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Abstract
Humans have the unique ability to efficiently execute instructions that were never practiced beforehand. In this Rapid 
Instructed-Task-Learning, not-yet-executed novel rules are presumably held in procedural working-memory (WM), which 
is assumed to hold stimulus-to-response bindings. In this study, we employed a computerized-cognitive training protocol 
targeting procedural WM to test this assumption and to examine whether the ability to rapidly learn novel rules can itself be 
learned. 175 participants were randomly assigned to one of three groups: procedural WM training (involving task-switching 
and N-back elements, all with novel rules; Shahar and Meiran in PLoS One 10(3):e0119992, 2015), active-control training 
(adaptive visual-search task), and no-contact control. We examined participants’ rapid instructed-task-learning abilities before 
and after training, by administrating 55 novel choice tasks, and measuring their performance in the first two trials (where 
participants had no practice). While all participants showed shorter reaction-times in post vs. pretest, only participants in 
the procedural WM training group did not demonstrate an increased error rate at posttest. Evidence accumulation modelling 
suggested that this result stems from a reduction in decision threshold (the amount of evidence that needs to be gathered to 
reach a decision), which was more pronounced in the control groups; possibly accompanied by an increased drift-rate (the 
rate of evidence accumulation) only for the training group. Implication are discussed.

Introduction

Humans have the unique ability to efficiently follow task 
instructions, even without practice. This can be seen in many 
real-life situations, for instance in getting instructions on 
how to operate your car’s new sound system (e.g., press the 
left button to turn it on, press the upper button to adjust set-
tings, etc.). Although execution of new instructions may be 
subjectively experienced as trivial, from a theoretical stand-
point, it is not. Specifically, procedural representations, the 
building blocks of actions, have long been considered to 
form through experience, and are thought to be very dif-
ferent from the declarative representations which are used 
to communicate the instructions (Anderson, 1996; Logan, 
1988). Moreover, newly instructed tasks have been shown 
to operate automatically under some conditions (Meiran, 
Liefooghe, & De Houwer, 2017). This fact further challenges 

the procedural-declarative distinction given the widely held 
assumption that procedural but not declarative knowledge 
leads to automatic behavior. All these and other reasons 
make this topic an attractive new area of research (e.g., as 
reflected in the 27th Attention and Performance meeting, see 
De Houwer, Hughes, & Brass, 2017).

The ability to perform actions based on instruction alone 
was termed rapid instructed-task-learning (Cole, Laurent, & 
Stocco, 2013). Rapid instructed-task-learning is measured 
by asking participants to perform a series of novel choice 
reaction-time (RT) tasks, each for a small number of trials 
(Cole, Bagic, Kass, & Schneider, 2010; Cole et al., 2013). 
Since the stimulus–response rules are novel and unprac-
ticed, performance in the set of novel choice-RT tasks can-
not solely rely on long-term memory, and thus is expected 
to rely on working-memory (WM) resources (Meiran, Cole, 
& Braver, 2012; see Wilhelm & Oberauer, 2006).

It is assumed that at least on the very first execution of 
an instruction, which has no traces from past performance, 
novel rules must be held in WM, whose mechanism should 
hold novel associations between familiar elements (Cole, 
Braver, & Meiran, 2017; Meiran et al., 2012). A prominent 
WM model discussed in this literature, by Oberauer (2009), 
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assumes two components—the first and more relevant is 
a procedural subsystem for holding associations between 
stimuli and responses (e.g., press the right key when you 
see a square)—i.e., information that guides action. A similar 
mechanism is assumed to underlie a declarative subsystem 
that holds associations between stimulus elements (e.g., a 
letter and its location in the list). Whether these systems 
are separate is still debated [for supporting evidence see 
(Oberauer, Souza, Druey, & Gade, 2013; Souza, Oberauer, 
Gade, & Druey, 2012, but see Barrouillet, Corbin, Dagry, & 
Camos, 2015; Shahar, Teodorescu, Usher, Pereg, & Meiran, 
2014, Experiment 3, for evidence questioning this distinc-
tion)]. In the current research, we do not deal with this 
debate. Instead, we focus on the hypothesized involvement 
of procedural WM in rapid instructed-task-learning, using a 
cognitive training protocol that was shown to improve proce-
dural WM processing, to test whether rapid instructed-task-
learning can itself be learned.

Training procedural working memory

The robust correlation between WM updating, and fluid 
intelligence (e.g., Friedman et al., 2006) lead researchers 
to predict that improving WM would lead to improved per-
formance in fluid intelligence (Melby-Lervåg, Redick, & 

Hulme, 2016). Despite some encouraging findings (Jaeggi, 
Buschkuehl, Jonides, & Perrig, 2008; Salminen, Strobach, 
& Schubert, 2012), recent meta-analyses reported only near 
transfer effects [improvement in a training procedure leading 
to improvement in a similar experimental procedure, e.g., 
(Melby-Lervåg, Redick, & Hulme, 2016; Soveri, Antfolk, 
Karlsson, Salo, & Laine, 2017)], suggesting that the benefits 
of cognitive training might be somewhat limited. Impor-
tantly, near transfer effects are highly important on their 
own, as they are evidence for improvement in the underly-
ing processes of the tasks.

In a previous study, Shahar & Meiran (2015) introduced 
a novel procedural WM training design that combines 
task-switching and N-back elements, and showed transfer 
to procedural WM processing. In this procedural training 
task, participants performed novel tasks, comprising two 
2-choice reaction-time (RT) task-sets in short mini-blocks 
of ten trials for 19 sessions. The experimental trials included 
random switching between the two tasks and participants 
were also requested to respond according to the cue/target 
(randomly chosen) that was presented N trials beforehand, 
where N level was adapted to participants’ performance (see 
Fig. 1). Importantly, increasing N-back level in this task is 
considered to influence the procedural demands of the task, 
since the memoranda is action-related (i.e., serves to guide 

Fig. 1   Illustrations of example blocks in the procedural working-
memory training task. a, b show an example for two sets of instruc-
tions. c, d illustrate example task sequences for performing the 
instructions presented in a. In c participants need to perform the tasks 

according to the currently presented cues and targets, whereas in d 
they need to perform the tasks according to the task-cue that was pre-
sented on the previous trial
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action). Thus, this training protocol is assumed to load pro-
cedural WM as well as hierarchical control demands, given 
the need to switch between task sets (Koechlin, Basso, Pie-
trini, Panzer, & Grafman, 1999).

Shahar & Meiran’s (2015) results showed near trans-
fer to an untrained 2-choice reaction time task, suggesting 
improvement in rule retrieval relative to a no-contact control 
group. Benefits of this training procedure were reported in 
an additional study (Shahar et al., 2018), showing that error 
rates in a novel choice task were lower in the trained group 
relative to an active control group. Nonetheless, it is yet 
unknown whether benefit is also seen on the first trials of 
transfer tasks, where rapid-instructed task learning is evi-
denced. Importantly, this could only be tested using specifi-
cally designed tasks that allow measuring rapid instructed-
task-learning, which were not previously tested in training 
studies, to our knowledge.

Measuring rapid instructed‑task‑learning

Rapid instructed-task-learning paradigms all involve multi-
ple novel instructions performed in a small number of tri-
als (Cole et al., 2013; Liefooghe, Wenke, & De Houwer, 
2012). Here, we used the NEXT paradigm (Meiran, Pereg, 
Kessler, Cole, & Braver, 2015a, Fig. 2) in which partici-
pants performed a series of novel two-choice reaction time 
tasks (e.g., press left for “Y” and right for “X”). Participants 
were asked to perform each task for only two trials (GO 
phase; also termed an inducer task), in which the stimuli 
appeared in green color. In each task, prior to the GO phase, 
participants encountered a sequence of stimuli in red color 
and were requested to press a right/left response (counter-
balanced between participants and constant throughout the 
experiment) to get to the (instructions’ implementation) GO 

phase. This part of the task is called the NEXT phase (also 
termed a ‘diagnostic task’).

Rapid instructed-task learning abilities can be estimated 
using GO phase performance, and more specifically—the 
difference between the first and second GO trials (i.e., GO 
trial effect). This effect was found to stem from poorer per-
formance in first relative to subsequent GO trials (Meiran 
et al., 2015a). It is the first GO trial where performance 
is completely based on instructions since there is no prior 
experience with the task, and thus no memory traces from 
previous GO task performance (Cole et al., 2017). For that 
reason, the first GO trial is considered the purest measure of 
rapid instructed-task learning. Small GO Trial effects indi-
cate efficient rapid-instructed-task-learning. For example, it 
was found that longer GO phases comprising ten trials, that 
allow task learning via experience, resulted in a larger GO 
Trial effect as compared to the usual 2-GO-trial sequence 
(Meiran et al., 2015a).

Performance in the NEXT phase serves to measure a side 
effect of holding instructions in WM towards their execution: 
their reflexive activation in an inappropriate context. This 
effect, termed Intention-Based Reflexivity (Meiran et al., 
2012; A.K.A Automatic Effects of Instructions, Meiran 
et al., 2017) is reflected in a compatibility effect that is also 
measured in the NEXT paradigm (Meiran et al., 2015a). In 
the NEXT paradigm, compatibility relationships are formed 
between the NEXT and GO responses (e.g., if “Y” was asso-
ciated with a left GO response, but in the NEXT phase a red 
“Y” demands a right response—it is considered an incom-
patible NEXT trial. See Fig. 2). In addition, the inclusion of 
a NEXT phase adds a hierarchical control demand (Koechlin 
et al., 1999) to the paradigm as performance necessitates 
identification of the task context (here, red vs. green color, 
indicating whether this is the NEXT of the GO phase of the 

Fig. 2   Trial sequence in the NEXT paradigm. Each mini-block con-
sists of novel stimulus–response associations (for example, X and Y). 
In the instructions screen, participants are introduced with instruc-
tions towards the performance in the GO phase, where the stimuli 
appear in green color and only performed twice. Prior to the GO 

phase, a number of targets in red color require a NEXT response 
(right/left, counterbalanced between participants and constant 
throughout the experiment), which can thus be compatible (cogru-
ent) or incompatible (incongruent) with the instructed GO response
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miniblock) before the execution of the instructions. Impor-
tantly, the training procedure also includes a hierarchical 
element, given that it necessitates determining the required 
task before task execution.

A previous study tested individual differences in the 
pretest data from the current training study (Meiran, Pereg, 
Givon, Danieli, & Shahar, 2016). That study aimed to exam-
ine the involvement of WM in rapid instructed-task-learning 
and automatic effects of instructions, while also examining 
the relationship between the two later phenomena. Meiran 
et  al. (2016) showed that participants with better rapid 
instructed-task-learning performance had smaller NEXT 
compatibility effects. Although automaticity is a by-product 
of rapid instructed-task-learning, these are two partially dis-
tinct (but related; r = − 0.32, between the respective latent-
variables) phenomena.

The current study

Since the training procedure includes novel tasks, we 
recently suggested (Shahar et  al., 2018), that training 
might encourage participants to hold in mind an abstract 
task representation. These representations are assumed to 
be ‘specific-general’ representations, in the sense that they 
are constrained to the specific task procedure, but are gen-
eral to any stimulus or response that might be used in the 
context of this specific task. In choice-RT tasks, holding in 
mind abstract stimulus–response associations should allow 
participants to quickly adopt novel task rules, which will 
then facilitate performance. The existence of such abstract 
stimulus–response rules should improve rapid instructed-
task-learning, and allow better performance in GO phase 
trials in the NEXT paradigm (see Verbruggen, McLaren, 
& Chambers, 2014), suggesting that basic learning mecha-
nisms enable abstract representations’ development). Train-
ing-related improvement in rapid instructed-task-learning 
would suggest both that it relies on procedural WM, and 
that it is trainable. In addition, such results would provide 
evidence for a somewhat wider than thought near-transfer 
of this training protocol, given the non-trivial differences 
between the choice RT tasks used to assess transfer in Sha-
har & Meiran’s (2015) and Shahar et al.’s (2018) works and 
the rapid instructed-task-learning paradigm (i.e., measuring 
choice performance in the very first trial(s) of a novel task). 
Most importantly, such a finding would point to a direction 
in which cognitive training can lead to wider transfer than 
seen so far. This is because improvement in rapid-instructed-
task learning constitutes an example of learning-to-learn. As 
such, it influences future learning and thus sows the seeds 
for a continuously growing impact.

Furthermore, based on Meiran et al. (2016), we pre-
dicted that if procedural WM training would improve 
rapid instructed-task-learning performance, its associated 

automaticity would correspondingly decrease. Such a 
transfer effect would be considered as “intermediate”, since 
although these phenomena are related, as well as proce-
durally measured within the same task, they were found to 
reflect two partially independent phenomena.

In the current study, participants were randomly assigned 
to procedural WM training, an active control group (who 
were trained on a visual-search task that does not tap execu-
tive functions, Redick et al., 2013, and includes a constant 
stimulus–response association, thus not hypothesized to 
facilitate abstract stimulus–response associations) and a no-
contact control group. We predicted that procedural working 
memory training would allow participants to form abstract 
stimulus–response rules, which would, in turn, enhance their 
rapid instructed-task-learning. Specifically, we predicted 
that, relative to controls, participants in the training group 
would show better performance in unpracticed and novel 
choice-RT tasks, even in the first GO trial where no prior 
overt practice had occurred.

Method

Participants

Participants were 175 students in a pre-academic prepara-
tory course for engineering at Ben-Gurion University of the 
Negev. The study was performed in two consecutive years 
(Year 1, N = 76; Year 2, N = 99). Participants took part in 
the experiment in return for monetary compensation. The 
participants reported having normal or corrected-to-normal 
vision, including intact color vision, and having no psychi-
atric or neurological disorders.

Participants were randomly assigned to two groups in the 
first year of the study: procedural WM and active control. In 
the second year, they were assigned to these groups and in 
addition to a no-contact group. Thus, the total numbers were 
N = 71 (12 females, mean age 23.32) for procedural WM 
training, N = 71 (12 females, mean-age 23.63) for active con-
trol and N = 30 (5 females, mean-age 23.81) for no-contact 
group.

Materials and procedure

Pre and posttest testing, as well as the training sessions, took 
place in a classroom located on campus. The class contained 
14 testing positions, each comprising of a desk and a desk-
top, with partitions between them. There were six 14 in. and 
eight 17 in. monitors. As a result, there has been a slight dif-
ference in stimulus size between the screens: In the NEXT 
paradigm, the stimuli were 2 × 2 cm on the 14-inch screens 
and 2.5 × 2.5 cm on the 17-inch ones. However, the assign-
ment of participants to computers was random, such that 
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there were no systematic differences between the groups. 
The stimuli consisted of English and Hebrew letters, digits, 
symbols, and mostly pictures drawn from Microsoft Power-
Point symbols pool and free Internet image databases.

Procedural overview

Due to technical issues, the training included 14 training ses-
sions during the first year, and 12 sessions during the second 
year. The training sessions were performed twice a week 
(~ 30 min each), such that the training was completed within 
8–10 weeks. During this interval, the no-contact control did 
not attend any measurements. Further details, including the 
involvement of other transfer measurements are reported in 
Shahar et al. (2018).

Transfer task1

The NEXT paradigm (Fig. 2) was similar to that used by 
Meiran et al. (2015a). Participants performed a series of 55 
experimental mini-blocks (on each pre/post measurement), 
each involving a set of novel 2-choice RT instructions that 
were only executed twice during a task-execution (GO) 
phase (in which the stimuli appear in GREEN color). The 
instructions associated each stimulus to a left/right response 
(the letter keys A/L, covered with stickers on a QWERTY 
keyboard). Just prior to task execution, a pseudo-random 
number of trials (in which the stimuli appear in RED color) 
appeared. In these NEXT trials, participants were requested 
to press a single key to advance the screen to reach the 
GO trials. The key that was used in the red targets’ NEXT 
phase was either right or left (counterbalanced between 
participants). To create ambiguity and decrease temporal 
expectations regarding the GO phase initiation, 10% of the 
mini-blocks did not involve any NEXT trials, 30% of the 
mini-blocks involved one NEXT trial, 20% involved 2 and 
20% involved 3 trials, 10% involved 4 NEXT trials and the 
remaining 10% of the mini-blocks involved 5 NEXT trials. 
The decreasing probability of NEXT trials was introduced 
to partially control the temporal predictability (see Meiran 
et al., 2015a).

Stimuli included Hebrew letters, English letters, digits, 
symbols, and pictures. Each mini-block included 2 stimuli 
randomly selected by the computer from the same category 
(e.g., two digits, two Hebrew letters).

The instructions ended with a spacebar response, but not 
before 3 s had elapsed. Each NEXT/GO trial began with a 
500 ms fixation, followed by the target stimulus presented 
until the response and followed by a 800 ms blank screen.

Training tasks

Working-Memory Training (Fig. 1)2: The task, described in 
full by Shahar et al. (2018), was similar to that used by Sha-
har & Meiran (2015). In each session, participants received 
a series of nine novel 2-choice reaction-time tasks, compris-
ing of an object classification task (requiring a response to 
the identity of the stimulus) and a spatial classification task 
(requiring a response to the location of the stimulus on the 
screen). The task-set (i.e., the novel association of stimuli 
to responses) was randomly generated on each block, from 
a pool containing 12 object pairs, 6 location pairs and 7 
response pairs, and was only performed for 10 trials. Each 
session included nine such blocks.

At the beginning of each block, participants received 
instructions regarding the new task, followed by a short 
practice phase of four trials of each task separately. Then, 
following an instructions reminder, participants moved on 
to the experimental trials, which included random switching 
between the tasks.

The level of difficulty was adaptive and was increased in 
the following block when participants made 0–1 errors, or 
decreased if they made more than 3 errors. The level of dif-
ficulty involved the information for which the participants 
were required to respond to—either to perform according to 
the cue/target (randomized on each block) that was presented 
N trials prior to the current trial. For example, if N = 2 and 
the N-back level refers to the cue, the current task (semantic/
spatial) depended on the task-cue that was presented 2 trials 
ago, and the response was made according to the currently 
presented stimulus. If the N-back level refered to the stimu-
lus, the task decision was made according to the currently 
presented task-cue, but the response was made according to 
the stimulus that was presented 2 trials ago.

Each trial sequence included a fixation point (1000 ms), 
a task cue (500 ms), a second fixation point (1000 ms) and 
the target stimulus (presented until a response was made or 
until 6000 ms had elapsed). If the participant made an error, 
a 400 ms beep was played.

Active control (visual search task): This task was 
the same as the visual-search task used by Redick et al. 
(2013), with minor changes that concerns our specific 
study. On each trial, participants were requested to iden-
tify the letter F in an array, and report whether the letter 
was facing right or left (i.e., F or  the mirror image of 
F). The task and response keys were constant throughout 
training. Difficulty level was manipulated by increasing 
the size of the array and its composition (each altered on 
every other level). The smallest array was of 4 letters, 
and it was increased until it reached 100 letters. The array 

1  Other transfer measures that were administered are reported in a 
different report (Shahar et al., 2018). 2  Paraphrasing Shahar et al. (2018)
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size increase was made by adding two additional rows and 
columns. The composition factor involved the identity of 
the distractors. First, the distractors were homogenous 
(only E’s or only T’s, which could be rotated left or right), 
and on the following level, they were heterogenous (both 
E’s and T’s, rotated in different directions). Thus, in the 
first level there were 4 letters, homogenous distractors, 
then on level 2, 4 letters with heterogenous distractors, 
and then 16 with homogenous distractors, and so on. 
The criterion for level increase was accuracy higher than 
87.5%, and accuracy lower than 75% led to level decrease. 
Since some participants managed to reach the maximal 
level of difficulty (100 letters, heterogenous distractors) 
we increased the difficulty for them by increasing the 
requested accuracy: the criterion for level increase was 
accuracy higher than 92%, and the criterion for level 
decrease was accuracy lower than 80% (the array was 
kept at 100 letters, heterogenous).

Each training session consisted of 16 blocks, with 24 
trials, each. Each trial began with a 500 ms fixation, fol-
lowed by a 500 ms letters-array, and then a 2500 ms mask 
during which the response was made.

Data analysis

Preprocessing was conducted using the “prepdat” R pack-
age (Allon & Luria, 2016). GO trials with an error, with 
Response Times (RTs) < 100  ms (anticipation errors) 
or > 4000 ms (outliers) were omitted, as well as trials 
above 3 SD of the participant’s mean RT per condition. 
We employed Bayesian analyses of variance (BANOVA) 
(using JASP 0.8.1.2; JASP Team, 2017) with the default 
priors to estimate the relative odds of H1 and H0 given 
the data (assuming equal priors for H0 and H1). We fur-
ther report BF10, the relative odds of H1 and H0.

Given our specific interest in group differences 
between pre and posttest measures, in the following sec-
tion, we focus on effects involving the interaction between 
training group and the time of measurement.

In the NEXT phase, each trial could be compatible or 
incompatible with the GO response (Fig. 2). The differ-
ence (measured in response times) between the incom-
patible and compatible trials is considered to reflect 
Automatic Effects of Instructions (i.e., NEXT compat-
ibility effect, Meiran et al., 2015a). In the GO phase, 
the difference between the first and second GO trials in 
response times and error rates serves as an indication 
of rapid instructed-task-learning (i.e., GO Trial effect, 
Meiran et al., 2015a). As has been mentioned, this effect 
was found to stem from differences in first GO trial per-
formance, and thus, the first GO trial is first analyzed 
separately.

Results

Training results

Both the WM training group and the active control group 
demonstrated improvement in their performance throughout 
the training period, as evident in a robust effect of Session 
on the average training level across groups (BF10 = 2e + 263; 
�
2
p
 = 0.56).

GO Phase (rapid instructed‑task‑learning; 
near transfer)

Given its theoretical and empirical importance, we report 
first GO trial performance separately first. The BANOVAs 
included the between-subjects independent variable Group 
(WM-Training, Active, and Silent Control), and the within-
subjects independent variable Time (pre vs. posttest). In RT, 
the results indicated a robust Time main effect 
(BF10 = 5.32e + 20; �2

p
 = 0.42) and no Group main effect 

(BF10 = 0.08; �2
p
 < 0.01). The lack of interaction between 

Group and Time (BF10 = 0.27; �2
p
 = 0.02, supporting H0), 

demonstrated that all three groups showed a similar pretest-
to-posttest response acceleration in first GO trial. In error-
rates, the results indicated a main effect for Time 
(BF10 = 62.73; �2

p
 = 0.07), that demonstrates an increase in 

error-rates from pre to posttest. While the main effect for 
Group was indecisive (BF10 = 0.53; �2

p
 = 0.03), there was 

strong support for a Group by Time interaction in the first 
GO Trial error-rates (BF10 = 20.47; �2

p
 = 0.07; Fig.  3). 

Descriptively, both control groups showed an increase in 
error-rates from pre to posttest. Exploring the simple-effects, 
we found no Time simple-effect for the training group 
(BF10 = 0.18;  �2

p
 < 0.01), a robust Time effect in the active 

control group (BF10 = 2,326.16; �2
p
 = 0.24), and an indecisive 

T i m e  e f fe c t  i n  t h e  s i l e n t  c o n t ro l  g ro u p 
(BF10 = 1.06;  �2

p
 = 0.11); with no robust difference between 

the control groups (BF10 = 0.40; �2
p
 = 0.01), or between the 

silent control group and the training group (BF10 = 0.70; 
�
2
p
 = 0.03).
At this point, we should note that finding a robust differ-

ence between the training and the active control group is 
much more meaningful than finding a difference between the 
training and silent control group, since the active and train-
ing groups are better matched in terms of random assign-
ment, activity during the training period and sample size. 
This contrasts with the silent control group which had lower 
number of participants, resulting in compromised statistical 
power that makes it difficult to find effects related to that 
group. Taken together, the results demonstrate a comparable 
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first GO trial RT improvement across the three groups. How-
ever, only the procedural WM training group did not dem-
onstrate an accompanying (at least descriptive) increase in 
error rate.

Next, we tested GO Trial effect. The BANOVAs included 
the between-subjects independent variable Group (WM-
Training, Active, and Silent Control), and the within-sub-
jects independent variables Time (pre vs. posttest) and GO 
Trial (Trial 1, Trial 2) (Fig. 3). In RTs, we found a robust GO 
Trial main effect (BF10 = 4.61e+26; �2

p
 = 0.55) indicating bet-

ter performance on the second GO trial, across groups. 
There was strong evidence for a lack of interaction between 
Group, Time, and GO Trial, demonstrating that all groups 
showed a similar pre-to-post reduction in their GO Trial 
effect (the difference between the first and second GO Trials) 
(BF10 = 0.07; �2

p
 = 0.01). The two-way interaction between 

Group and Time (above and beyond GO Trial) similarly 
indicated no difference between the groups in their GO per-
formance RT reduction from pre to posttest (BF10 = 0.19; 
�
2
p
 = 0.02).
In error-rates, the main effect for GO Trial had 

BF10 = 3.58e+39, �2
p
 = 0.59, indicating more errors in the 

first GO trial. There was no interaction between Group, Time 
and GO Trial, as in RT (BF10 = 0.08; �2

p
 = 0.02), indicating 

that the error-rates GO Trial effect was not differentially 
influenced in the training groups. However, the interaction 

between Time and Group indicated a decisive effect with 
BF10 = 46.96 ( �2

p
 = 0.09), supporting the pattern observed in 

the first GO trial analyses.
The pre-to-post increase in error rates (control groups) 

coupled with RT decrease (all groups) suggests that speed-
accuracy tradeoff took place (mostly) in the control groups, 
whereas in the WM training group, GO response accelera-
tion did not come at the cost of an increased error rate. Addi-
tionally, the increase in error rates seen in the active-control 
group could reflect regression to the mean, given the trend 
showing that the groups did not have equal error rates at 
pretest (This difference in first trial error rates between the 
groups at pretest was indecisive, however, with BF10 = 0.49). 
To control for this issue, based on first-trial error rates, 
we sub-sampled the data by removing participants with 
extreme values3 (as explained in the "Appendix”), result-
ing in equivalent pretest performance. Analyses involving 
this sub-sample support the same conclusion reached for 
the full-sample (increase in error rates from pre to posttest 
only in the control groups). We do however note that this 
sub-sampling approach decreases the within-group variance, 
and could thus potentially increase effect sizes. Nonethe-
less, the results presented in the "Appendix” demonstrate 

Fig. 3   GO phase results: Three-
way interaction between Group 
(WM-Training, Active, and 
Silent Control), Time (pre vs. 
posttest), and GO Trial (Trial 1, 
2) in RT (upper panels) and Pro-
portion of Errors (lower panels). 
Error bars represent Bayesian 
95% credible intervals

3  We wish to thank the anonymous reviewer who has suggested this 
analysis.
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that speed-accuracy tradeoff took place in the control groups 
regardless of pretest performance.

NEXT Phase (automatic effects of instructions; 
intermediate transfer)

BANOVA was performed on NEXT RTs (NEXT errors were 
not monitored) with the between-subjects independent vari-
able Group (WM-Training, Active, and Silent Control), and 
the within-subject independent variables Time (pre vs. post-
test), and Compatibility (compatible vs. incompatible). The 
results showed a substantial NEXT compatibility effect 
(BF10 = 9.24e+8; �2

p
 = 0.43, slower incompatible than com-

patible NEXT responses) and an overall pre-to-post reduction 
of the NEXT compatibility effect (BF10 = 14.02; �2

p
 = 0.11), 

across training groups. However, the results showed no mod-
ulation of the NEXT compatibility effect by training, as indi-
cated by the lack of interaction between Group, Time and 
Compatibility (BF10 = 0.32; �2

p
 = 0.04) (see Fig. 4).

Evidence accumulation modelling

The current results suggest that speed-accuracy tradeoff 
occurred only (or mostly) in the control groups. However, 
we cannot be sure that speed-accuracy tradeoff is the only 
decision mechanism that was influenced by training. For 
example, it might be that in addition, training resulted in 
improved information processing. The above model-agnostic 
analysis cannot disentangle the two. Therefore, we turned to 
evidence accumulation modelling (Forstmann, Ratcliff, & 
Wagenmakers, 2016; Ratcliff, Smith, Brown, & McKoon, 
2016) in examining choice mechanisms underlying the first 
GO trial performance. The idea in these models is of sequen-
tial sampling of evidence that continues until the amount 
of evidence reaches a certain boundary, at which the agent 
makes the decision. Although the various models differ in 

detail (e.g., parameters and assumptions), they all have some 
analogous parameters such as drift-rate (the rate of evidence 
accumulation), boundary (the amount of evidence that is 
needed for a decision) and non-decision time, reflecting the 
duration of non-decision processes (e.g., early perceptual 
processes, late motor processes).

Given the behavioral results, we hypothesized that for 
the training group, there would be a drift rate increase and 
for the control groups there would be a boundary decrease. 
Such results could explain the RT decrease in all groups, and 
the (at least descriptive) accuracy reduction in the control 
groups. Note that our predictions do not exclude the pos-
sibility that in addition, there might be a boundary change 
in the training group and a drift rate in the control groups.

For this purpose, we implement the Linear Ballistic Accu-
mulator model (LBA; Brown & Heathcote, 2008) where N 
accumulators are racing independently. In the LBA, choice and 
RT are determined by the first accumulator to reach the bound-
ary. It was found that the LBA produces very similar results 
to those of the well-known Drift Diffusion model (Donkin, 
Brown, Heathcote, & Wagenmakers, 2011). Importantly, we 
chose LBA since it is simpler than the Drift Diffusion model.

In LBA, there are five free parameters: (1) drift-rate (v), 
reflecting the average (across trials) rate of evidence accu-
mulation. The higher the drift rate, the steeper the slope 
towards the boundary, leading to higher chance of the 
accumulator winning the race in a shorter time (Ratcliff, & 
Smith, 2004). In contrast to Drift Diffusion in which evi-
dence accumulation rate is stochastic and determined by 
sequential sampling, LBA assumes a constant increase in 
evidence within a trial (which is why it is considered to 
be ‘ballistic’); (2) “boundary”, or response threshold (b)—
determining how much evidence is required in order for the 
accumulation process of a single accumulator to end. This 
parameter is describing speed-accuracy tradeoff, with low 
threshold describing quick and careless choice policy.

Fig. 4   NEXT phase results: Three-way interaction between Group (WM training, active controls, silent controls), Time (pre vs. posttest), and 
Compatibility (NEXT compatible vs. incompatible). Error bars represent Bayesian 95% credible intervals
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Additional parameters include the starting point (SP), 
reflecting a bias towards a certain alternative before evi-
dence started to gather. The amount of evidence before the 
beginning of the accumulation ranges between zero and SP, 
with a value drawn from a rectangular distribution. The forth 
parameter is non-decision time (NDT) which was described 
above. The fifth and final parameter is the standard devia-
tion of the distribution from which the drift rate is drawn 
(SDDR), reflecting between-trial variability in drift-rate.

To address our questions, we employed a model-compar-
ison approach. Here we used the Bayesian Information Cri-
terion (BIC; Schwarz, 1978) which reflects relative model 
fit, with smaller values indicating better fit. BIC considers 
model fit (maximum likelihood of the model), but also the 
number of free parameters (P; such that a larger number of 
parameters is penalized, to avoid over-fitting), and number 
of observations (N):

Importantly, the ΔBIC associated with comparing 
two models can be translated to Bayes Factor (Neath & 
Cavanaugh, 2012), which suits the statistical approach we 
took in this study, with BF = e0.5*ΔBIC. Thus, when ΔBIC 
is greater than 2.2, the BF exceeds 3 and reflects a decisive 
result towards one of the models. However, if ΔBIC is lower, 
this would be considered an indecisive result. In addition to 
ΔBIC, we also examined the expected (vs. observed) pro-
portion of correct responses under the models, to appreci-
ate whether the model succeeds in capturing the descriptive 
accuracy trends that we observed in the data.

Due to the limited trial number, we pooled the data across 
groups, separately for pre and posttest. To control for individ-
ual differences in minimal RT and RT variance, we estimated 
the minimal and standard deviation (SD) RT per participant, 
followed by a within-group standardization of these values. 
Formally, we first subtracted from each individual RT the 
minimal RT per participant across trials. We then multiplied 
this value with the quotient of the standard deviation (SD) 
per group to which an individual belongs to, divided by the 
individual SD per participant and group. We then added for 
each RT the minimal RT per group. With these four values, 
the transformed value RTt is defined as follows:

RTijk represent the RT in Group i, Participant j, Trial k. 
MINij is the minimal RT for Participant j in Group i (MINij 
= MIN(RTijk)). SDij is the standard deviation of RT for that 
participant SDij = SD(RTijk). SD-GROUPi is the mean SD 
per group (SD-GROUPi = MEAN(SDij)), and MIN-GROUPi 

BIC = − 2 log Likelihood + log (N) × P.

RT
t
ijk

= (RTijk −MINij) ∗ (SD − GROUPi∕ SDij)

+ MIN − GROUPi.

is the mean minimal RT per groups (MIN-GROUPi = 
MEAN(MINij))4.

These transformed values were then modeled with LBA.

Modelling pretest measurement—preliminary models

Given that the results suggest differences between the groups 
at pretest (see Fig. 3), it was unclear whether the models we 
compare should assume initial group differences in boundary 
and drift rate at pretest. Since these are the most important 
parameters concerning the decision stage, and most relevant 
for assessing speed-accuracy tradeoff, these are the only two 
parameters that we examined for group differences during 
the modelling process. Thus, in the preliminary analysis, we 
considered three hypotheses regarding pretest: (1) No group 
differences; (2) the silent group is different from the other 
two groups (pooled); and (3) all groups are different from 
one another. The rationale for the second model is that the 
silent control group was only included during year 2 of the 
study and was thus not strictly randomly assigned.

Thus, we ran three models, where the first (Model P1) 
had five free parameters (drift-rate, boundary, SP, NDT and 
SDDR, equal across groups). The second model (Model 
P2) had seven free parameters: SP NDT and SDDR were 
assumed to be equal across groups, but drift-rate and bound-
ary were different for the silent control group, and in the 
third model (Model P3) there were nine free parameters: a 
separate drift-rate and boundary for each group. BIC was 
1807.27, 1810.57, and 1804.89 for Models P1–P3, respec-
tively. As can be seen, the third model had the best (lowest) 
BIC. Compared to the first model the BF 3.29, and compared 
to the second model the BF 17.11. Therefore, the ΔBIC 
allows us to endorse Model P3, which assumes that the 
groups started with a different baseline boundary and drift-
rate at pretest. Hence, the following analyses were based on 
this preliminary model.

Which process could account for the transfer effect?

Next, we compared seven models that were meant to deter-
mine whether the groups differed in the degree to which 
drift rate and/or boundary changed between pre-testing and 
post-testing. To account for the Time*Group interaction, the 
models were structured such that the drift rate and boundary 

4  The rationale behind this transformation is as follows. Individual 
differences in minimal RT are eliminated by replacing the individ-
ual’s minimal RT with the group-average of that value. Individual 
differences in the dispersion of values are eliminated, by the within-
group standardizing of the discrepancy-from-the minimum. This 
standardization expands the dispersion for individuals whose RT dis-
persion is low (their SDRT is low) and similarly, shrinks the disper-
sion for individuals whose dispersion is high.
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at posttest were calculated as pretest value + Δvalue, with 
Δvalue representing the change in the value (of drift-rate or 
boundary) between pretest and posttest.

Given our hypotheses for the modelling results, we for-
mulated the following models: The Null Model (Model 1) 
assuming that the groups were different at pretest, and that 
they did not change between pre-test to post-test, i.e., Δdrift-
rate and Δboundary are both zero. Model 2 assuming that 
drift-rate and boundary changed from pretest to posttest, but 
that this change was equal across the groups, i.e., Δdrift-
rate and Δboundary are free parameters, but equal across 
groups. Model 3 assuming that Δdrift-rate and Δboundary 
were different across groups, and Model 4 assuming that 
Δdrift-rate was equal across groups but Δboundary differed 
across groups. In the following models, we focused on the 
training-vs.-controls difference. In Model 5, we assumed 
that Δdrift-rate was equal across groups but Δboundary dif-
fered between training and controls. In Model 6 Δdrift-rate 
differed between training and controls but Δboundary was 
equal across groups. Finally, in Model 7, Δdrift-rate and 
Δboundary differed between training and controls.

Table 1 summarizes the results for these seven mod-
els. Table 2 elaborates the parameter values under each 
model. First, Models 3 and 4 showed poorer BIC values 
than those of Models 5 and 7, suggesting that pooling the 
control groups improves model-fit5. The best BIC rates 
were obtained for Models 5 and 7, with a ΔBIC of 1.01 
between them. This value translates to an indecisive BF 
0.66. Thus, BIC did not allow us to decide between these 
two models, although when relying only on ΔBIC, then 
the parsimonious model should be selected (Model 5 in 

Table 1   BIC values for models comparing differences between pretest and posttest and between groups

a v drift-rate, b boundary

Model Assumption No. of Free 
Parameters

BIC

1 Null—v and ba do not change from pretest to posttest 9 1937.98
2 v and b change from pretest to posttest, but not between groups 11 1218.11
3 v and b change from pretest to posttest, differently for each group 15 1215.25
4 b changes from pretest to posttest, differently for each group; v changes equally for all groups 13 1204.48
5 b changes from pretest to posttest, differently for training vs. controls; v changes equally for all groups 12 1195.44
6 v changes from pretest to posttest, differently for training vs. controls; b changes equally for all groups 12 1226.41
7 v and b change from pretest to posttest, differently for training vs. controls 13 1196.45

Table 2   Parameter values for Models 1–7

Model SP boundary pre Δboundary NDT Drift-rate pre Δdrift-rate SDDR

1 0.376 Training 0.112
Active 0.114
Silent 0.0895

0 0.114 Training 0.764
Active 0.757 Silent 

0.719

0 0.230

2 0.341 Training 0.155 Active 
0.158 Silent 0.137

− 0.04 0.092 Training 0.734 Active 
0.732 Silent 0.696

0.006 0.220

3 0.338 Training 0.152 Active 
0.165 Silent 0.146

Training − 0.029 Active 
− 0.048 Silent − 0.050

0.089 Training 0.723 Active 
0.736 Silent 0.699

Training 0.022 Active 
− 0.006 Silent − 0.002

0.218

4 0.339 Training 0.151 Active 
0.163 Silent 0.145

Training − 0.030 Active 
− 0.046 Silent − 0.050

0.090 Training 0.732 Active 
0.731 Silent 0.696

0.006 0.219

5 0.339 Training 0.151 Active 
0.163 Silent 0.143

Training − 0.03 Controls 
− 0.047

0.090 Training 0.732 Active 
0.732 Silent 0.696

0.006 0.219

6 0.341 Training 0.155 Active 
0.158 Silent 0.137

− 0.04 0.092 Training 0.732 Active 
0.734 Silent 0.698

Training 0.013 Controls 
0.002

0.220

7 0.338 Training 0.151 Active 
0.165 Silent 0.145

Training − 0.028 Con-
trols − 0.048

0.089 Training 0.723 Active 
0.736 Silent 0.700

Training 0.022 Controls 
− 0.005

0.219

5  Given that the behavioral results did not show a decisive differ-
ence between the silent control group and the training group, we also 
ran Models 8 and 9. These models assume that the different group 
at posttest is the active training group. In Model 8, Δboundary was 
same for the training and silent groups but different for the active 
training, and in Model 9 both Δboundary and Δdrift-rate were differ-
ent for active control relative to the other groups. Both these models 
did worse than Models 5 and 7 (BIC Model 8 = 1218.00; BIC Model 
9 = 1223.27). These results suggest than indeed pooling the controls 
and contrasting them with the training group best fits the data.
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this case). However, as we noted earlier, we also tested 
whether the models correctly predict the descriptive accu-
racy pattern in the results. Importantly, whereas Model 
7 correctly predicted the pretest-to-posttest descriptive 
increase in accuracy seen in the training group (the actual 
values were 0.889–0.896, an increase of 0.007, with the 
model predicting an increase from 0.863 to 0.875, an 
increase of 0.012); Model 5 wrongly predicted a decrease 
in accuracy (from 0.871 to 0.867, a decrease of 0.004). 
Concerning the controls, both models correctly predicted 
the descriptive decrease in accuracy from pretest to post-
test. Thus, although the BIC value was slightly better 
for the model assuming just boundary separation differ-
ences between the groups (Model 5), this model misses 

an important qualitative pattern—the increase in accuracy 
in the training group. As a result of these considerations, 
we tentatively endorse Model 7, while acknowledging the 
fact that this is not a clear-cut result. Both Model 5 and 
Model 7 show steeper boundary decrease in the controls 
relative to the training group, suggesting that those par-
ticipants became hastier. In addition, Model 7 suggests an 
additional increase in drift-rate in the training group, and 
a slight decrease in drift-rate in the controls (see Table 2). 
Figure 5 provides a graphical assessment of Model 7 fit, 
indicating excellent fit of the model.

Fig. 5   Graphical assessment of Model 7. Cumulative Probability 
is the proportion of correct responses (or errors) multiplied by the 
respective quantiles (0.1, 0.3, 0.5, 0.7, 0.9). Observed data (triangles) 

and model predictions (circles) are presented for both correct (upper 
arms) and incorrect (lower arms), separately for pretest (upper panels) 
and posttest (lower panels)
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Discussion

The current study tested the hypothesis that procedural 
WM training would improve the ability to execute novel 
stimulus–response rules immediately upon instructions 
and without any previous practice (rapid instructed-task-
learning). The procedural WM training task used in the 
current study involved frequent learning of novel stimu-
lus–response mappings (suggested to be held in procedural 
WM; Oberauer, 2009) and has been shown to improve the 
process of retrieving action rules from working memory 
when performing choice-RT tasks (Shahar et al., 2018). It 
was thus hypothesized to influence the ability to perform 
tasks immediately following instructions (rapid instructed-
task-learning). The results, especially those from the first 
GO Trial, show that all groups reacted more quickly in 
posttest relative to pretest. However, only in the group who 
underwent procedural WM training, response speeding did 
not come at the cost of an increased error-rate. To clarify 
the picture, we employed LBA modelling, focusing on two 
parameters. One parameter, the drift-rate, represents the 
rate by which stimulus-related evidence favoring its asso-
ciated response accumulates. The other parameter is the 
amount of evidence required to reach a decision (bound-
ary). Our results generally favor two models, both assum-
ing greater boundary decrease from pretest-to-posttest in 
the control groups (relative to the training group), sup-
porting the behaviorally observed speed-accuracy tradeoff 
in the controls. In addition, one of these models, which 
correctly predicted the descriptive accuracy increase in 
the training group from pre-to-posttest, also assumed an 
increase in drift-rate in the training group with a slight 
decrease in the control groups. However, given that this 
accuracy increase in the training group was not robust, we 
evidently cannot state that a predicted increase in accuracy 
is obligatory in the chosen model.

This result proposes that the control groups became 
hasty at posttest relative to pretest, which accommodates 
the observed speed-accuracy tradeoff in those groups. We 
view this result as evidence that the control groups actually 
became worse in the sense of adopting impulsive speed-
accuracy tradeoff (see Dickman, & Meyer, 1988). This 
finding might suggest a reduction in motivation (to suc-
ceed in the task) in the control groups, something which 
was prevented to a certain degree in the training group.

In addition, if one appreciates the better descriptive fit 
of the model assuming additional drift-rate increase in the 
raining group, the results might also suggest that training 
in reoccurring task learning improved rapid instructed-
task-learning, as it somewhat influenced evidence accu-
mulation rate. In other words, it might be possible to learn 
how to learn. Note that while the LBA modelling results 

were less clear-cut than one might hope for, the PE and 
RT results (especially concerning active training) are more 
clear-cut. Thus, what remains tentative is the explanation 
of the results and not the results themselves.

Importantly, it should be noted that the results in the 
silent control group were less clear-cut than in the other 
groups possibly due to the sample size differences between 
the groups. Unfortunately, we cannot increase sample-size 
at this point as that would violate random assignment. 
However, the most important finding is that the difference 
in error rates between the training group and the active 
control group was significant. We view this difference as 
most critical since the active control group is the one most 
closely matched to the training group.

Based on prior correlational findings (Meiran et al., 
2016), we also predicted an intermediate transfer effect 
to automatic effects of instructions, but no such transfer 
effect was found. In retrospect, we can say that our train-
ing protocol improved the ability to efficiently encode the 
instructions, but it did not improve the ability to overcome 
automaticity. Specifically, the training task involved an 
N-back element, and thus involved responding to lures (tri-
als in which the target was the same as the target in the 
trial adjacent to the Nth trial). Importantly, lures are con-
sidered to elicit familiarity signals that participants need 
to overcome to maintain accurate performance (Kane, 
Conway, Miura, & Colflesh, 2007). While this type of 
interference was perhaps trained to some extent, it seems 
to be of a different kind than the interference in the NEXT 
paradigm. For example, in the NEXT paradigm, interfer-
ence results from automatic response activation, where 
the stimulus is directly associated with the response via 
instructions (Meiran et al., 2015a; Meiran, Pereg, Kessler, 
Cole, & Braver, 2015b). In contrast, lures are only indi-
rectly linked to a motor response. Thus, perhaps it is that 
the training did not have a specific element that closely 
resembled what was measured in Automatic-Effects of 
Instructions.

While the results did not show the expected intermedi-
ate transfer to automaticity, they were somewhat in line 
with the expected near transfer to rapid instructed-task-
learning. Thus, the results of the current study join many 
training studies demonstrating near but not far transfer 
effects. The current results additionally elaborate prior 
findings by demonstrating the WM near transfer effect in 
the very first trials of the task.

Another main conclusion from this study is that since 
rapid instructed-task-learning possibly benefitted from a 
procedural WM training, procedural WM processing is 
probably involved in rapid instructed-task-learning abili-
ties, as has been hypothesized by Meiran et al. (2012), 
as well as demonstrated in a correlative study by Meiran 
et al., (2016).
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Limitations

One prominent limitation with the measurement of the Auto-
matic-Effect of Instructions is that the NEXT phase did not 
involve errors recording. It is thus possible that a similar 
effect to that observed in the GO phase would have showed 
in NEXT errors. Another limitation is that the procedure 
we used included an embedded measure of Instructions’ 
automaticity, which might interact with the rapid instructed-
task-learning measurement. Cole et al. (2017) suggested 
that in the NEXT paradigm, during the NEXT phase, the 
instructions are temporarily held in an anterior prefrontal 
cortex “task buffer” that shields them from interference, 
caused by the NEXT phase, thus incorporating hierarchi-
cal control. As has been mentioned, the WM training task 
also involved a hierarchical component. Consequently, we 
cannot point to the exact procedural WM mechanism that 
has been transferred. This, in turn, implies that it is possible 
that there would not have been any transfer had we used a 
different rapid instructed-task-learning procedure that does 
not involve hierarchical control.

Conclusion

The current study demonstrates that rapid instructed-task-
learning relies on procedural WM and shows that procedural 
WM training leads to improvement in the ability to perform 
novel instructions, as manifested in faster, but not less accu-
rate responses relative to the control groups. This suggests 
that learning to learn (novel procedural rules) is possible.
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Appendix

To control for the possibility that regression to the mean 
took place (especially regarding active control), we sub-
sampled the data by removing participants with extreme 
values. We removed the four participants with the lowest 
PE from the active control group; the two lowest-PE and 
the two highest-PE participants from the training group (to 
roughly keep the same average, but create a sub-sample as 
well); and the three highest-PE participants from the silent 
control group (we removed three and not four participants 
due to the different sample size). This sub-sample resulted 
in 9.6%, 10.3% and 10.9% errors in the active, training and 
silent groups, respectively; a trend which supported the null 
hypothesis (BF10 = 0.09).

We then re-ran the BANOVAs, first focusing on the first 
GO trial. The results were similar to those described above, 
with a robust Group by Time interaction (BF10 = 57.65, 
�
2
p
 = 0.09) showing that error rates increased in the two con-

trol groups (BF10 = 1841.64, �2
p
 = 0.26; and BF10 = 6.41, 

�
2
p
 = 0.18 for the active and silent control groups, respec-

tively), but not in the training group (BF10 = 0.19, �2
p
 < 0.01). 

Next, we repeated the analyses testing the GO trial effect. As 
with the full sample, the results did not show an interaction 
between Group, Time and GO Trial (BF10 = 0.16, �2

p
 = 0.02, 

see Fig. 6), but did indicate a robust Time by Group interac-
tion (BF10 = 48.24, �2

p
 = 0.11).

For completeness we also repeated the analyses involving 
RTs, and the results were the same as for the full-sample, 
indicating no Group by Time interaction (see Fig. 6), with 
an equivalent acceleration in all three groups 
(BF10 = 1.11e+31, �2

p
 = 0.42).
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