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Abstract
We investigated the relation between implicit sequence learning and individual differences in working memory (WM) 
capacity. Participants performed an oculomotor version of the serial reaction time (SRT) task and three computerized WM 
tasks. Implicit learning was measured using anticipation measures only, as they represent strong indicators of learning. Our 
results demonstrate that anticipatory behavior in the SRT task changes as a function of WM capacity, such that it increases 
with decreased WM capacity. On the other hand, WM capacity did not affect the overall number of correct anticipations in 
the task. In addition, we report a positive relation between WM capacity and the number of consecutive correct anticipa-
tions (or chunks), and a negative relation between WM capacity and the overall number of errors, indicating different learn-
ing strategies during implicit sequence learning. The results of the current study are theoretically important, because they 
demonstrate that individual differences in WM capacity could account for differences in learning processes, and ultimately 
change individuals’ anticipatory behavior, even when learning is implicit, without intention and awareness.

Introduction

Anticipation represents a ubiquitous and central charac-
teristic of sequence learning (Cleeremans & McClelland, 
1991; Dale, Duran, & Morehead, 2012). However, the exact 
nature of the relation between anticipation during sequence 
learning and memory remains poorly understood (Dale 
et al., 2012; Janacsek & Nemeth, 2013; Schwarb & Schu-
macher, 2012). For example, working memory (WM) could 
be involved in sequence learning, because WM is needed for 
retrieval of information from long-term memory (Martini, 
Furtner, & Sachse, 2013). On the other hand, it is possible 
that WM is not related to sequence learning because of the 
relative automaticity of this type of learning (e.g., Unsworth 
& Engle, 2005). Understanding how these systems interact 
appears to be critical in elucidating the mechanisms underly-
ing sequential learning. To this end, we investigated whether 

individuals’ anticipatory behavior changes as a function of 
working memory (WM) capacity during implicit sequence 
learning.

Sequence learning is one of the fundamental cognitive 
abilities that enables individuals to acquire representa-
tions of their environment. Specifically, sequence learning 
is a mechanism responsible for the acquisition of abstract 
knowledge of regularities present in the environment. Previ-
ous research has reported evidence that such distributional 
learning can take place implicitly—without awareness and 
explicit instructions (Stadler & Frensch, 1998; Turk-Browne, 
Scholl, Chun, & Johnson, 2009). Implicit sequence learning 
underpins many aspects of human behavior, such as lan-
guage and various motor skills (Cleeremans & McClelland, 
1991; Conway, Bauernschmidt, Huang, & Pisoni, 2010; Hunt 
& Aslin, 2001; Masters, 1992). For example, Conway et al. 
(2010) demonstrated a correlation between performance on 
an implicit learning task and sensitivity to word predictabil-
ity in speech. The authors suggested that increased implicit 
learning capabilities result in more detailed representations 
of the word order probabilities, leading to improvements in 
speech perception.

The relation between implicit sequence learning [typi-
cally measured by reaction time (RT)] and WM capacity 
has been studied extensively (e.g., Bo, Jennett, & Seidler, 
2012; Caljouw, Veldkamp, & Lamoth, 2016; Feldman, Kerr, 
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& Streissguth, 1995; Guzmán, 2018; Kaufman et al., 2010; 
Unsworth & Engle, 2005; Weitz, O’Shea, Zook, & Need-
ham, 2011; Yang & Li, 2012). However, previous studies 
reported mixed results regarding the relation between the 
two systems, potentially because researchers used different 
WM capacity tests (i.e., visuospatial, verbal, or numerical), 
but also different measures of learning in the SRT task (e.g., 
the difference in average RT between blocks with a training 
sequence and blocks with a random sequence, or the rate of 
RT improvement across blocks of the SRT task; for a review, 
see Janacsek & Nemeth, 2013).

For example, a number of previous studies found no rela-
tion between implicit sequence learning and WM capacity 
(Caljouw et al., 2016; Guzmán, 2018; Jimenez & Vazquez, 
2005; Jongbloed-Pereboom, Nijhuis-van der Sanden, & 
Steenbergen, 2019; Masters, 1992; Meissner, Keitel, Süd-
meyer, & Pollok, 2016; Unsworth & Engle, 2005; Yang & 
Li, 2012). Unsworth and Engle (2005) reported that there 
were no differences in implicit learning in a manual version 
of the SRT between high and low WM capacity individu-
als. The authors measured implicit learning as a difference 
in average RT between sequence blocks and random trials, 
while WM capacity was measured using operation span (a 
numerical task). On the other hand, the authors reported 
WM capacity effects on explicit sequence learning when 
participants were aware of the sequence and the learning 
goal (see also Bo, Borza, & Seidler, 2009; Weitz et al., 
2011). Together, these findings were interpreted to indicate 
the importance of WM capacity in tasks that require some 
form of control (i.e., explicit learning), compared to relative 
automaticity of implicit learning (see also Kaufman et al., 
2010).

In contrast, there is evidence from different domains that 
support the likelihood that implicit learning and WM capac-
ity could be related. For example, Bo et al. (2012) reported 
a significant positive correlation between visuospatial WM 
capacity and the rate of RT improvement in the SRT task. 
Visuospatial WM was measured using a change detection 
task, while the implicit learning was measured as a change 
in median RT across sequential blocks. The authors argued 
that learning in the SRT task relies on the number of items 
which individuals can hold in WM.

Interestingly, there is also evidence that WM and implicit 
learning could be negatively correlated. Based on findings 
obtained with artificial neural network models of lan-
guage learning, Elman (1993) reported that learning can be 
improved under conditions of limited WM capacity. Like-
wise, Newport (1990) hypothesized that developmentally 
immature language learners focus on simpler linguistic 
structures because of their limited WM capacity (see also 
Erickson & Thiessen, 2015). In this way, early learners or 
learners with limited WM capacity grasp only constitu-
ents of speech, and then combine them into more complex 

structures. Late learners or learners with larger WM capac-
ity, conversely, can take in more complex structures, which 
appear to put them at a disadvantage for learning (we will 
return to this in our “General Discussion”).

A series of recent behavioral and brain imaging stud-
ies has demonstrated that weaker executive functions can 
lead to better implicit learning (Nemeth, Janacsek, Polner, 
& Kovacs, 2013; Tóth et al., 2017; Virag et al., 2015). For 
example, Nemeth et al. (2013) reported increased sequence 
learning in hypnosis, compared to a waking alert condition. 
The authors attributed such improved learning to the dis-
ruption to the executive system caused by hypnotic instruc-
tions. In addition, using EEG data, Tóth et al. (2017) found 
that a better statistical learning score was related to a lower 
strength of connectivity between the sensorimotor and cog-
nitive control brain regions.

Moreover, recent studies have set out to demonstrate that 
WM capacity and implicit learning, at least partly, relied on 
shared brain networks, thus implying the relation between 
the two systems (e.g., Hasson, Cashdollar, Weisz, & Ruhnau, 
2016; Janacsek & Nemeth, 2013). Using magnetoencepha-
lography recordings, Hasson et al. (2016) found increased 
neural activity in higher WM capacity individuals when 
visual stimuli occurred with greater statistical regularity. 
Moreover, the SRT task has been demonstrated to recruit a 
brain network that includes the dorsolateral prefrontal cortex 
(DLPFC), which also plays a role in conscious executive 
processes (Torriero et al., 2007).

Present investigation

In the current study, we investigate the relation between WM 
capacity and anticipatory measures during implicit sequence 
learning. The WM capacity measure reported here repre-
sents a combined score of three different complex verbal 
and visuospatial span tasks. This more encompassing WM 
capacity measure should account for the potential differen-
tial correlations of different WM capacity measures with 
implicit sequence learning (cf., Janacsek & Nemeth, 2013). 
In addition, implicit learning was measured using antici-
pation measures only, as they represent strong indicators 
of learning (Dale et al., 2012; Nissen & Bullemer, 1987; 
Schvaneveldt & Gomez, 1998; Stadler, 1989). We used the 
oculomotor variation of the serial reaction time task (SRT 
task; Kinder, Rolfs, & Kliegl, 2008; Marcus, Karatekin, & 
Markiewicz, 2006; Vakil, Bloch, & Cohen, 2017) previously 
demonstrated to provide measures of anticipatory responses, 
a feature that is hard to examine in manual versions of the 
SRT task. This is because manual responses in the SRT task 
are typically made after the stimulus onset, with only a lim-
ited number of pre-target button presses that would indicate 
anticipations (Marcus et al., 2006). In contrast, anticipatory 
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eye movements appear at a relatively high rate in this task, 
and can be measured directly by recording eye movements 
(i.e., anticipations appear if participants transition gaze 
towards a next position before the subsequent stimulus 
appears; Marcus et al., 2006; Vakil et al., 2017). We inves-
tigate the relation between direct measures of anticipation, 
namely the overall number of anticipations and the number 
of correct anticipations, and individual differences in WM 
capacity. The anticipation measures reported here could be 
conceptualized as indicators of learning strategies (i.e., the 
overall number of anticipations) and learning outcomes (i.e., 
the number of correct anticipations) in the SRT task. Such 
conceptualization allows us to investigate how these pro-
cesses unfold during sequence learning, and how they relate 
to individual differences in WM capacity. In addition, we 
provide a more nuanced analysis of learning efficiency, and 
by extension of learning strategies, by investigating the rela-
tion between WM capacity and individual differences in the 
number of consecutive correct anticipations (i.e., chunking 
patterns). Previous research investigating explicit sequence 
learning has reported a positive correlation between WM 
capacity and chunking, defined by faster RTs of groups of 
movements (Bo & Seidler, 2009; Kennerley, Sakai, & Rush-
worth, 2004; Sakai, Kitaguchi, & Hikosaka, 2003; Shea, 
Park, & Braden, 2006). This positive correlation is usually 
taken to indicate a WM imposed limit on sequence elements 
that can be considered during explicit learning (on aver-
age around three items in length; e.g., Bo & Seidler, 2009). 
Thus, lower and higher WM spans potentially use different 
sequence learning strategies. To our knowledge, the relation 
between WM capacity and chunking, here directly measured 
by the length of correct anticipation sequences, has not been 
reported in the context of implicit sequence learning.

During a typical SRT task, participants are asked to fol-
low a target on the screen. Critically, unknown to the par-
ticipants, the target presentation follows a fixed (i.e., to-
be-learned) sequence, and at some point, a different (i.e., 
interfering) sequence is intercalated. We expect that the 
number of correct anticipations (henceforth correct anticipa-
tions) should increase across the learning blocks (i.e., during 
presentation of a to-be-learned sequence), decrease in the 
interference block (i.e., during presentation of a different 
sequence), and then again increase in the recovery block 
(i.e., another presentation of the learning sequence; Marcus 
et al., 2006; Vakil et al., 2017). In addition, we report the 
changes in overall number of anticipations (both correct and 
incorrect; henceforth anticipations).

Based on a number of previous studies (e.g., Caljouw 
et al., 2016; Guzmán, 2018; Kaufman et al., 2010; Uns-
worth & Engle, 2005), a relation between WM capacity and 
implicit sequence learning would not be expected. How-
ever, if WM capacity and implicit learning at least partly 
rely on shared mechanisms, we should expect that the two 

systems are related to some extent (Janacsek & Nemeth, 
2013). As noted in the introduction, the potential direction 
of this relation remains a matter of debate. For example, 
participants with higher WM capacity could have additional 
resources available during the learning phase, which could 
lead to more anticipations and more correct anticipations 
compared to participants with lower spans. By this account, 
WM capacity imposes an upper bound on the number of 
items that can be considered during the SRT task. A positive 
relation between WM capacity and the number of consecu-
tive correct anticipations (i.e., chunks) would further cor-
roborate this account.

Method

Participants

Participants were 35 students and staff (28 female; mean 
age 27.4; age range 18–56) from the University of Sheffield. 
Participants received a £7 Amazon voucher. All participants 
had normal or corrected-to-normal vision. Two additional 
participants were excluded, because they failed to complete 
the experiment. The study was a part of a larger research 
project on language learning.

Materials

The serial reaction time task

We introduced a rapid oculomotor version of a determin-
istic SRT task, in an attempt to attenuate potential explicit 
awareness of the task.1 The oculomotor SRT task, based 
on the digital SRT task by Nissen and Bullemer (1987; see 
also Kinder et al., 2008; Marcus et al., 2006; Vakil et al., 
2017), was implemented using OpenSesame (Mathôt, 
Schreij, & Theeuwes, 2012). Eye movements were recorded 
using an EyeLink Portable Duo eye tracker (SR research, 
ON, Canada), tracking at a sampling rate of 500 Hz in the 
head-stabilized mode. Participants were calibrated by the 
nine-point calibration type. Tracking was monocular, using 
participant’s dominant eye, while viewing was binocular. 
Overall, the right eye was recorded for 69% of partici-
pants (n = 24). Stimuli consisted of five slides, with resolu-
tion of 1024 × 768 pixels. Each slide contained four white 
65 × 65 mm squares on a gray background (the white squares 
were also our areas of interest (AOIs); see Fig. 1). The tar-
get (a black circle) with a diameter of 20 mm appeared in 

1 More complex probabilistic sequences could likewise increase task 
reliability (Stark-Inbar, Raza, Taylor, & Ivry, 2016; West, Vadillo, 
Shanks, & Hulme, 2018).
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different white squares across four slides, while the fifth 
slide was the “anticipatory” slide and contained blank 
squares only. The slides were presented centrally on a 21 in. 
monitor (refresh rate: 60 Hz), 70 cm away from participants’ 
eyes. Individual white squares subtended visual angles of 
5.5° horizontally and vertically, while the target subtended 
visual angles of 1.7°. We used the second-order conditional 
sequences (SOC; Gabriel et al., 2013; Vakil et al., 2017; 
Wilkinson & Shanks, 2004), meaning that a target loca-
tion could be predicted only if the two preceding locations 
were considered. We used two sequences: “342312143241” 
and “341243142132” (adopted from Wilkinson & Shanks, 
2004). Here, the numbers 1–4 correspond to the four posi-
tions: down, left, right, and up. Each sequence served either 
as the learning or the interfering sequence, and the order 
of sequences was counterbalanced across the participants.

Explicit knowledge questionnaire

To assess sequence awareness, participants were asked the 
following questions after they had completed the task: (1) 
Did you notice anything special about the experiment?; (2) 
Did you notice any patterns during the experiment?; (3) If 
so, could you explicitly recall the pattern?; (4) If so—please 
write the pattern down.

Working memory tasks

Working memory capacity was measured using automated 
versions of three complex span tasks: the operation span, 
reading span, and symmetry span. The tasks were adminis-
tered using Tatool (von Bastian, Locher, & Ruflin, 2013), a 
Java-based programming framework.

In the operation span task, participants were shown 
a random number that needed to be remembered. Each 

number was followed by a math problem (e.g., 3 × 7 = 21) 
and participants were asked to make a decision on the 
veracity of the provided answer (half of the answers were 
correct). At recall, participants were asked to type in the 
random numbers which they had seen, in the order of 
presentation. Their final score was the number of correct 
items in the correct order. Set sizes (number–math prob-
lem pairs) ranged from 3 to 7, and each set was presented 
three times in random order.

In the reading span task, participants were presented 
with a number that needed to be remembered. Each num-
ber was followed by a sentence and participants were 
asked to determine whether the sentence made sense or not 
(half of the sentences made sense). At recall, participants 
were asked to report the presented numbers, in the order 
of presentation. The final score was the number of cor-
rect items in the correct order. Set sizes (number–sentence 
pairs) ranged from 2 to 6, and each set was presented three 
times in random order.

In the symmetry span task, participants saw a 4 × 4 grid 
with one of the cells filled in blue. This was followed by 
a presentation of an 8 × 8 grid where some squares were 
filled, and participants were asked to decide whether the 
filled square pattern was symmetrical about the vertical 
axis (the pattern was symmetrical half of the time). At 
recall, participants were asked to reconstruct the sequence 
of the previously filled cells, in the order of appearance. 
The final score was the number of cell locations recalled 
in the correct order. Set sizes ranged from 2 to 5, and each 
set was presented three times in random order.

We created a composite WM capacity score for each 
participant, by z-transforming complex span tasks and 
averaging them (e.g., Harrison, Shipstead, & Engle, 2015; 
Kane et al., 2007; Unsworth, 2017; the average correlation 
among WM capacity measures was 0.47; descriptive sta-
tistics for WM capacity measures are provided in Table S1 
in Supplementary Material).

Fig. 1  Anticipatory slide (left panel) and one of the target slides (right panel)
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Procedure

Participants were seated in front of the monitor, with head 
position controlled using a chinrest. The calibration was per-
formed at the beginning of the experiment, while drift check 
and correction (if required) were performed at the beginning 
of each block. In the SRT task, participants were instructed 
to follow the target on the screen. The experiment began 
with 12 practice trials (randomly generated sequences). The 
experiment consisted of six blocks, each containing a 12-ele-
ment sequence repeated five times (i.e., 60 trials within a 
block). At the beginning of each trial, the anticipatory slide 
(i.e., blank squares) was presented for 500 ms, followed 
by the presentation of the target (i.e., a black circle inside 
the square) for 1100 ms. The first four blocks were learn-
ing blocks (Block 1–Block 4). Each of these blocks started 
from a different point in the sequence. The learning blocks 
were followed by an interfering block, containing a differ-
ent 12-element sequence (Block 5). Finally, the original 
sequence was reintroduced in a recovery block (Block 6). 
The SRT task, administered in one session, took approxi-
mately 15 min to complete. After the SRT task, participants 
filled out the explicit knowledge questionnaire. Finally, the 
WM capacity battery was administered.

Results

We used the R Environment for Statistical Computing (R 
Core Team, 2018) and lme4 package (version 1.1-17; Bates, 
Maechler, Bolker, & Walker, 2015) to fit generalized linear 
mixed-effects models with the Binomial link-function (i.e., 
Logistic GLMM). Type II Wald Chi-square tests of models 
and parameter confidence intervals were obtained using the 
car package (Fox & Weisberg, 2011), while slope analyses 
were performed and plotted using the jtools package (Long, 
2018). Additional data visualization was done using the 
sjPlot package (Lüdecke, 2018).

We fit a series of mixed-effects logistic regression analy-
ses to our two dependent variables of interest (DVs are ana-
lyzed separately): (1) anticipations—the overall number of 
anticipations (correct plus incorrect); and (2) correct antici-
pations—the number of correct anticipations. Anticipations 
appeared if participants transitioned their gaze towards a 
different (potential) target location during the presentation 
of the blank slide (i.e., during the first 500 ms of each trial); 
anticipations were correct if the participant’s gaze remained 
within the correct AOI at the time the target appeared (oth-
erwise, anticipations were incorrect).

We entered the interaction of Block (factor) and WM 
capacity (covariate) as fixed effects. As random effects, we 
entered intercept for participants: dv ~ block × wmc + (1|par-
ticipant). The model fit to data was tested against a reduced 

model with no-interaction term: dv ~ block + wmc + (1|par-
ticipant), and against a null model, containing only a con-
stant term (the intercept): dv ~ 1 + (1|participant). Fixed-
effects structures were compared using the anova function 
and on the basis of the Akaike information criterion (AIC) 
decreasing with increased model fit. For additional informa-
tion about the model selection, see Supplementary Material 
(AIC values across the models are presented in Table S2).2

Below, we report the results from different phases of 
performance: learning (Blocks 1–4), interference (Block 4 
vs. Block 5), recovery (Block 5 vs. Block 6), and baseline 
(Block 1 vs. Block 5).3

In addition, we used the rle (run length encoding) func-
tion from the base package (R Core Team, 2018) to com-
pute the lengths of consecutive correct anticipations. This 
index represents a measure of chunking or grouping sizes 
of consecutive correct anticipations across the entire SRT 
task. The size of chunks (i.e., consecutive correct anticipa-
tions; the outcome) was regressed on WM capacity (i.e., 
the predictor), using generalized linear regression function 
(glm) from the car package (i.e., consecutive_correct_an

ticipations ~ wmc).

Anticipations

In our first set of analyses, we investigated the relation 
between WM capacity and anticipations (as indicators of 
learning processes) in the SRT task.

Learning (Blocks 1–4)

There was an interaction between Block and WM capac-
ity, such that predicted probabilities of anticipations 
changed for various combinations of Block and WM capac-
ity: χ2 (3) = 31.59, p < 0.001 (Slopes: Block 1: b = − 0.56, 
SE = 0.19, p < 0.001; Block 2: b = − 0.41, SE = 0.19, 
p = 0.003; Block 3: b = − 0.31, SE = 0.19, p = 0.09; Block 
4: b = − 0.09, SE = 0.19, p = 0.63). Figure 2 presents the 

2 Note that including a set of additional predictors (i.e., age, gender, 
and education) did not improve the models (for more details and an 
additional control model containing a measure of executive function 
using a subset of participants, see Supplementary Material, Tables S3 
and S4).
3 Because our sample size was relatively small and the size of the 
effects of interest could not be inferred from previous research, we 
addressed the potential power and parametrization bias issues by 
conducting a corresponding set of analyses using Bayesian estima-
tion. Note that the estimates from the frequentist and Bayesian mod-
els were largely comparable. Where there are differences in statistical 
significance of the estimates, we signal them in text. Further details 
about Bayesian analyses are provided in the Supplementary Material. 
For the full model frequentist and Bayesian estimate comparisons, see 
Tables S5–S11.
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predicted values of anticipations as a function of WM capac-
ity across learning blocks.

Thus, the results of our first analysis suggest that individ-
ual differences in WM capacity could be related to implicit 
sequence learning strategies. Specifically, there was a nega-
tive relation between WM capacity and anticipations: antici-
pations decreased with increased WM span. The strength of 
this relation decreased across learning blocks, with eventual 
attenuation in Block 4.

Interference (Block 4 vs. Block 5)

There was an interaction between Block and WM capac-
ity: χ2 (1) = 13.73, p < 0.001 (Slopes: Block 4: b = − 0.11, 
SE = 0.20, p = 0.58; Block 5: b = − 0.43, SE = 0.20, p = 0.03). 
Thus, the results of the analysis revealed that WM capacity 
affected implicit sequence learning strategies. Specifically, 
there was no effect of WM capacity in the last learning block 
(Block 4). However, when another sequence was introduced 
in the interference block (Block 5), there was a negative 
relation between WM capacity and anticipations, similar to 
the starting blocks of the learning phase (Blocks 1 and 2). 
Again, increased WM capacity predicted fewer anticipations.

Recovery (Block 5 vs. Block 6)

There was an interaction between Block and WM capac-
ity: χ2 (1) = 9.65, p = 0.002 (Slopes: Block 5: b = − 0.40, 
SE = 0.18, p = 0.03; Block 6: b = − 0.14, SE = 0.18, p = 0.44). 
While increased WM capacity was related to a decrease in 
anticipations when another sequence was introduced (Block 
5), there was no effect of WM capacity on anticipations in 
Block 6, when the original sequence was reintroduced. The 
Block 6 slope resembled the slopes from the late stages of 
the learning phase (Block 4 in particular).

Baseline (Block 1 vs. Block 5)

There was a significant effect of Block on anticipations: 
χ2 (1) = 19.63, p < 0.001, such that anticipations increased 
in the interference block compared to the baseline. More-
over, there was a significant effect of WM capacity: χ2 
(1) = 7.81, p = 0.005, such that anticipations decreased 
with increased WM capacity. There was no interaction. 
Consistent with the results from the other phases of the 
SRT task, there was a negative relation between WM 
capacity and anticipations.

The analyses demonstrated that anticipatory behavior 
changed dynamically across the SRT task as a function of 
WM capacity. In addition, WM capacity was negatively 
related to the overall number of anticipations across the 
task: the greater the WM capacity, the less probable the 
anticipation.

Correct anticipations

Next, we investigated the relation between WM capacity and 
correct anticipations (or learning outcomes).

Learning (Blocks 1–4)

Analysis demonstrated that correct anticipations increased 
across learning blocks: χ2 (3) = 17.94, p < 0.001 (see Fig. 3). 
There was no effect of WM capacity: χ2 (1) = 0.29, p = 0.587, 
and no interaction. These results indicate that, in contrast to 
the frequency of anticipations, correct anticipations were not 
affected by individual differences in WM capacity. On the 
other hand, correct anticipations increased gradually over 
the learning blocks.

Fig. 2  Interaction plot of predicted probabilities of anticipations cal-
culated for working memory capacity levels across individual learn-
ing blocks (WMC working memory capacity, z score)

Fig. 3  Predicted probabilities of correct anticipations across learning 
blocks
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Interference (Block 4 vs. Block 5)

There was a significant effect of Block on correct antici-
pations: χ2 (1) = 6.27, p = 0.012, such that predicted prob-
abilities of correct anticipations decreased in the interference 
block. There was no effect of WM capacity: χ2 (1) = 0.53, 
p = 0.468, and no interaction. Thus, anticipation accuracy 
was not affected by WM capacity. Overall, participants’ 
anticipations were more accurate in the last learning block, 
compared to the interference block, where another sequence 
was introduced.

Recovery (Block 5 vs. Block 6)

There was no effect of Block or WM capacity, and no inter-
action.4 Thus, similar to previous phases of the SRT task, 
WM capacity did not affect anticipation accuracy.

Baseline (Block 1 vs. Block 5)

None of the models outperformed the null model. Consistent 
with the results from the other stages of the SRT task, WM 
capacity did not affect anticipation accuracy.

Taking all results together, participants clearly demon-
strated learning in the SRT task, as indexed by an increase 
in anticipation accuracy over the four learning blocks, fol-
lowed by reduced accuracy in the interference block. These 
results are consistent with previous studies (Marcus et al., 
2006; Vakil et al., 2017). Critically, changes in anticipation 
accuracy during the SRT task were not related to individual 
differences in WM capacity.

Correlation analysis: WM capacity and errors

The results of our previous analyses demonstrating a nega-
tive relation between WM capacity and anticipations, in 
conjunction with the lack of a relation between WM capac-
ity and correct anticipations, suggest a negative relation 
between WM capacity and errors (or incorrect anticipa-
tions). To examine this relation, we computed the bivariate 
correlation between the overall number of errors and WM 
capacity. There was a negative correlation between the two 
measures, r(33) = − 0.453, p = 0.006. The partial correla-
tion coefficient between the two measures, controlling for 
age, gender, and education, was comparable in magnitude, 

r(30) = − 0.451, p = 0.010. Thus, the number of errors 
decreased with increased WM capacity.

WM capacity and the number of consecutive correct 
anticipations

In our final analysis, we investigated the relation between 
WM capacity and the number of consecutive correct antici-
pations (i.e., grouping sizes). The latter measure repre-
sents the size of chunks of correct anticipations across the 
SRT task. Here, we considered the chunks that contained 
at least two consecutive correct anticipations (M = 2.50, 
SD = 1.03). The number of consecutive correct anticipations 
increased with increased WM capacity, b = 0.20 [0.08, 0.32], 
SE = 0.06, p < 0.001.

The finding that the grouping sizes (or chunks) of con-
secutive correct anticipations were related to WM capacity 
represents a strong indication that WM capacity imposes an 
upper bound of items considered during the SRT task.

Additional experimental control: explicit sequence 
awareness

Out of the participants who filled out the questionnaire 
(n = 30) to assess awareness of the sequence, 31% (n = 11) 
reported that they noticed something special about the 
experiment and 49% (n = 17) reported that they noticed a 
pattern, while 23% (n = 8) indicated that they could recall 
a pattern. Those participants who indicated that they could 
recall a pattern (n = 8) were asked to generate the sequence; 
they produced correct strings ranging from 2 to 7 (M = 3.10, 
SD = 1.45). These results suggest that although most par-
ticipants reported that they detected some regularities in 
the task, few were able to reproduce any chunks from the 
sequence.

Discussion

The current study investigated the mechanisms underlying 
implicit learning as measured by a deterministic oculomotor 
SRT task. We used different anticipation measures as indica-
tors of learning processes and investigated how these meas-
ures are affected by individual differences in WM capacity. 
Our results suggest that the two systems interact in intrigu-
ing ways. Specifically, WM capacity influences learning 
strategies (as measured by the overall number of anticipa-
tions), but not learning outcomes (as measured by correct 
anticipations). More specifically, our results demonstrate 
that WM capacity is negatively related to the overall num-
ber of errors and positively related to the grouping sizes (or 
chunks) of consecutive correct anticipations. We will discuss 
each of our findings in turn, bearing in mind the limitations 

4 In the no-interaction model, there was a marginally significant 
effect of Block, χ2 (1) = 3.80, p = 0.051, such that correct anticipations 
increased in Block 6. Using Bayesian approach, the effect of Block 
was statistically significant (as indicated by the 95% credible inter-
val), estimate = 0.23, credible interval  = [0.001, 0.45].
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associated with any correlational approach in establishing 
a causal link between implicit sequence learning and the 
underlying cognitive processes.

Anticipation measures and WM capacity

Our results demonstrate a negative relation between WM 
capacity and the overall number of anticipations in the SRT 
task. Thus, WM capacity seems to influence learning pro-
cesses by biasing individuals to engage in a more proac-
tive (i.e., more anticipations—lower spans) or reactive (i.e., 
fewer anticipations—higher spans) mode during the SRT 
task. Moreover, the negative relation between WM capacity 
and anticipations varied in strength across different phases 
of the SRT task. Specifically, in the learning phase, the effect 
of WM on anticipations decreased gradually across the four 
learning blocks, followed by a more pronounced effect in 
the interference block (Block 5) and another decrease in the 
recovery block (Block 6). Thus, the results of the current 
study suggest that implicit sequence learning relies on antici-
patory processes. Moreover, we demonstrated that learners’ 
anticipatory behavior in the SRT task changed as a com-
bination of individual differences in WM capacity and the 
environmental cues.

At this point, the results showing a negative relation 
between the predicted probabilities of anticipations and WM 
capacity could be interpreted from the competition theory 
point of view (Galea, Albert, Ditye, & Miall, 2010; Nemeth 
et al., 2013): weakening the reliance on executive processes 
(underlying attention-based learning) could have heightened 
the sensitivity to statistical probabilities (critical for proce-
dural learning). Thus, by this account, lower spans could 
outperform higher spans in this task.

On the other hand, consistent with a number of previ-
ous studies (e.g., Caljouw et al., 2016; Frensch & Miner, 
1994; Guzmán, 2018; Kaufman et al., 2010; Unsworth & 
Engle, 2005), our results indicated that there was no relation 
between implicit sequence learning outcomes (in this case 
indexed by correct anticipations) and WM capacity. Thus, 
higher WM capacity did not lead to more overall accurate 
anticipations. Previously, these findings were interpreted to 
indicate the relative automaticity of implicit learning (Kauf-
man et al., 2010; Unsworth & Engle, 2005). Results from the 
explicit awareness questionnaire in the current study further 
support the notion that the majority of participants lacked 
awareness about the sequentiality of the stimuli presentation 
in the SRT task.

Finally, although the results of the current study indicated 
no relation between WM capacity and learning outcomes 
(indexed by correct anticipations)—a finding in line with 
previous research (e.g., Caljouw et al., 2016; Frensch & 
Miner, 1994; Guzmán, 2018; Kaufman et al., 2010; Uns-
worth & Engle, 2005), we demonstrated that higher WM 

capacity was related to larger groupings (or chunks) of 
correct anticipations. While previous studies have consist-
ently reported a positive correlation between WM capacity 
and chunking during explicit sequence learning (Bo et al., 
2009; Kennerley et al., 2004; Sakai et al., 2003; Shea et al., 
2006), our study is the first to demonstrate the existence of 
this relation in implicit sequence learning. In previous stud-
ies where sequence learning occurred explicitly (i.e., with 
conscious intent), the relation between WM and chunking 
was interpreted to indicate the WM-dependent performance 
strategies during learning (Bo et al., 2009; Wymbs, Bassett, 
Mucha, Porter, & Grafton, 2012). Thus, the nuanced qualita-
tive differences in implicit learning outcomes reported in the 
current study would represent another indication of different 
efficient learning strategies in lower and higher WM spans 
during implicit learning. This is further supported by the 
negative relation between WM capacity and errors.

The results of the current study are theoretically impor-
tant, because they demonstrate that individual differences 
in WM capacity could account for differences in learning 
processes, and ultimately change individuals’ anticipatory 
behavior, even when learning is implicit, without intention 
and awareness. Specifically, the negative relation between 
WM capacity and anticipations, together with the demon-
strated positive relation between WM capacity and the num-
ber of consecutive correct anticipations, indicates that WM 
capacity imposes an upper bound on the number of sequen-
tial items that can be considered during the task. Anticipat-
ing at a higher rate in lower spans could be conceptualized 
as “starting small”, a notion that was the focus of several 
studies across relatively independent domains (cf., Newport 
1990; Elman, 1993; Medimorec, Mander, & Risko, 2018). 
“Starting small” reveals economies in learning by leverag-
ing an individual’s processing capacity against the size of 
their ideal learning unit or chunk. Furthermore, and in the 
same vein, higher anticipations can be argued to represent 
a straightforward strategy to reduce memory load with the 
aim of optimizing learning. On the other hand, higher spans 
are less constrained, and do not necessarily need to reduce 
the information load as much as lower spans. This allows 
higher spans to chunk probable patterns into larger units. 
Hence, the results of the current study indicate that individu-
als’ anticipatory reactions to environmental cues change as a 
function of WM capacity. The results also suggest that WM 
processes, such as context-relevant updating of information 
and the formation of anticipations, can take place implicitly.

Implications for future research

The results of the current study clearly support the notion 
that individual differences in WM capacity are, at least 
partly, involved in implicit sequence learning. Deeper 
insights into the relations between different aspects of 
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WM (i.e., storage and processing) and implicit sequence 
learning (using more complex probabilistic sequences), 
but also between different executive functions (e.g., rela-
tional integration, imagery, attention, updating, switching 
and inhibition; Janacsek & Nemeth, 2015) and implicit 
sequence learning are much needed. Given increased inter-
est in examining the links between language cognition 
and implicit learning (Arciuli, & Simpson, 2012; Kidd, 
2012; Daltrozzo et al., 2017; Kidd & Arciuli, 2016; Milin, 
Divjak, & Baayen, 2017; Misyak & Christiansen, 2012; 
Shafto, Conway, Field, & Houston, 2012), determining 
how language learning and processing are supported by 
implicit learning remain important questions.

In addition, recent research across a number of domains 
has demonstrated that individuals use different strategies, 
such as explorative and exploitative actions when learning 
and adapting to environmental (conditional) probabilities 
(Dale et al., 2012; Fischer & Holt, 2017, Milin et al., 2017; 
Stafford & Dewar, 2014). Further investigating whether 
anticipatory behavior during implicit learning demon-
strates similar explorative/exploitative dynamics should 
reveal hitherto un(der)explored dimensions of learning 
and advance our understanding of how individuals adapt 
to environmental statistics, for example during language 
learning.

Conclusion

Our results provide support for the existence of general 
cognitive strategies that are employed spontaneously dur-
ing implicit sequence learning. Critically, such strategies 
seem to be efficient in detecting regularities in the envi-
ronment and are modulated by individual differences in 
WM capacity. Specifically, WM capacity affects learn-
ing strategies, as demonstrated by the negative relation 
between WM capacity and the rate of anticipation as well 
as between WM capacity and error rate, and the positive 
relation between WM capacity and the grouping size (or 
chunk size) of consecutive correct anticipations. On the 
other hand, WM capacity does not affect learning, as 
measured by the overall number of accurate anticipations.
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