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Abstract
In categorization tasks, two memory systems may be involved in the learning of categories: one explicit and rule-based 
system and another implicit and procedure-based system. Learning of rule-based categories relies on some form of explicit 
reasoning, whereas procedural memory underlies information–integration category-learning tasks, in which performance 
is maximized only if information of two (or more) dimensions is integrated. The present study aimed at investigating the 
role of how feedback is administered, whether differential or non-differential, in procedural learning. An information–inte-
gration category-learning task was designed, where the to-be-categorized stimuli differed in two dimensions. Participants 
were randomly assigned to two groups: one group received the reinforcers for correct categorizations differentially, one 
for each category (the differential outcomes procedure, DOP), and the other group received the reinforcers randomly (the 
non-differential outcomes procedure, NOP). The participants of the DOP group showed better procedural learning in the 
categorization task, compared to the NOP group. Moreover, the analysis of learning strategies revealed that more partici-
pants developed more optimal strategies in the DOP group than in the NOP group. These results extend the benefits of the 
differential outcomes-based feedback to non-declarative memory tasks and help better understand the role of feedback in 
procedural learning.

Introduction

Categorization refers to the process by which people assign 
different responses to different groups of stimuli. This pro-
cess reduces the complexity that characterizes our environ-
ment and is governed by the evolutionary history of our 
organism, the experience resulting from our relationship 
with the environment, and the consequences of the deci-
sions we make at each moment ((Maddox & Ashby, 2004; 
Maddox, Ashby, & Bohil, 2003).

Several studies have demonstrated the involvement of 
multiple memory systems in learning categories (for a 
review, see Ashby & O’Brien, 2005). One influential model 
that integrates those memory systems with their neuro-
anatomic correlates is the competition between verbal and 
implicit systems (COVIS) model (Ashby, Alfonso-Reese, & 

Waldron, 1998; Cantwell, Crossley, & Ashby, 2015). The 
model proposes the existence of two systems involved in 
category learning: one explicit and rule-based system and 
another implicit and procedure-based system. Evidence for 
the existence of those two systems comes from the dissocia-
tions found in behavioral tasks of perceptual categorization 
(Maddox & Ashby, 2004).

Rule-based category-learning tasks (RB) are based on 
some explicit reasoning that treats each stimulus dimension 
separately, as it is illustrated in Fig. 1b. The stimuli depicted 
are Gabor patches, which are defined by two dimensions: 
orientation and spatial frequency (width of the bars, see 
Fig. 1a). The rule that a participant must follow to achieve 
high performance in this task can be described verbally in 
a simple way, since only one of the two dimensions is rel-
evant for categorization. Studies with functional magnetic 
resonance imaging (fMRI) suggest that this memory system, 
that recruits working memory and executive attention, is 
mediated by fronto-striatal circuits (anterior cingulate, pre-
frontal cortex, and the head of the caudate nucleus; Elliott 
& Dolan, 1998). On the other hand, procedural learning is 
involved in information–integration category-learning tasks 
(II), in which performance is maximized only if information 
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of two (or more) dimensions is integrated at some predeci-
sional stage (Ashby & Gott, 1988). The rule by which par-
ticipants classify these stimuli is at least rather difficult to 
describe verbally, because it requires integrating information 
from both dimensions (see Fig. 1c). Performance in II tasks 
appears to be mediated by the striatum, and more specifi-
cally by the tail of the caudate nucleus (Ashby & Ell, 2001; 

Ashby & Ennis, 2006; Filoteo, Maddox, Salmon, & Song, 
2005).

An additional source of dissociation between the two 
types of category-learning tasks refers to the role of feed-
back. In contrast to RB tasks, II tasks have been found to 
be highly sensitive to how feedback is administered (Dunn, 
Newell, & Kalish, 2012; Maddox, Love, Glass, & Filoteo, 
2008). For instance, the absence or delay of the feedback 
hinders performance just in II tasks. However, despite the 
existence of extensive literature illustrating the effects of 
feedback on II tasks, no study has examined whether per-
formance in those tasks can be modulated by administer-
ing feedback in either a category specific differential or a 
category non-specific non-differential way. In the present 
study, we aimed at extending the role of differential feedback 
in II category-learning tasks, where procedural memory is 
involved.

When organisms deal with situations that involve dis-
criminative learning, the way feedback (or reinforcement) 
is administrated has great impact on their performance. For 
instance, when in a discriminative learning task, each type 
of correct choice is followed by a unique outcome (rein-
forcer), discriminative learning is better compared to when 
either of each choice is followed by a common outcome, or if 
the alternative outcomes are administrated in a random way 
(Trapold, 1970). In the animal learning field, the association 
of a response with a unique outcome has been termed the dif-
ferential outcomes procedure (DOP), and learning with the 
DOP has been frequently compared with learning obtained 
when outcomes are administered in a random way (the non-
differential outcomes procedure, NOP). An increase in the 
rate of acquisition and improvement of the final level of per-
formance in discriminative learning tasks are the hallmark of 
the DOP. Neuroanatomy also dissociates these two ways of 
discriminative learning, at least in animals. Whereas retro-
spective memory, a cholinergic-dependent memory system 
that involves the hippocampus, underlies performance under 
the NOP, prospective memory, a glutamatergic-dependent 
memory system that involves the basolateral amygdala and 
other fronto-parietal areas, underlies performance under the 
DOP (Savage, Buzzetti, & Ramirez, 2004; Savage & Ramos, 
2009).

In humans, the DOP has demonstrated its usefulness 
beyond discriminative learning, mainly in the improve-
ment of recognition memory in normal population (for a 
review, see López-Crespo & Estévez, 2013), and also in 
patients, whose pathology affects explicit memory such as 
Korsakoff syndrome (Hochhalter, Sweeney, Bakke, Holub, 
& Overmier, 2001), or Alzheimer’s disease ((Plaza, López-
Crespo, Antúnez, Fuentes, & Estévez, 2012; Vivas et al., 
2018). Despite the benefits of the DOP having been amply 
documented in relation to different memory systems and 
with different populations, to the best of our knowledge, 

Fig. 1   Example of Gabor patch (a), and spatial distributions that 
might be used in a rule-based category-learning experiment (b), and 
in an information-integration category-learning experiment (c)
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we lack research that has addressed the effect of the DOP 
on procedural memory in humans. The aim of the present 
study was to investigate whether the benefits of the DOP 
can be extended to II tasks that have been thought to rely 
on non-declarative (procedural) memory system in humans.

Method

Participants

One hundred and eight undergraduate students from 
the University of Murcia (87 women and 21 men; M 
age = 21.3  years; SD age = 4.8) participated for course 
credit. All participants reported normal or corrected-to-
normal vision. They were randomly assigned to one of the 
two outcome conditions, the differential outcomes condi-
tion (n = 54) and the non-differential outcomes condition 
(n = 54).

Materials

Stimuli were sinusoidal gratings with a Gaussian envelope 
(Gabor patches) defined by their spatial frequency values 
and orientation. Orientation and frequency values for stimuli 
belonging to categories A and B were sampled from two 
bivariate normal distributions with means μ = (40, 60) and 
μ = (60, 40), using the same covariance matrix for both 
distributions (covariance = 160; both variances = 170). We 
began generating random samples from each distribution. 
After that, exemplars that differed from the mean by more 
than three Mahalanobis distance units were considered 
outliers and discarded. By this procedure, we obtained two 
distributions of 122 items. Then, values of orientation and 
frequency, which were expressed in a normalized scale from 
0 to 100, were linearly transformed into actual values, so 
that the values of 0 and 100 corresponded to 20 and 140 
degrees clockwise in the orientation dimension (where 0 
degrees = vertical orientation) and 3.5 and 9.5 cycles every 
100 pixels in the frequency dimension. Gabor patches were 
192 × 192 pixels in size, main colors were black and white, 
and background color was silver gray. Two Gabor patches 
from each distribution were randomly selected to be used in 
the practice trials.

We used two different positive reinforcers (see Fig. 2), 
which consisted of a thumb-up symbol within a green cir-
cle with the expression “¡Correcto!” (“Correct!”) written 
underneath in green letters; or a yellow smile icon holding a 
placard reading “¡Muy bien!” (“Alright!”) in yellow letters.

A computer program generated by E-Prime (Schneider, 
Eschman, & Zuccolotto, 2002) controlled the experiment. 
Stimuli were presented on a TFT monitor and responses 

were collected via the keyboard. Screen background color 
was silver gray.

Procedure

The experiment consisted of ten blocks of 24 trials. The 
order of presentation of stimuli of the two categories was 
randomly determined with the restriction that six stimuli 
from each category were presented every 12 trials. As 
depicted in Fig. 2, each trial began with the presentation 
of a fixation point (a plus sign) in the center of the com-
puter screen for 500 ms. Then, a Gabor patch replaced the 
fixation point and participants classified the stimulus into 
category A or B by pressing the Z or M key on the com-
puter keyboard, respectively. Gabor stimuli remained visible 
until a response was made or a maximum of 3000 ms had 
elapsed. Feedback appeared 250 ms after the participants’ 
response and remained visible for 500 ms. Correct responses 
in the differential outcomes condition were consistently fol-
lowed by one of the two positive reinforcers according to the 
category (the assignment of reinforcers to categories was 
counterbalanced across participants). In the non-differential 
outcomes condition, reinforcers were chosen randomly with 
the restriction that the two reinforcers were presented twice 
every four correct categorizations of stimuli belonging to 
each category. Incorrect responses were followed by the 
message “Error!” in red letters, whereas no response within 
the 3000 ms response window was followed by the mes-
sage “No response” in black font. Finally, the screen went 
blank for 100 ms, and a new trial began. Participants com-
pleted four practice trials before the experimental trials (the 
four stimuli used in these practice trials were the same for 
all the participants). A brief rest period was provided after 
every two blocks. After completing the computer task, the 

Fig. 2   Schematic representation of the experimental procedure
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participants were asked to put down in writing the rule they 
had been following to categorize the stimuli.

Results

Accuracy‑based analysis

We first used a Bayesian multilevel approach to estimate 
the probability of correct categorization as a function of 
the outcomes condition and across the ten trial blocks (for 
a friendly introduction to Bayesian analysis, including the 
multilevel approach, see Kruschke, 2015; McElreath, 2016). 
We employed Stan 2.17.0, a programming language that 
implements Markov chain Monte Carlo algorithms (Car-
penter et al., 2017), to fit a multilevel binomial model. This 
model included weakly informative regularizing priors and 
varying intercepts for both participants and stimuli. Thanks 
to these varying intercepts, we simultaneously modelled 
participants variability (the fact that some participants were 
better than others in the categorization task) and item vari-
ability (the fact that some stimuli were more easily catego-
rizable than others). The possibility of considering these 
two sources of variation simultaneously is one of the main 
benefits of the multilevel approach (Rouder & Lu, 2005). 
The results we are about to describe are based on estimates 
derived from 12,000 samples, which were obtained after 
12,000 warm-up samples. We performed the analysis in R 
3.5.1 (R Core Team, 2017), which communicated with Stan 
via the Rethinking 1.88 package (McElreath, 2016). Tri-
als with no response within the 3000 ms response window 
(0.6%) were discarded before fitting the model. Convergence 
was assessed by inspection of the trace plots, the R-hat val-
ues, and the number of effective samples (no convergence 
problems were detected, with all R-hats = 1).

After fitting the model, we obtained posterior distribu-
tions describing the plausibility of the different param-
eter values, according to the model and the observed data. 
From these distributions, and after back-transformed log-
odds into probabilities, we estimated the posterior distri-
bution of the probability of correct categorization across 
outcome conditions and trial blocks. Figure 3 depicts the 
mean of these estimations with 95% highest posterior den-
sity intervals (HPDI). These HPDIs can be directly inter-
preted as the intervals that include the most credible values 
of the probability of correct categorization (this possibility 
of direct interpretation of credible intervals is a promi-
nent advantage of the Bayesian estimation approach). As 
shown in Fig. 3, the model predicted greater probability of 
correct categorization in the differential outcomes condi-
tion, especially for trial blocks 3, 5, 8, and 10, for which 
the corresponding 95% HPDIs did not overlap. To further 
determine if the probability of correct categorization in 

the differential outcomes condition was credibly greater 
than that in the non-differential condition, we examined 
the posterior distribution of the difference between these 
conditions across trial blocks. Table 1 shows the model 
estimates for these differences, along with the mean pro-
portion of correct categorizations in each group. 

To further characterize the results, mean proportions 
of correct categorizations (see Table 1) were submitted 
to a 2 × 10 mixed ANOVA with outcomes condition (dif-
ferential and non-differential) as the between-participants 
factor and block (1–10) as the within-participants fac-
tor. There was a main effect of outcomes condition, F(1, 
106) = 15.457, p < 0.001, showing that the proportion of 
correct categorization was higher in the differential out-
comes condition than in the non-differential outcomes 
condition. There was also a main effect of block, F(9, 
954) = 9.873, p < 0.001, which, according to post hoc 
tests with Bonferroni correction, was mainly due to lower 
proportion of correct categorizations in the first block 
compared to all the subsequent blocks (all p < 0.005). 
The interaction between outcomes condition and block 
did not reach statistical significance, F(9, 954) = 1.032, 
p = 0.412. Despite the non-significant interaction, a rather 
usual result is that the differences between the two out-
comes conditions are not significant when both condi-
tions are compared at the starting point of learning (first 
block/first trials) (e.g., see Estévez, Fuentes, Marí-Beffa, 
González, & Alvarez, 2001; Martínez, Flores, González-
Salinas, Fuentes, & Estévez, 2013). In line with these pre-
vious findings, we did not observe any significant effect of 
outcomes condition in block 1, t(106) = 1.433, p = 0.155.

Fig. 3   Model estimates (mean of the posterior distribution with 95% 
HPDIs) of the probability of correct categorization as a function of 
outcomes condition and trial block
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Model‑based analysis

The results of the accuracy-based analyses showed that 
participants in the differential outcomes condition had a 
significantly better performance than those in the non-dif-
ferential outcomes condition, and this improvement was 
more apparent as the participants had more practice with 
the task. However, it is also important to determine the 
decision strategies adopted by the participants, particu-
larly whether those participants performing the task in the 
DOP condition were using optimal strategies in greater 
proportion than participants performing the task in the 
NOP condition. Following the Maddox and Ashby (1993) 
procedures, we determined the decision strategies adopted 
by the participants in the last two blocks. Three differ-
ent types of decision bound models (DBM) were tested, 
fitting them to the responses of each participant. DBM 
assume that participants partition the perceptual space into 
response regions. The first model assumed an explicit one-
dimensional rule-learning strategy (either orientation or 
bar width) and included two free parameters (a decision 
criterion on the relevant perceptual dimension and percep-
tual noise variance). The second model assumed a proce-
dural learning strategy and included three free parameters 
(slope and intercept of the decision bound, and perceptual 
noise variance). The third model assumed random guess-
ing strategy. The latter included one version that assumed 
that participants responded randomly without response 
bias (no free parameters) and another version that assumed 
that participants responded randomly but biased toward 
one response (with one free parameter).

All parameters were estimated using the maximum likeli-
hood method and the statistic used for the model selection 
was the Akaike information criterion (AIC) (Akaike, 1974). 
To determine which model adjusted better to participants’ 
responses, the AIC statistic was computed for each model 
and the one that got the smallest AIC value was considered 
the winning model (see Table 2).

In a second step of the model-based analysis, we com-
pared the best models fit with the guessing models fit for 
each participant, to determinate how well every model 
fitted the data. Note that the AIC values determine which 
bound model provides the best account of the partici-
pants’ responses, but it does not tell us whether the fit 
was good or bad. Following a Bayesian logic, if the prior 
probability that the DBM model (MDBM) is correct is 
equal to the prior probability that the random guessing 
model (MRG) is correct, then under certain technical con-
ditions (e.g., Raftery, 1995), it can be shown that

where P (MDBM|Data) is the probability that the DBM is cor-
rect, assuming that either the DBM or the guessing model is 
correct. Thus, we computed those probabilities for each par-
ticipant, where AICDBM was the AIC score of the best-fitting 
DBM. The mean value of P(MDBM|Data) was 0.97 for par-
ticipants in DOP condition and 0.53 for participants in NOP 
condition, t(106) = 21.57, p < 0.001. A Bayesian independent 
samples t test (Rouder, Speckman, Sun, Morey, & Iverson, 
2009) showed a Bayes factor BF10 = 8.603 × 1036, confirming 
that participants in the DOP group developed more optimal 
learning strategies than participants in the NOP group.

P
(
MDBM|Data

)
≈

1

1 + exp
[
−

1

2

(
AICRG − AICDBM

)] ,

Table 1   Observed proportion 
of correct categorization and 
estimated differences between 
outcomes conditions (mean of 
the posterior distribution and 
95% HPDI)

Block NOP group DOP group Estimated difference

M DT M DT M 95% HPDI

1 0.561 0.131 0.597 0.131 0.029 [− 0.022, 0.084]
2 0.598 0.143 0.666 0.115 0.061 [0.013, 0.113]
3 0.600 0.141 0.681 0.130 0.075 [0.027, 0.126]
4 0.627 0.165 0.675 0.130 0.041 [− 0.008, 0.093]
5 0.593 0.155 0.688 0.092 0.089 [0.041, 0.139]
6 0.627 0.136 0.692 0.112 0.059 [0.010, 0.108]
7 0.659 0.140 0.700 0.119 0.038 [− 0.008, 0.085]
8 0.628 0.127 0.710 0.114 0.076 [0.029, 0.123]
9 0.638 0.143 0.705 0.105 0.060 [0.013, 0.110]
10 0.638 0.142 0.721 0.095 0.077 [0.029, 0.123]

Table 2   Number of participants, whose responses best fit in each of 
the three different types of DBM

Group II Strategy One-dimensional 
rule

Guessing

DOP 21 32 1
NOP 1 2 51
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Participants’ explanation‑based analysis

To check whether the participants were able to verbalize the 
rule they had followed to classify the stimuli, participants’ 
written descriptions were analyzed by two researchers, who 
knew the categorization rule, but were blind regarding the 
experimental condition of each participant. They agreed 
(Cohen’s kappa = 1) that no participant had been able to 
guess the true classification rule.

Discussion

In category learning that is based on procedural memory, 
categorization requires participants to integrate information 
from two or more dimensions. Our results show that perfor-
mance is improved if differential outcomes-based feedback 
is administered to participants after correct responses. It is 
important to note that DOP benefits are mainly expected 
under conditions where learning is more difficult (Estévez 
et al., 2001, 2007). Thus, an II task, rather than a RB task, 
where the rule to classify the stimuli into categories could 
not be described by the participants, is deemed to be the 
most appropriate to observe DOP modulation on category-
learning performance. Although performance was above 
chance in both outcomes conditions (see Fig. 3), likely due 
to the rather large number of trials that composed each block 
(24 trials) in comparison with the reduced number of trials 
per block in the previous studies (e.g., four trials in Mar-
tínez et al., 2013), both the rate of acquisition, as it is shown 
mainly in the two first blocks of trials, and the final level of 
performance was greater when the DOP was implemented 
compared to when random feedback was administered (the 
NOP) in the II task used here. Therefore, we successfully 
extended the benefits of the DOP to procedural learning. 
Taking the COVIS model as a framework, further research 
may extend the relevance of the DOP in the context of cat-
egory learning by comparing its effects on both rule- and 
procedure-based tasks. As procedural learning requires 
immediate feedback (Ashby & O’Brien, 2005), the DOP 
might assist performance more in II tasks than in RB tasks 
or modulate the time window that makes feedback effective.

The results of the present study can be accounted for by 
the expectancy theory (Trapold & Overmier, 1972). With the 
DOP, participants activate expectancies about the upcoming 
outcomes because of the unique stimulus–outcome associa-
tion. Such expectancies would have stimulus-like proper-
ties that exert control over the choice behavior (Holden & 
Overmier, 2014), and can be formed implicitly without par-
ticipants intention and/or regardless of awareness of either 
the sample stimuli or their associated outcomes (Carmona, 
Marí-Beffa, & Estévez, 2019). Expectancies can have the 
form of a kind of prospective memory “representation” 

elicited by the particular stimuli that form part of each cat-
egory, and such representation would be less affected by 
working memory demands. Prospective memory has been 
thought of as a glutamatergic-dependent memory system 
that involves the basolateral amygdala and other fronto-pari-
etal areas (Mok, Thomas, Lungu, & Overmier, 2009; Savage 
et al., 2004; Savage & Ramos, 2009). With the NOP, as the 
associations between the stimuli and the outcomes are not 
unique, the sample stimuli cannot be used to predict what 
outcome will follow the correct choice, and therefore out-
comes expectancies cannot guide choice behavior. Perfor-
mance under the NOP is based on a cholinergic-dependent 
retrospective memory system, which mainly involves the 
hippocampus (Savage et al., 2004).

Although the specific neurocircuitry involved in the ben-
efits attributed to the DOP in our II task is beyond the scope 
of the present study, the connections between the prefrontal 
cortex, mainly involved in creating a prospective representa-
tion of the outcomes (Mok et al., 2009), and the striatum, 
mainly involved in II tasks (Ashby & Ell, 2001; Ashby & 
Ennis, 2006; Filoteo et al., 2005), may well account for the 
present results. For instance, Filoteo et al., (2005) observed 
that patients with Parkinson’s disease show poor perfor-
mance in II tasks. This deficit agrees with the role of basal 
ganglia in category learning (Ashby & Ennis, 2006), which 
confirms the involvement of the striatum in II tasks. A ques-
tion for future research will be to assess the involvement of 
such corticostriatal circuitry in the DOP benefits observed 
here, in an II task (see Haber, 2016, for a review regarding 
such circuitry).

One other aspect of our results concerns the decision 
strategies adopted by the participants when performing the 
last block of trials. Strategies adopted by participants under 
the DOP were more optimal than those adopted by partici-
pants under the NOP. We suggest that the DOP improved the 
participants’ ability to integrate information coming from 
both dimensions in a more effective way. The differential 
feedback might have helped participants establish stronger 
associative links between the two dimensions, fostering 
individuated tokens for each category. Individuated tokens 
could then be successfully linked to unique outcomes under 
the DOP, yielding improved learning performance compared 
with the NOP. Note that this individuated process is mainly 
expected when the rule to differentiate between the two cat-
egories cannot be made explicit by the participant, as it hap-
pens in II tasks.

Finally, we would like to highlight two potential appli-
cations of the present results. First, typically develop-
ing school-age children are expected to show a transition 
from RB learning to the use of implicit learning strategies 
(Huang-Pollock, Maddox, & Karalunas, 2011). Importantly, 
the transition is compromised in attention-deficit/hyperac-
tivity disorder (ADHD) children (Huang-Pollock, Maddox, 
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& Tam, 2014), likely due to their suboptimal functioning 
in basal ganglia and frontostrial structures, which have 
been involved in several types of implicit learning (Nigg 
& Casey, 2005), and specifically in II tasks like the one 
used here (Ashby & Ennis, 2006). Therefore, school-aged 
children diagnosed with ADHD can greatly benefit of the 
use of differential feedback (the DOP) to overcome their 
implicit learning deficits. Second, the potential of the DOP 
has been demonstrated in the previous studies with patients 
with memory complaints, as it is the case of alcohol-induced 
amnesia that characterizes Korsakoff syndrome (Hochhal-
ter et al., 2001) or Alzheimer’s disease (Plaza et al., 2012). 
Based on the present results, we suggest that patients with 
non-declarative memory impairment (e.g., Parkinson’s dis-
ease or Huntington’s chorea) could also benefit from the use 
of the DOP.
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