas are established at random and limited to a 
local (topographic) neighbourhood; weights are initialized at 
random, in the range [0, 0.1]. The probability of a synapse to 
be created between any two cells falls off with their distance 
(Braitenberg & Schüz, 1998) according to a Gaussian func-
tion clipped to 0 outside the chosen neighbourhood (a square 
of size n = 19 for excitatory and n = 5 for inhibitory cell pro-
jections). This produces sparse, patchy and topographic con-
nectivity, as typically found in the mammalian cortex (Amir 
et al., 1993; Braitenberg & Schüz, 1998; Douglas & Martin, 
2004; Kaas, 1997).

The Hebbian learning mechanism implemented simulates 
well-documented synaptic plasticity phenomena of long-
term potentiation (LTP) and depression (LTD), as imple-
mented by Artola, Bröcher and Singer (Artola & Singer, 
1993; Artola et al., 1990). This rule provides a realistic 
approximation of known experience-dependent neuronal 
plasticity and learning (Finnie & Nader, 2012; Malenka & 
Bear, 2004; Musso et al., 1999; Rioult-Pedotti et al., 2000) 
and includes both (homo- and hetero-synaptic or associa-
tive) LTP, as well as homo- and hetero-synaptic LTD. In 
the model, we discretized the continuous range of possible 
synaptic efficacy changes into two possible levels, + Δ and 
− Δ (with Δ << 1 and fixed). Following Artola et al., we 
defined as “active” any (axonal) projection of excitatory cell 
e such that the estimated firing rate ωE(e,t) of cell e at time 
t (see Eq. (5)) is above θpre, where θpre ∈]0,1] is an arbitrary 
threshold representing the minimum level of presynaptic 
activity required for LTP (or homosynaptic LTD) to occur. 
Thus, given a pre-synaptic cell i making contact on to a post-
synaptic cell j, the change Δw(i,j) inefficacy of the (excita-
tory-to-excitatory) link from i to j is calculated as follows:

(6)�GLOB ⋅
d�G(e, t)

dt
= −�G(e, t) +

∑
e∈area

�(e, t)

(7)Δw(i, j) =

⎧
⎪⎨⎪⎩

+Δ if 𝜔E(i, t) ≥ 𝜃pre and V(j, t) ≥ 𝜃+ (LTP)

−Δ if 𝜔E(i, t) ≥ 𝜃pre and 𝜃− ≤ V(j, t) ≥ 𝜃+ (homosynaptic LTD)

−Δ if 𝜔E(i, t) < 𝜃pre and V(j, t) ≥ 𝜃+ (heterosynaptic LTD)

0 otherwise

The values in Table 1 describe the parameters used during 
word learning simulation in the network, which were chosen 
on the basis of the previous simulations (e.g. Garagnani & 
Pulvermüller, 2011; Garagnani et al., 2007, 2009; Schomers 
et al., 2017; Tomasello et al., 2017).
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