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Abstract Previous research has proposed that the

approximate number system (ANS) constitutes a building

block for later mathematical abilities. Therefore, numerous

studies investigated the relationship between ANS acuity

and mathematical performance, but results are inconsistent.

Properties of the experimental design have been discussed

as a potential explanation of these inconsistencies. In the

present study, we investigated the influence of set size and

presentation duration on the association between non-

symbolic magnitude comparison and math performance.

Moreover, we focused on strategies reported as an expla-

nation for these inconsistencies. In particular, we employed

a non-symbolic magnitude comparison task and asked

participants how they solved the task. We observed that set

size was a significant moderator of the relationship

between non-symbolic magnitude comparison and math

performance, whereas presentation duration of the stimuli

did not moderate this relationship. This supports the notion

that specific design characteristics contribute to the

inconsistent results. Moreover, participants reported dif-

ferent strategies including numerosity-based, visual,

counting, calculation-based, and subitizing strategies.

Frequencies of these strategies differed between different

set sizes and presentation durations. However, we found no

specific strategy, which alone predicted arithmetic perfor-

mance, but when considering the frequency of all reported

strategies, arithmetic performance could be predicted.

Visual strategies made the largest contribution to this

prediction. To conclude, the present findings suggest that

different design characteristics contribute to the inconsis-

tent findings regarding the relationship between non-sym-

bolic magnitude comparison and mathematical

performance by inducing different strategies and additional

processes.

Introduction

A dominant view in research on numerical cognition pos-

tulates that the foundation of our numerical and arithmetic

abilities lies in the evolutionary old approximate number

system (ANS; Dehaene, 2001, 2009; Nieder, 2013; Piazza,

2010). The ANS is a cognitive system which is assumed to

represent approximately the number of discrete entities in a

set (i.e., the numerosity; e.g., Cantlon, Platt, & Brannon,

2009). Due to an overlap between adjacent representations,

the representations of numerosities are imprecise, whereby

the imprecision of the representation increases the larger

the numerosities are (Feigenson, Dehaene, & Spelke, 2004;

Lyons, Ansari, & Beilock, 2015; Nieder, Freedman, &

Miller, 2002). The overlap between the representations

appears to affect behavioral performance of tasks reverting

to these representations, like the non-symbolic magnitude

comparison task (De Smedt, Noël, Gilmore, & Ansari,

2013; Dehaene, 2009; Halberda, Mazzocco, & Feigenson,

2008). In this task, participants have to judge which of two
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to-be-compared dots sets is more numerous. Numerous

studies have shown that participants’ performance in this

task depends on the ratio between the two to-be-compared

numerosities (i.e., the ratio effect; e.g., Inglis & Gilmore,

2014; Price, Palmer, Battista, & Ansari, 2012; Soltész,

Szucs, & Szucs, 2010). The ratio effect reflects the finding

that task performance is better [i.e., higher accuracy,

smaller response times (RTs)] when comparing numerosi-

ties with a small ratio (e.g., 5 vs. 10 dots; ratio = 0.5) than

a large ratio (e.g., 9 vs. 10 dots; ratio = 0.9). This effect is

explained by differences in the degree of overlap between

the ANS representations, which affect task performance

(Cantlon et al., 2009; Nieder, 2011; Nieder et al., 2002).

More concretely, the overlap of the representations is larger

when the ratio of the to-be-compared numerosities is lar-

ger. Moreover, a larger overlap results in a worse perfor-

mance. Hence, the ratio effect is often referred to as a

hallmark of the ANS (e.g., Price et al., 2012) and, more-

over, is commonly used as index of the acuity of repre-

sentations of numerosities (subsequently referred to as

ANS representations; for reviews see De Smedt et al.,

2013; Dietrich, Huber, & Nuerk, 2015).

ANS representations are thought to be linked to exact

number representations. Hence, they are also involved in

tasks requiring symbolic math abilities (e.g., Ansari, 2012;

Lipton & Spelke, 2005; Noël & Rousselle, 2011; Verguts

& Fias, 2004). Evidence for the notion that the ANS

underlies symbolic mathematical abilities comes from

studies showing a significant relationship between the

acuity of the ANS and mathematical performance. In par-

ticular, more precise ANS representations were associated

with better math performance (Halberda et al., 2008; Lib-

ertus, Feigenson, & Halberda, 2011; Mazzocco, Feigenson,

& Halberda, 2011). However, there are also numerous

studies, which did not find evidence for such a relationship

(Mundy & Gilmore, 2009; Soltész et al., 2010; Vanbinst,

Ghesquière, & De Smedt, 2012; for a review see De Smedt

et al., 2013). These inconsistent results have not been

solved yet (Chen & Li, 2014). Nevertheless, these incon-

sistencies can be partially attributed to differences in

measures employed to assess ANS acuity and tasks used to

assess mathematical competence as indicated by a recent

meta-analysis of Schneider et al. (2016).

Moreover, there are several methodological aspects

which can be manipulated in a non-symbolic magnitude

comparison task and which differ considerably between

studies (for a review see Dietrich et al., 2015a, b). In the

following, we will first give an overview of design char-

acteristics influencing the performance in a non-symbolic

magnitude comparison task, before we focus on additional

cognitive processes or strategies being induced by different

aspects of task design and elaborate how these additional

processes caused by design characteristics affect the

relationship between non-symbolic magnitude comparison

and math performance.

Design characteristics affecting performance

in a non-symbolic magnitude comparison task

With regard to the construction of the stimuli two aspects

are commonly varied: methods to control for visual cues

(see e.g., Dietrich et al., 2015a; Gebuis & Reynvoet, 2011)

and the concrete number of dots (i.e., the set size, e.g., De

Smedt et al., 2013; Dietrich et al., 2015a).

Methods to control for visual cues have been developed

to ensure that participants solve the non-symbolic magni-

tude comparison task based on the numerical magnitude

information and not based on visual properties of the

stimuli (Piazza et al., 2004; Gebuis & Reynvoet, 2011).

Visual properties of the dot sets can be divided into

properties of individual items, including dot size (i.e.,

average diameter of the dots) or sparsity (i.e., average field

area—the space within which the dots are drawn—per

item), and parameters of the whole set, like total surface

area (i.e., sum of surfaces of the individual dots) or convex

hull (i.e., smallest area covering all dots e.g., DeWind,

Adams, Platt, & Brannon, 2015). As the number of dots is

highly related to visual properties of the stimuli, they might

affect or even underlie task performance (Gebuis &

Reynvoet, 2012; Leibovich & Henik, 2013). To control for

this confound, researchers have attempted to match specific

visual properties across the to-be-compared sets (e.g.,

Bartelet, Vaessen, Blomert, & Ansari, 2014; Libertus,

Woldorff, & Brannon, 2007) or kept visual properties and

numerosity negatively related (Sz}ucs, Nobes, Devine,

Gabriel, & Gebuis, 2013) to ensure that no single visual

cue is consistently predictive of numerosity throughout the

entire set.

However, several studies found that performance in non-

symbolic magnitude comparison tasks depended on the

method used to control for visual properties of the dot sets

(Clayton, Gilmore, & Inglis, 2015; Smets, Sasanguie,

Szücs, & Reynvoet, 2015; Sz}ucs et al., 2013). It was shown
that task performance decreased the more visual parame-

ters were controlled for (Clayton et al., 2015; Smets et al.,

2015). Moreover, task performance was worse in incon-

gruent trials (i.e., when visual parameters were negatively

correlated with numerosity) than in congruent trials (i.e.,

when visual parameters were positively correlated with

numerosity; Gebuis & Reynvoet, 2012; Gilmore et al.,

2013; Sz}ucs et al., 2013). These findings indicated that the

non-symbolic magnitude comparison task does not assess

numerosity representations independently from visual cues.

Gebuis and Reynvoet (2012) even went a step further and

proposed that participants may not extract numerosity

information at all. Instead, they suggested performance in
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the non-symbolic magnitude comparison task to be driven

by the integration of multiple visual cues. Moreover, only

recently DeWind et al. (2015) developed a model to sep-

arate the effect of numerical information and non-numer-

ical, visual information.

Besides visual parameters, it was observed that set size

influences task performance (e.g., Clayton & Gilmore,

2015). Clayton and Gilmore (2015) found that task per-

formance declined with increasing set size (i.e., the number

of dots in the to-be-compared dot sets). Moreover, set size

interacted with the congruency of visual parameters. For

example, the congruency effect for convex hull increased

as set size increased (Clayton & Gilmore, 2015). Moreover,

several studies found that very small dot sets (i.e., up to

3–4) are processed differently than larger numerosities

(Cutini, Scatturin, Basso Moro, & Zorzi, 2014; Feigenson

et al., 2004; Piazza, 2010; Revkin, Piazza, Izard, Cohen, &

Dehaene, 2008). In this range, the number of dots can be

recognized very rapidly and accurately; this ability is called

subitizing and can be differentiated from the ANS

(Feigenson et al., 2004; Kaufman, Lord, Reese, & Volk-

mann, 1949; Mandler & Shebo, 1982; Piazza, 2010;

Revkin et al., 2008; Trick & Pylyshyn, 1994). Furthermore,

for very large set sizes, when the dots are arranged too

densely, texture-density mechanisms are involved (e.g.,

Anobile, Turi, Cicchini, & Burr, 2015; Cicchini et al.,

2016). Texture-density indicates the number of elements

per unit of an area (Durgin, 1995). Evidence for different

mechanisms was provided by Anobile, Cicchini, and Burr

(2013) who observed that only for low density patterns

discrimination performance was in line with ANS theory,

whereas for denser stimuli discrimination performance was

described better by a model where number is derived as a

product of texture-density and area.

While visual controls and set size are aspects to consider

when constructing the stimuli, presentation duration is an

important aspect when determining the procedure of the

task. To prevent participants using counting strategies, the

use of short presentation durations has been proposed (e.g.,

Halberda et al., 2008; Inglis, Attridge, Batchelor, & Gil-

more, 2011). However, there is no consensus how short the

stimuli have to be presented to rule out counting strategies

(see Dietrich et al., 2015a). Moreover, presentation dura-

tion of the stimuli varies heavily between studies, ranging

from 150 ms (Agrillo, Piffer, & Adriano, 2013; Castronovo

& Göbel, 2012) to up to 4000 ms (De Oliveira Ferreira

et al., 2012; Lonnemann, Linkersdörfer, Hasselhorn, &

Lindberg, 2013). In other studies presentation duration is

not restricted; instead the stimuli are presented until par-

ticipants respond (e.g., Bartelet et al., 2014; Defever,

Reynvoet, & Gebuis, 2013). Inglis & Gilmore (2013)

showed that presentation duration affected the performance

in a non-symbolic magnitude comparison task. More

specifically, discrimination performance of participants

was more accurate, the longer the presentation duration of

the dot sets.

Do design characteristics induce additional cognitive

processes or strategies?

Recent studies suggest that depending on the concrete

aspects of task design additional cognitive processes are

involved in the non-symbolic magnitude comparison task.

For example, the congruency between visual properties of

the stimuli and numerosity affected the involvement of

inhibitory control. More concretely, the processing of

incongruent trials, where the information based on

numerosity and on visual properties of the stimuli was

conflicting, required inhibitory control (Fuhs & McNeil,

2013; Gilmore et al., 2013). Moreover, it was also dis-

cussed that depending on the arrangement of the stimuli

additional processes might be involved. For example, in

case of successive presentation of the to-be-compared dot

arrays of an item working memory resources might be

required, while in case of an intermixed presentation of dot

arrays (e.g., yellow dots within a set of blue dots) spatial

resolution processes might be necessary (Price et al., 2012).

Previous research has already shown that participants

use strategies flexibly depending on task characteristics in

numerosity judgment tasks (Gandini, Lemaire, & Dufau,

2008b; Luwel, Verschaffel, Onghena, & De Corte,

2003a, b). Hence, depending on design characteristics

participants might also use different strategies to solve the

non-symbolic magnitude comparison task. Although the

use of strategies like counting or visual strategies has been

discussed frequently in ANS literature, strategies have not

been investigated explicitly so far. Thus, in the present

experiment we aimed at investigating, which strategies are

involved in non-symbolic magnitude comparison and how

strategy selection was influenced by the design parameters

set size and presentation duration. More concretely, we

focused on the use of visual strategies, counting strategies,

calculation-based strategies, numerosity-based strategies,

and subitizing.

Visual strategies (i.e., considering visual properties of

the stimuli in the decision such as density, field area, etc.)

were chosen, as it was already argued that the judgments of

participants in a non-symbolic magnitude comparison task

are rather based on the weighting of multiple visual

parameters than on the pure processing of numerosity

information (Gebuis & Reynvoet, 2012). Moreover, there

are already hints that visual strategies might be influenced

by design characteristics. For instance, Clayton and Gil-

more (2015) found the congruency effect (for convex hull)

to increase the larger the set size was. Congruency effects

have been interpreted as indicator for the use of visual
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strategies (Gebuis & Reynvoet, 2012). Thus, we expected

that visual strategies are influenced by set size, whereby a

more frequent use of visual strategies was expected for

larger set sizes. With regard to influences of presentation

duration on the use of visual strategies, it might be argued

that visual strategies as rather fast strategies (compared to

counting or calculation-based strategies) should be more

likely for short presentation durations than for longer pre-

sentation duration, where also slower, but more accurate

strategies can be used (Luwel & Verschaffel, 2003).

Another strategy, which has been considered in ANS

research, involves counting the number of dots in each set

(see e.g., Dietrich et al., 2015a, b; Halberda et al., 2008).

The use of counting strategies is strongly related to the

presentation duration employed in the non-symbolic mag-

nitude comparison task. Restricting the presentation dura-

tion to a few 100 ms makes counting strategies impossible.

In contrast, presenting the to-be-compared dot sets for

several seconds enables to use of counting strategies.

Hence, we expected a higher frequency of counting

strategies for longer presentation durations. Furthermore,

the use of counting strategies could be influenced not only

by presentation duration but also by set size, as smaller sets

can be counted more easily than larger dot sets making

counting strategies more likely to be used in smaller set

than in larger sets (Dietrich, Huber, & Nuerk, 2015).

Accordingly, there should be an interaction between set

size and presentation duration regarding the use of count-

ing strategies. Counting strategies should be most frequent

in conditions with small set sizes and long presentation

duration.

Research on numerosity estimation indicated that par-

ticipants also use calculation-based strategies to estimate

the number of dots in one set (e.g., Gandini et al., 2008b).

For example, the number of dots in a set can be determined

by subdividing the dot set into similar subgroups (e.g.,

there are 4 similar subgroups), estimating the number of

dots in one subgroup (e.g., one group consists of 5 dots)

and then multiply this number with the number of sub-

groups (e.g., 5 9 4 = 20 dots; i.e., decomposition strat-

egy). Alternatively, participants may also enumerate a

subgroup of dots (e.g., there are 6 dots), estimate the

remaining dots based on the numerosity of the subgroup

(e.g., there are twice as many dots, thus 12 dots) and add

up the respective number of dots (e.g., 6 ? 12 = 18 dots;

i.e., anchoring strategy; see Gandini et al., 2008b). These

strategies reported in the context of numerosity estimation

might also be employed in non-symbolic magnitude

comparison. Participants might estimate or roughly cal-

culate the number of dots in both sets, respectively or treat

one dot set as anchor. With regard to potential influences

of set size on the use of calculation-based strategies,

research on numerosity estimation has already shown that

calculation-based strategies are applied more often for

larger numerosities (Gandini et al., 2008b). Hence, we

assumed that calculation-based strategies are employed

more frequently for large set sizes. Moreover, calculation-

based strategies are also more time-consuming strategies

and, hence, should benefit from longer presentation

duration.

In case participants solve the task using one of these

strategies, they may not (need to) rely on their underlying

ANS representation. However, in the present study we also

considered the possibility that participants relied on the

number of elements in the sets, when solving the non-

symbolic magnitude comparison task (reflected by

numerosity-based strategies). Numerosity-based strategies,

which might refer to the involvement of the ANS, have

already been described in the context of numerosity esti-

mation, where the task was solved by retrieving the

numerosity representation after scanning the stimuli (see

benchmark strategy, Gandini, Lemaire, Anton, & Nazarian,

2008a; Gandini et al., 2008b). This kind of strategy was

found more often for larger numerosities (Gandini et al.,

2008b). Thus, for larger set sizes we expected a higher

frequency of numerosity-based strategies. In contrast,

strategies referring to the use of subitizing (i.e., grasping

the numerosity of a set at first glance) should be reported

for numerosities falling in the subitizing range, but should

not play a role for larger set sizes. As subitizing is a fast

and accurate process, it should not be influenced by pre-

sentation duration (Mandler & Shebo, 1982). Finally, we

did not only code numerosity-based strategies besides

visual, counting, and calculation-based strategies, but also

calculated the ratio effect, a commonly used index of ANS

acuity (De Smedt et al., 2013; Dietrich, Huber, & Nuerk,

2015).

Design characteristics influencing the relation

between non-symbolic magnitude comparison

and math performance

The relationship between non-symbolic magnitude com-

parison and math performance has been studied frequently.

However, results are conflicting (Chen & Li, 2014; De

Smedt et al., 2013; Fazio, Bailey, Thompson, & Siegler,

2014), which has been attributed to differences across

studies with regard to the employed design of the non-

symbolic magnitude comparison task (De Smedt et al.,

2013) as well as differences in measures of magnitude

comparison and math proficiency (Schneider et al., 2016).

As outlined above, variations regarding the design char-

acteristics affect not only performance in the non-symbolic

magnitude comparison task (and hence estimates of ANS

acuity), they can also alter domain-general processes

involved in the solution process of the task. Hence, design
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characteristics may contribute the conflicting findings

regarding the relationship between non-symbolic magni-

tude comparison and math performance (see Clayton &

Gilmore, 2015). There is first evidence for a moderating

role of design characteristics on this often studied rela-

tionship by changing the cognitive processes involved in

the non-symbolic magnitude comparison task. Gilmore

et al. (2013) found that children’s performance in a cal-

culation test was significantly correlated with their per-

formance in the incongruent trials of a non-symbolic

magnitude comparison task, but not with their performance

in the congruent trials. When controlling for inhibitory

control, the association between the performance in the

incongruent trials and calculation skills was no longer

significant (see also, Fuhs & McNeil, 2013; but see Keller

& Libertus, 2015). These findings suggest that the varying

pattern of results for congruent and incongruent trials is

caused by the different involvement of inhibitory control,

which has been found to be positively related to math

abilities (Bull & Scerif, 2001; Espy et al., 2004; St Clair-

Thompson & Gathercole, 2006) and is necessary for the

solution of the incongruent trials (Camilla Gilmore et al.,

2013).

In the present study we additionally investigated how

design characteristics can influence the association

between non-symbolic magnitude comparison and math

performance by changing the processes involved in the

solution process of the non-symbolic magnitude compar-

ison task. We thereby expanded previous research by

focusing on the strategies participants used to solve the task

rather than domain-general processes. As outlined above,

the frequency of the strategies employed may vary

depending on design characteristics like set size and pre-

sentation duration. Hence, the performance in a subgroup

of items in the non-symbolic magnitude comparison task

may be driven by different strategies (which is similar to

the different involvement of inhibitory control in congruent

and incongruent trials). Moreover, the strategies reported

above involve processes, which have already been found to

be related to mathematical performance. First of all,

counting strategies or calculation-based strategies them-

selves represent mathematical abilities. But also visual

strategies might be related to mathematical performance,

for example via visuospatial abilities, which in turn have

been found to be associated with mathematical perfor-

mance (Assel, Landry, Swank, Smith, & Steelman, 2003;

Guay & McDaniel, 1977; Gunderson, Ramirez, Beilock, &

Levine, 2012). Thus, strategies might contribute to the

inconsistent findings regarding the relationship between

non-symbolic magnitude comparison and math perfor-

mance, as—similar to inhibitory control—they can affect

both the performance in a subgroup of items and are related

to math performance.

Present study

Taken together, in the present study, we aimed at investi-

gating whether the design characteristics set size and pre-

sentation duration influence the association between non-

symbolic magnitude comparison and math performance by

inducing different solution strategies. To investigate this

issue we used a two-step approach. First, we examined

whether the design characteristics set size and presentation

duration moderate the relationship between non-symbolic

magnitude comparison and math performance (i.e., whe-

ther the size of the relationship differs depending on the

design characteristics used). Second, we focused on the

strategies participants reported to solve the non-symbolic

magnitude comparison task and how strategy selection was

affected by the design characteristics set size and presen-

tation duration. Moreover, we also investigated whether the

strategies reported by the participants were also associated

with their math performance. In particular, we examined

whether the frequency of the reported strategies is related

to the performance in an arithmetic task. However, we also

considered the currently dominant theory on the relation-

ship between non-symbolic magnitude comparison and

math performance, which explains the relationship by the

acuity of the ANS representations. To do so, we focused on

the ratio effect as a commonly used hallmark of the ANS

(e.g., Price et al., 2012).

Method

Participants

Thirty-two adults (21 female, 3 left-handed) participated in

the study. They were on average 23.91 years old (SD

= 3.63, range = 19–32 years). Informed consent was

obtained from all individual participants included in the

study. Moreover, all participants received either a financial

compensation of 8€ per hour or course credits. The study

was approved by the local ethics committee of the Leibniz-

Institut für Wissensmedien in Tübingen.

Materials and procedure

Participants completed a non-symbolic magnitude com-

parison task and an arithmetic task. The order of these two

tasks was counterbalanced across participants.

Non-symbolic magnitude comparison task

The non-symbolic magnitude comparison task consisted of

four blocks, whereby set size (small versus large) and

presentation duration (short vs. long) were systematically
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varied. All conditions started with a fixation point which

was then replaced by two parallel presented dot sets at the

x/y coordinates 400/600 and 1200/600 (at a screen resolu-

tion of 1600 9 1200 pixels). Fixation cross and dot sets

were presented in white against black background. Dot sets

differed according to two dimensions, resulting in a 3 (set

size: subitizing, small vs. large) 9 2 (presentation duration:

150 vs. 4000 ms) within-subjects design. The small set size

condition consisted of 40 trials with numerosities ranging

from 5 to 15, whereas the large set size condition consisted

of 40 items with numerosities ranging from 30 to 70. In

each condition five different ratios between to-be-com-

pared dot sets were used (0.5, 0.6, 0.7, 0.8, 0.9) which were

distributed equally across all trials. Moreover, we also

included ten items with numerosities within the subitizing

range (i.e., 1–4 dots), which were presented intermixed

with the items of the small set size condition, but were

analyzed separately. We included ten items within the

subitizing range, because only very few unique combina-

tions of two integers exist at all and presenting items within

the subitizing range more than once might have resulted in

a learning effect which in turn might have biased effect

size estimates.

Each of the four blocks started with five practice trials

allowing participants to familiarize with the respective

condition. Taken together participants solved 200 items

[(4 9 5 practice trials) ? (10 subitizing ? 40 small set

size ? 40 large set size) 9 2 presentation durations]. The

order of the four blocks was counterbalanced across

participants. To control for visual properties of the

stimuli, the stimuli were created using the Matlab script

by Gebuis & Reynvoet (2011). After the presentation of

the dot sets a question mark was presented indicating

that participants should indicate which of the two pre-

sented dot sets was larger by pressing the corresponding

left or right response key of a gamepad controller. Fol-

lowing their response participants were asked to report

verbally how they solved the task. Participants were not

given any prompts or examples of what they could say.

Arithmetic task

To assess participants’ arithmetic performance, we

administered the subtest ‘‘Rechenzeichen’’ of the Intelli-

genz-Struktur-Test 2000R (Amthauer, Brocke, Liepmann,

& Beauducel, 2007). In this task, participants have to solve

equations by inserting the correct arithmetic operators (i.e.,

?, -, �, �). For instance, to solve the equation ‘‘6 ? 2 ?

3 = 5’’, participants have to select the ‘‘?’’ operator for the

first calculation step and the ‘‘-’’ operator for the second

calculation step. The sum of correctly solved items served

as dependent variable.

Coding of strategies

We developed a standardized coding scheme to classify the

verbal reports of the participants in the non-symbolic

magnitude comparison task. For each item, we registered,

whether participant used one of the following solution

strategies (coded with 1) or not (coded with 0), whereby

multiple responses were possible: (1) numerosity-based

strategy, (2) visual strategies, (3) counting strategies, (4)

calculation-based strategy, (5) subitizing, or (6) guessing.

Visual strategies were coded whenever participants

reported that they considered specific visual properties of

the stimuli in their decision. Moreover, it was registered,

which visual property of the stimuli was used: size of the

individual dots, density of the dot sets, convex hull of the

dot sets, and total surface area. Counting strategies were

coded whenever participants explicitly stated that they

counted the dots. Calculation-based strategies included

approximate calculation of the number of the dots, for

example using a decomposition strategy or an anchoring

strategy. Moreover, numerosity-based strategies were

coded, when participants stated that they relied on the

number of elements in the sets, when solving the task. We

also noted when participants reported to use subitizing, for

example, if they mentioned that they grasped already at

first glance that a dot set consisted of less than four dots.

Furthermore, it was also registered, when participants

mentioned that they had simply guessed which set con-

tained more dots (i.e., guessing; for examples of how dif-

ferent verbal reports were coded, see ‘‘Appendix’’). Verbal

reports of all participants were coded by two raters.

Cohen’s j as a measure of interrater reliability ranged from

moderate for numerosity-based strategies (j = 0.50) to

almost perfect for visual strategies (j = 0.94) (Landis &

Koch, 1977). Furthermore, all discrepancies were dis-

cussed until a consensus was reached. In case, no agree-

ment was reached or the verbal reports of the participants

were judged as unclear, the respective item was excluded

from the analysis. This affected 0.7% of the items.

We chose to code all strategies reported for each trial,

because we cannot be sure whether a particular decision is

influenced only by one of the strategies or which one of the

reported strategies was the most influential. Moreover, we

checked whether the number of strategies reported decreased

with the number of trials. Indeed, trial was a significant pre-

dictor. However, the slope estimate was very small with a

reduction of 0.00044 strategies per trial (over 200 trials 0.089

strategies). Hence, we are confident that the duration of the

experiment did not influence our results seriously. Finally, we

examined whether talkativeness was a significant predictor of

the frequency of strategies. As a measure for talkativeness we

used the mean number of words in verbal reports. Then, we

ran generalized linear mixed effects models (GLME) with
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logit as link function and assuming a binomial error distri-

bution for each strategy separately. In the model, talkative-

ness was entered as a fixed effect and additionally, we

included a random intercept for participants as well as items.

However, we found that talkativeness was not a significant

predictor after correcting for multiple testing (all p[ 0.103).

Thus, we also did not find evidence for an influence of

talkativeness on the frequency of reported strategies.

Analysis

Accuracy

In order to investigate the effect of set size and presentation

duration on the association between accuracy in a non-sym-

bolicmagnitude comparison task and arithmetic performance,

we ran a GLME with logit as link function and assuming a

binomial error distribution. We ran a GLME instead of an

analysis of variance (ANOVA), as for accuracy data the

assumption of homogenous variances of the ANOVA is not

met, which can lead to spurious effects (Jaeger, 2008). In our

GLME, accuracy was the dependent variable. Furthermore,

fixed effects were set size (b1, b2), presentation duration (pres
dur, b3), arithmetic performance (b4), ratio between the to-be-
compared numerosities (b5), the interaction of set size and

presentation duration (b6, b7), the interaction of set size and

arithmetic performance (b8, b9), the interaction of presenta-

tion duration and arithmetic performance (b10) as well as the
interaction of presentation duration, set size and arithmetic

performance (b11, b12). We included a random intercept for

participants (v0i) as well as items (w0j) in order to account for

the fact that we included only a sample of participants and

items from the population (Baayen, Davidson, & Bates,

2008). Moreover, presentation duration was included as a

random slope both for participants (v1i) and items (w1j) in

order to estimate the effects of presentation duration sepa-

rately for each participant and item. All categorical variables

were effect coded. Ratio and arithmetic performance were

centered. Thus, the following GLME was used:

logitðyijÞ ¼ b0 þ b1set size1þ b2set size2þ b3pres dur

þ b4arithmetici þ b5ratio

þ b6ðset size1� pres durÞ þ b7ðset size2� pres durÞ
þ b8ðset size1� arithmeticiÞ þ b9ðset size2� arithmeticiÞ
þ b10ðpres dur� arithmeticiÞ
þ b11ðset size1� pres dur� arithmeticiÞ
þ b12ðset size2� pres dur� arithmeticiÞ
þ v0i þ v1ipres durþ w0j

þ w1jpres dur,

with b0 being the intercept, i indicating a specific partici-

pant and j a specific item. set size1 and set size2 were the

effect code predictor variables for set size with [1 0] for

large set size, [0 1] for small set size, and [-1 -1] for

subitizing. pres dur indicated the predictor variable for

presentation duration and was coded with 1 for short pre-

sentation duration and -1 for long presentation duration.

The predictor variable ratio indicated the centered ratio

between the two to-be-compared numerosities. Finally, the

predictor variable arithmetic indicated the centered scores

of the participants in the arithmetic task.

We calculated p values using likelihood ratio tests.

GLME were estimated using the R packages lme4 (Bates,

Maechler, Bolker, & Walker, 2015) and afex (Singmann,

Bolker, & Westfall, 2015). Moreover, we ran post hoc

analyses using the R package multcomp (Hothorn, Bretz, &

Westfall, 2008). To correct for multiple testing, we

adjusted the p values using the Benjamini–Hochberg pro-

cedure (Benjamini & Hochberg, 1995).

Response times

Response times (RTs) were defined as the period of time

between the end of stimulus presentation and the response. Prior

to the analysis of response times (RT) a trimmingprocedurewas

conducted. In a first step, we excluded all RTs larger than 10 s

resulting in a loss of 0.5% of all RTs. As RTs were strongly

skewed to the right, we applied a log-transformation (Ratcliff,

1993) Afterwards, we ran a linear mixed effects model (LME)

with log-transformed RT (log RT) as dependent variable and

the following fixed effects: set size, presentation duration,

arithmetic performance, ratio between the to-be-compared

numerosities, the interaction of set size and presentation dura-

tion, the interaction of set size and arithmetic performance, the

interaction of presentation duration and arithmetic performance

as well as the interaction of set size, presentation duration, and

arithmetic performance. Moreover, we included a random

intercept for participants and items as well as set size, presen-

tation duration and the interaction between set size and pre-

sentation duration as a random slope for participants and

presentation duration as a random slope for items (i.e., we used

the maximal random effects structure, see Barr, Levy,

Scheepers, & Tily, 2013). Again all categorical variables were

effect coded and the ratio as well as the arithmetic performance

was centred. Thus, the following LME was used:

yij ¼ b0 þ b1set size1þ b2set size2þ b3pres dur

þ b4arithmetici þ b5ratio

þ b6ðset size1� pres durÞ þ b7ðset size2� pres durÞ
þ b8ðset size1� arithmeticiÞ þ b9ðset size2� arithmeticiÞ
þ b10ðpres dur� arithmeticiÞ
þ b11ðset size1� pres dur� arithmeticiÞ
þ b12ðset size2� pres dur� arithmeticiÞ þ v0i þ v1iset size1

þ v2iset size2þ v3ipres durþ v3iðset size1� pres durÞ
þ v4iðset size2� pres durÞ þ w0j þ w1jpres durþ eij:
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Based on the results of the LME we calculated z stan-

dardized residuals for each log RT and excluded log RTs

with absolute z standardized residuals deviating more than

3 SD (see Baayen & Milin, 2010 for a similar procedure).

This affected again 0.5% of the data. After removing these

outliers, we ran the LME again. We calculated p values

using Satterthwaite’s approximation for degrees of freedom

available via the R package lmerTest (Kuznetsova,

Brockhoff, & Christensen, 2015). Again, post hoc tests

were calculated using the R package multcomp (Hothorn

et al., 2008).

Frequencies of strategies

As for accuracy data, we conducted a GLME for the fre-

quency of reported strategies. We coded whether partici-

pants reported a specific strategy or not (1 = strategy

reported; 0 = strategy not reported). These binary vari-

ables served as dependent variables in the GLMEs. For the

three most frequently reported strategies (i.e., numerosity-

based strategies, visual strategies, and counting strategies),

we included the following fixed effects: set size, presen-

tation duration, arithmetic performance, as well as all

possible two-way and three-way interactions. Moreover,

we included a random intercept for participants as well as

items. Again, we included presentation duration as a ran-

dom slope both for participants and items. Additionally, all

categorical variables were effect coded and the covariate

arithmetic performance was centred. Consequently, the

following GLME resulted:

logitðyijÞ ¼ b0 þ b1set size1þ b2set size2

þ b3pres durþ b4arithmetici

þ b5ðset size1� pres durÞ
þ b6ðset size2� pres durÞ
þ b7ðset size1� arithmeticiÞ
þ b8ðset size2� arithmeticiÞ
þ b9ðpres dur� arithmeticiÞ
þ b10ðset size1� pres dur� arithmeticiÞ
þ b11ðset size2� pres dur � arithmeticiÞ
þ v0i þ v1ipres durþ w0j

þ w1jpres dur:

For the other two strategies (calculation-based strategies

and subitizing) we could not estimate the model including

all fixed effects, as these strategies were reported rather

rare. Therefore, we only included set size, presentation

duration, and the interaction between set size and presen-

tation duration as fixed effects. The random effects were

identical to the above model:

logitðyijÞ ¼ b0 þ b1set size1þ b2set size2þ b3pres dur

þ b4ðset size1� pres durÞ
þ b5ðset size2� pres durÞ
þ v0i þ v1ipres durþ w0j þ w1jpres dur:

Results

Descriptive statistics of task performance (accuracy and

RT) for the six conditions of the non-symbolic magnitude

comparison task are given in Table 1. Moreover, the

average score in the arithmetic test was 14 (SD = 4)

ranging from 3 to 20.

In the following results sections, we chose to report

higher level interactions first before presenting main

effects, as most of our interactions were disordinal which

limits the interpretability of main effects.

Accuracy

The results of the GLME for accuracy are given in Table 2.

First, we replicated the ratio effect: accuracy decreased

with increasing ratio. Moreover, we observed a significant

interaction between set size and presentation duration

which is depicted in Fig. 1a.

To analyse the interaction between set size and pre-

sentation duration, we tested first, whether the effect of

presentation duration was present in all set size conditions.

Post-hoc tests revealed that accuracy was significantly

better for longer presentation durations than for shorter

presentation durations in all set size conditions (all

p\ 0.015).

Next, we investigated whether accuracy of set size

conditions differed in the shorter and the longer presenta-

tion condition. For the shorter presentation duration, we

found that accuracies did not differ significantly between

the set size conditions (all p[ 0.523). In contrast, for the

longer presentation duration we observed that only the

conditions large set size and subitizing differed signifi-

cantly (z = 2.52, p = 0.033). The other two pairwise

comparisons were not significant (all p[ 0.075). Thus,

there was an effect of set size only for the longer presen-

tation duration and therefore, the main effect of set size

should not be interpreted.

The significant interaction between set size and arith-

metic indicated that the relationship between accuracy in

the non-symbolic magnitude comparison task and arith-

metic performance differed depending on set size. The

estimated slope (as indicator of this relationship) was lar-

gest in the condition large set size, followed by the
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estimated slope in the small set size condition and the slope

for the subitizing condition (see Table 2). Note that a

positive slope is associated with a positive relationship

between accuracy in the non-symbolic magnitude com-

parison task and arithmetic performance. More specifically,

participants with a better arithmetic performance also

performed more accurately in the non-symbolic magnitude

comparison task (see Fig. 2). The estimated slope for the

large set size condition differed significantly only from the

slope for the small set size condition (z = 3.89, p\ 0.001).

All other pairwise comparisons were not significant

(p[ 0.214).

Furthermore, we observed a significant interaction

between presentation duration and arithmetic. The inter-

action indicated that estimated slopes differed significantly

between the presentation durations. However, when testing

whether estimated slopes for the shorter and the longer

presentation duration were different from zero, we

observed that neither of them differed significantly from

zero (150 ms: z = 1.87, p = 0.118; 4000 ms: z = -1.18,

Table 1 Mean (M), standard

deviation (SD), minimum (Min)

and maximum (Max) of

accuracy and response times

separately for the six conditions

of the non-symbolic magnitude

comparison task

Presentation duration Set size Accuracy Response time

M SD Min Max M SD Min Max

Short Subitizing 89 6 70 100 1558 617 569 3320

Small 75 8 53 88 1888 958 612 5427

Large 74 10 53 93 2027 918 796 4497

Long Subitizing 99 3 90 100 667 226 296 1411

Small 91 5 80 100 1158 435 496 2550

Large 84 9 68 98 1157 661 400 3963

Accuracies are given in percentage correct, response times in milliseconds

Table 2 Results of the

generalized linear mixed effects

model for accuracy data

Effect df v2 p Level Estimate SE

Set size 2 10.63 0.005 Subitizing 3.64 0.54

Small 2.35 0.19

Large 2.02 0.18

Pres. duration 1 45.12 \0.001 Short 1.80 0.18

Long 3.53 0.31

Arithmetic 1 0.20 0.658 -0.02 0.04

Ratio 1 51.26 \0.001 -0.99 0.12

Set size 9 pres. duration 2 10.47 0.005 Subitizing 9 short 2.29 0.44

Subitizing 9 long 4.98 0.87

Small 9 short 1.54 0.20

Small 9 long 3.17 0.22

Large 9 short 1.58 0.20

Large 9 long 2.46 0.21

Set size 9 arithmetic 2 17.52 \0.001 Subitizing -0.10 0.10

Small -0.02 0.03

Large 0.07 0.02

Pres. duration 9 arithmetic 1 4.31 0.038 Short 0.05 0.03

Long -0.08 0.07

Pres. duration 9 set size 9 arithmetic 2 5.72 0.057 Subitizing 9 short 0.09 0.05

Subitizing 9 long -0.29 0.20

Small 9 short -0.01 0.03

Small 9 long -0.04 0.04

Large 9 short 0.06 0.03

Large 9 long 0.08 0.03

Estimates and SE are given in log odds

Pres. duration presentation duration
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p = 0.420). Thus, although we observed that estimated

slopes differed significantly between the presentation

durations, the relationship between accuracy in the non-

symbolic magnitude comparison task and arithmetic per-

formance was significant in neither of the two presentation

duration conditions.

Response times

The results of the LME for log RT are given in Table 3.

Again, we found a significant main effect of ratio, whereby

log RTs increased with ratio (log RT = 0.14, SE = 0.01).

Similar to the results for accuracy, we observed a signifi-

cant interaction between set size and presentation duration

which is depicted in Fig. 1b. To analyze the interaction, we

again tested first, whether the effect of presentation dura-

tion was present in all set size conditions. Post-hoc tests

revealed that log RT were faster for longer presentation

durations than for shorter presentation durations in all set

size conditions (all p\ 0.001). Next, we investigated

whether log RT of set size conditions differed in the shorter

and the longer presentation condition. For the shorter

presentation duration, we found that log RT did not differ

significantly between the set size conditions (all

p[ 0.318). In contrast, for the longer presentation duration

we observed that log RT in the small set size condition

differed significantly from the other two conditions (both

p\ 0.001), whereas the subitizing set size condition did

not differ significantly from the large set size condition

(z = 1.09, p = 0.849). Thus, there was an effect of set size

again only for the longer presentation duration and there-

fore, the main effect of set size should not be interpreted.

No other interactions were significant.

Strategies

Two participants had to be excluded from the strategy

analyses, because their responses were not recorded due to

technical errors. Descriptive statistics regarding the fre-

quency of the strategies reported by the participants are

given in Table 4. Visual strategies were reported most

frequently, followed by numerosity-based strategies and

counting strategies. In contrast calculation-based strategies

and subitizing were rather rare. Importantly, the relative

frequencies added up to more than 100% indicating that

participants reported (on average) more than one strategy

per trial. Moreover, there were large individual differences

regarding the strategies reported, as reflected by the mini-

mum and the maximum of the frequencies. In particular,

there were participants relying on visual strategies in

almost every trial (in 94% of the reported strategies),

whereas others mentioned visual strategies in only about

one-third of the trials. Moreover, while some participants

relied on numerosity-based strategies in about half of the

trials, others almost never reported this kind of strategy.

Similarly, some participants never reported counting or

calculation-based strategies, whereas others used these

Fig. 1 Accuracy (a) and
reaction times (b) as a function

of presentation duration and set

size

Fig. 2 Relationship between accuracy in the non-symbolic magni-

tude comparison task and arithmetic performance as a function of set

size. Dots reflect data points and lines reflect the slopes of fixed

effects of the relationship between set size and arithmetic
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strategies repeatedly. With regard to visual strategies,

participants reported to rely on different visual properties

of the stimuli, including dot size (mean frequency = 68%),

density (mean frequency = 46%), convex hull (mean fre-

quency = 59%), and total surface area (mean frequency

= 6%). Thus, when participants used visual strategies, they

on average considered 1.80 visual properties.

In a next step, we investigated separately for each of the

reported strategies, whether the frequency of the respective

strategies depended on set size and presentation duration

and, moreover, whether the frequency of the respective

strategies was influenced by participants’ arithmetic per-

formance. The results of the GLMEs are given in Tables 5

and 6.

For the frequency of numerosity-based strategies, we

observed a significant interaction between set size and

presentation duration, which is illustrated in Fig. 3a. The

interaction indicated that for items in the subitizing range,

participants reported numerosity-based strategies more

often for the short presentation duration condition than for

the long presentation condition. However, in the small set

size condition, reported frequencies were similar for both

presentation duration conditions. In contrast, in the large

set size condition, participants reported less numerosity-

based strategies in the short presentation duration than in

the long presentation duration. As can be seen in Fig. 3a,

the main effect of set size should not be interpreted, as

there was no consistent pattern. Nevertheless, these results

contradicted our expectations that numerosity-based

strategies are reported more frequently in settings with

large set sizes.

In line with our assumptions we found a significant

interaction between set size and presentation duration for

the frequency of reported visual strategies (see Fig. 3b. In

general, participants reported visual strategies more often

in the short presentation duration condition than in the long

presentation duration condition. However, the effect was

largest in the small set size condition, followed by the

subitizing condition, and smallest in the large set size

condition. Moreover, there was a significant main effect of

Table 3 Results of the linear mixed effects model for log-transformed RT

Effect df1 df2 F p Level Estimate SE

Set size 2 60.04 16.42 \0.001 Subitizing 6.86 0.06

Small 7.08 0.06

Large 6.86 0.06

Pres. duration 1 36.84 73.63 \0.001 Short 7.32 0.07

Long 6.69 0.07

Arithmetic 1 30.02 \0.01 0.965 0.001 0.01

Ratio 1 86.01 141.06 \0.001 0.14 0.01

Set size 9 pres. duration 2 58.79 6.16 0.004 Subitizing 9 short 7.25 0.08

Subitizing 9 long 6.46 0.07

Small 9 short 7.33 0.08

Small 9 long 6.84 0.07

Large 9 short 7.39 0.08

Large 9 long 6.79 0.09

Set size 9 arithmetic 2 30.21 1.00 0.379 Subitizing 0.007 0.01

Small 0.001 0.02

Large -0.006 0.01

Pres. duration 9 arithmetic 1 30.02 0.11 0.747 Short -0.002 0.02

Long 0.004 0.02

Pres. duration 9 set size 9 arithmetic 2 30.17 1.29 0.290 Subitizing 9 short 0.004 0.02

Subitizing 9 long 0.010 0.01

Small 9 short 0.006 0.02

Small 9 long -0.004 0.02

Large 9 short -0.016 0.02

Large 9 long 0.004 0.02

Estimates and SE are given in log RT

Pres. duration presentation duration
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set size indicating that visual strategies were reported more

frequently in the large set size condition than in the small

set size condition or in the subitizing condition (all pair-

wise comparisons p\ 0.001). The main effect of presen-

tation duration indicated that visual strategies were

reported significantly more frequently in the shorter pre-

sentation duration condition than in the longer presentation

durations.

Moreover, in accordance with our hypotheses a signifi-

cant interaction between set size and presentation duration

on the frequency of reported counting strategies was

observed (Fig. 3c). For the subitizing condition and the

small set size condition a similar pattern was found:

counting strategies were significantly more often reported

in the long presentation duration condition than in the short

presentation duration condition, whereby the effect was

larger for the small set size condition than for the subitizing

condition. For the large set size condition, almost no

counting strategies were reported. The main effect of set

size should not be interpreted, as it was only present in the

Table 4 Relative frequency of reported strategies

Strategies Presentation duration Set size M (%) SD (%) Min (%) Max (%)

Numerosity-based strategies Short Subitizing 16.3 17.7 0.0 60.0

Small 25.7 18.9 0.0 65.0

Large 14.6 16.2 0.0 67.5

Long Subitizing 5.0 10.4 0.0 50.0

Small 24.1 17.3 0.0 82.5

Large 21.1 21.8 0.0 87.5

Visual strategies Short Subitizing 37.0 28.8 0.0 100.0

Small 77.4 24.2 17.5 100.0

Large 91.1 12.1 60.0 100.0

Long Subitizing 5.3 15.7 0.0 80.0

Small 26.6 22.7 0.0 82.5

Large 84.9 17.7 37.5 100.0

Counting strategies Short Subitizing 23.3 26.3 0.0 90.0

Small 4.6 10.1 0.0 47.5

Large 0.2 0.6 0.0 2.5

Long Subitizing 49.7 36.1 0.0 100.0

Small 48.8 30.2 0.0 92.5

Large 2.0 7.8 0.0 42.5

Calculation-based strategies Short Subitizing 1.7 4.6 0.0 20.0

Small 2.1 4.6 0.0 17.9

Large 0.3 1.8 0.0 10.0

Long Subitizing 5.0 9.4 0.0 40.0

Small 10.7 11.1 0.0 37.5

Large 5.0 9.5 0.0 35.0

Subitizing Short Subitizing 51.0 29.2 0.0 100.0

Small 3.4 6.8 0.0 35.0

Large 0.0 0.0 0.0 0.0

Long Subitizing 59.0 31.8 0.0 100.0

Small 1.0 2.1 0.0 7.9

Large 0.0 0.0 0.0 0.0

Guessing Short Subitizing 1.0 3.1 0.0 10.0

Small 5.8 9.0 0.0 30.0

Large 4.3 7.1 0.0 30.0

Long Subitizing 0.0 0.0 0.0 0.0

Small 3.4 6.1 0.0 20.5

Large 5.2 8.4 0.0 34.2

Values reported in the table reflect the relative frequency of the strategies out of all reported strategies
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short presentation duration condition. However, the main

effect of presentation duration was consistent: counting

strategies were reported significantly more frequently in

the long presentation duration condition than in the short

presentation duration condition.

For calculation-based strategies, we observed a signifi-

cant main effect of set size. However, the direction of the

effect contradicted our assumption based on previous

findings regarding strategy selection in numerosity esti-

mation: calculation-based strategies were reported most

often in the small set size condition, followed by the

subitizing condition and the large set size condition.

However, only the frequency of the reported calculation-

based strategies in the small and the large set size condition

differed significantly (p\ 0.001). In line with our predic-

tions, we found a main effect of presentation duration

indicating that calculation-based strategies were reported

significantly more frequently in the long presentation

duration condition than in the short presentation duration

condition.

As expected, subitizing strategies were reported most

frequently in the subitizing condition, followed by the

small set size condition. In the large set size condition,

subitizing strategies were not mentioned a single time and

hence, log odds and SE could not be estimated accurately.

Thus, only the conditions subitizing and small set size

differed significantly regarding the frequency of subitizing

strategies (p\ 0.001).

For none of the strategies reported, we found a link

between the frequency of reported strategies and arithmetic

performance. In other words, we found no strategy which

predicted arithmetic performance alone. However, it might

be possible that using a combination of reported strategies

would predict arithmetic performance. To investigate this

issue, we ran a multivariate analysis based on a support

vector machine (SVM) for classifying arithmetic perfor-

mance using the frequencies of all reported strategies as

features (including numerosity-based strategies, visual

strategies, counting strategies, calculation-based strategies,

and subitizing). To do so, we categorized the arithmetic

Table 5 Results of the generalized linear mixed effects models, separated for each strategy

Strategy Effect df v2 p p adj.

Numerosity-based strategies Set size 2 61.28 \0.001 \0.001

Presentation duration 1 2.33 0.127 0.210

Arithmetic 1 0.24 0.624 0.646

Set size 9 presentation duration 2 37.16 \0.001 \0.001

Set size 9 arithmetic 2 3.62 0.163 0.245

Presentation duration 9 arithmetic 1 2.57 0.109 0.192

Set size 9 presentation duration 9 arithmetic 2 4.03 0.133 0.210

Visual strategies Set size 2 152.20 \0.001 \0.001

Presentation duration 1 51.46 \0.001 \0.001

Arithmetic 1 0.60 0.439 0.488

Set size 9 presentation duration 2 86.57 \0.001 \0.001

Set size 9 arithmetic 2 3.51 0.173 0.247

Presentation duration 9 arithmetic 1 0.80 0.372 0.429

Set size 9 presentation duration 9 arithmetic 2 2.50 0.287 0.358

Counting strategies Set size 2 162.52 \0.001 \0.001

Presentation duration 1 37.15 \0.001 \0.001

Arithmetic 1 1.65 0.198 0.270

Set size 9 presentation duration 2 42.02 \0.001 \0.001

Set size 9 arithmetic 2 5.48 0.065 0.121

Presentation duration 9 arithmetic 1 0.43 0.511 0.548

Set size 9 presentation duration 9 arithmetic 2 2.54 0.280 0.358

Calculation-based strategies Set size 2 25.95 \0.001 \0.001

Presentation duration 1 23.16 \0.001 \0.001

Set size 9 presentation duration 2 5.60 0.061 0.121

Subitizing Set size 2 110.13 \0.001 \0.001

Presentation duration 1 0.06 0.806 0.806

Set size 9 presentation duration 2 2.17 0.338 0.405
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performance of participants into ‘‘good’’ and ‘‘poor’’ using

a median split (Mdn = 14). For running the SVM, we used

the software Rapidminer and the library LIBSVM (Chang

& Lin, 2011). Moreover, we used a linear kernel to be able

to interpret the feature weights regarding their importance

(e.g., van den Berg, Reinders, de Ridder, & de Beer, 2015).

We optimized the performance of the SVM, by varying the

complexity constant using the values 0.003, 0.03, 0.3, 3,

30, 300, 3000, and 30,000. The performance of the SVM

was assessed using tenfold cross-validation (James, Witten,

Hastie, & Tibshirani, 2013). The best model with a com-

plexity constant of 300 classified 73.33% of the partici-

pants correctly. A binomial test revealed that this

classification performance was significantly above chance

level, p = 0.016. Moreover, our analysis revealed the fol-

lowing feature weights: 491 for numerosity-based strate-

gies, 1654 for visual strategies, 464 for counting strategies,

87 for calculation-based strategies, and 172 for subitizing.

As high weights indicate a strong contribution of the

respecting feature to the resulting classification, our results

suggested that the frequency of visual strategies played the

most important role in predicting arithmetic performance.

Moreover, the positive sign of the weight indicated that a

high frequency of visual strategies was predictive for good

arithmetic performance.

Discussion

Recent studies suggested that inconsistent findings

regarding the relationship between ANS acuity and math-

ematical performance can be attributed to aspects of task

design. However, the moderating role of such design

characteristics has not been investigated systematically so

far. Therefore, in the present study, we examined the

influence of two often varied design characteristics (i.e., set

size and presentation duration) on the relationship between

non-symbolic magnitude comparison and arithmetic per-

formance. Moreover, we were interested in how strategy

selection was affected by set size and presentation duration

and whether the frequency of the reported strategies was

associated with math performance.

Table 6 Fixed effect estimates (SE in parenthesis) of the generalized linear mixed effects models, separated for each strategy

Effect Level Numerosity-

based

Visual Counting Calculation-

based

Subitizing

Set size Subitizing -2.74 (0.25) -2.45 (0.39) -1.07 (0.37) -5.02 (0.49) 0.31 (0.41)

Small -1.34 (0.17) 0.19 (0.29) -2.33 (0.35) -4.41 (0.40) -5.43 (0.36)

Large -1.83 (0.18) 2.82 (0.30) -6.62 (0.57) -5.86 (0.48) -23.21 (1283.77)

Pres. duration Short -1.81 (0.21) 1.44 (0.31) -4.87 (0.50) -6.68 (0.60) -9.50 (582.51)

Long -2.13 (0.20) -1.07 (0.31) -1.82 (0.35) -3.52 (0.32) -9.39 (627.02)

Arithmetic -0.021 (0.04) -0.052 (0.07) -0.107 (0.09) -6.19 (0.75) 0.13 (0.53)

Set size 9 pres. duration Subitizing 9 short -1.98 (0.26) -0.81 (0.37) -1.99 (0.43) -3.84 (0.43) 0.48 (0.39)

Subitizing 9 long -3.49 (0.37) -4.08 (0.50) -0.15 (0.40) -5.93 (0.59) -5.15 (0.45)

Small 9 short -1.32 (0.21) 1.89 (0.32) -4.47 (0.43) -2.90 (0.32) -5.71 (0.46)

Small 9 long -1.35 (0.19) -1.51 (0.31) -0.19 (0.35) -7.91 (0.77) -23.47 (1747.54)

Large 9 short -2.12 (0.22) 3.25 (0.33) -8.15 (0.96) -3.82 (0.33) -22.95 (1881.06)

Large 9 long -1.55 (0.19) 2.40 (0.32) -5.10 (0.42) -5.02 (0.49) 0.31 (0.41)

Set size 9 arithmetic Subitizing 0.035 (0.06) -0.064 (0.07) -0.098 (0.08)

Small -0.055 (0.04) -0.074 (0.07) -0.04 (0.08)

Large -0.043 (0.04) -0.018 (0.07) -0.184 (0.11)

Pres. duration 9 arithmetic Short -0.063 (0.05) -0.077 (0.08) -0.136 (0.11)

Long 0.021 (0.05) -0.027 (0.07) -0.078 (0.09)

Pres. duration 9 set

size 9 arithmetic

Subitizing 9 short -0.05 (0.05) -0.06 (0.08) -0.28 (0.16)

Subitizing 9 long -0.04 (0.05) 0.02 (0.07) -0.09 (0.10)

Small 9 short -0.07 (0.06) -0.10 (0.08) -0.08 (0.10)

Small 9 long 0.14 (0.10) -0.03 (0.09) -0.12 (0.09)

Large 9 short -0.07 (0.05) -0.07 (0.08) -0.05 (0.10)

Large 9 long -0.04 (0.05) -0.07 (0.07) -0.03 (0.08)

Pres. duration presentation duration
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In line with previous studies, we observed that both set

size and presentation duration affected the performance in

a non-symbolic magnitude comparison task. In particular,

task performance was better (i.e., more accurate and faster)

for smaller dot sets and longer presentation durations than

for larger dot sets and shorter presentation durations

(Clayton & Gilmore, 2015; Inglis & Gilmore, 2013).

However, more importantly, our results revealed that set

Fig. 3 Estimated frequency of

reported strategies (based on

fixed effects) as a function of

presentation duration and set

size, separately for numerosity-

based strategies (a), visual
strategies (b), and counting

strategies (c). Error bars reflect
standard errors of fixed effects
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size was indeed a moderator of the relationship between

ANS acuity (i.e., accuracy in the non-symbolic magnitude

comparison task) and math performance: The relationship

was significantly larger for the large set size condition (i.e.,

30–70 dots) than for the small set size condition (i.e., 5–15

dots).

In order to get a better understanding of the processes

involved in the solution of a non-symbolic magnitude

comparison task and to get insights in the mechanisms

underlying the moderating effect of set size, we investi-

gated the strategies participants reported to solve the task.

Participants reported numerosity-based strategies, visual

strategies, counting, calculation-based strategies, subitizing

and guessing, whereby visual strategies were reported most

often. Visual strategies included different visual properties

of the stimuli (i.e., dot size, sparsity, convex hull, or total

area) as cues or information guiding the judgments. Inter-

estingly, participants considered on average more than one

visual property. Moreover, participants did not rely on only

one strategy per trial. Furthermore, there were large indi-

vidual differences regarding the frequency of the reported

strategies. As expected, the frequency of the reported

strategies depended on design characteristics. Set size

influenced the frequency of all reported strategies, whereas

presentation duration affected the frequency of visual

strategies, counting, and calculation-based strategies.

Taken together, we observed that numerosity-based

strategies were reported most often for small set sizes and

least often for set sizes within the subitizing range in the

long presentation duration. Moreover, participants reported

visual strategies most often for large set sizes independent

of presentation duration as well as for small set sizes for

short presentation duration, and least often for set sizes

within the subitizing range in the long presentation dura-

tion. Counting strategies were most often reported in the

long presentation duration for set sizes within the subitiz-

ing range as well as for small set sizes, whereas they were

virtually absent for small set sizes in the short presentation

duration condition as well as for large set sizes independent

of presentation duration. Calculation-based strategies were

reported most often for small set sizes, followed by set

sizes within the subitizing range and large set sizes.

Moreover, they were reported more frequently in the long

presentation duration condition than in the short presenta-

tion duration condition. Finally, subitizing strategies were

reported most frequently for set sizes within the subitizing

range, followed by small set sizes. For large set sizes,

subitizing strategies were not mentioned a single time.

Moreover, we were especially interested whether

specific strategies also contributed to the relationship

between non-symbolic magnitude comparison and arith-

metic performance and, whether specific strategies might

explain the moderating effect of set size. We observed that

in the large set size condition (i.e., in the condition in

which the relationship between non-symbolic magnitude

comparison and arithmetic was significantly larger) visual

strategies were reported predominantly. However, we did

not find a significant relation between the frequency of

reported visual strategies and arithmetic performance.

Instead, arithmetic performance could be predicted when

considering a combination of all reported strategies in a

SVM. Nevertheless, our analysis revealed that visual

strategies made the largest contribution to the classification

of participants’ math performance. In the following, we

will discuss implications of the present results for research

on the relationship of ANS acuity and arithmetic perfor-

mance. Moreover, we will elaborate on the validity of the

non-symbolic magnitude comparison task in assessing

ANS acuity.

Moderators of the relationship between non-

symbolic magnitude comparison and arithmetic

performance

Numerous studies have investigated the relationship

between ANS acuity—measured by a non-symbolic mag-

nitude comparison task—and mathematical skills (Bartelet

et al., 2014; Brankaer, Ghesquière, & De Smedt, 2014;

Gilmore, Attridge, De Smedt, & Inglis, 2014; Gilmore,

Attridge, & Inglis, 2011; Halberda et al., 2008; Inglis et al.,

2011; Kolkman, Kroesbergen, & Leseman, 2013; Libertus

et al., 2011; Lindskog, Winman, Juslin, & Poom, 2013;

Price et al., 2012; van Marle, Chu, Li, & Geary, 2014).

However, the results are conflicting with each other (Chen

& Li, 2014; De Smedt et al., 2013; Dietrich, Huber, &

Nuerk, 2015; Fazio et al., 2014). Nevertheless, research on

potential moderators of the relationship between ANS

acuity and math performance is rather rare. Three recent

meta-analyses provided first hints regarding potential

moderators, including the index used to assess ANS acuity

(Chen & Li, 2014) or the age of the participants (Fazio

et al., 2014; Schneider et al., 2016). Additionally, several

authors proposed that aspects of task design might be

responsible for inconsistencies in empirical findings

(Clayton & Gilmore, 2015; De Smedt et al., 2013). In line

with this suggestion, two studies indicated that the rela-

tionship between non-symbolic magnitude comparison and

mathematical performance depended on the congruency

between visual properties of the stimuli and numerosity

(Fuhs & McNeil, 2013; Camilla Gilmore et al., 2013). This

pattern of results was explained by the involvement of

inhibitory control in the processing of incongruent trials, as

in incongruent trials the information based on visual

properties and on the numerosity of the stimuli was con-

flicting (Fuhs & McNeil, 2013; Camilla Gilmore et al.,

2013).
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The present findings support the notion that aspects of

task design influence the relationship between non-sym-

bolic magnitude comparison and arithmetic, as we identi-

fied set size as a moderator of this relationship. In

particular, this relationship was more pronounced for larger

set sizes than for smaller set sizes. Previous studies differed

considerably regarding the set size employed. Some studies

used small numerosities in the range of 1–9 dots (Brankaer

et al., 2014) and, thus also included the subitizing range. In

contrast, others used substantially larger numerosities in

the range of 30–100 dots (Guillaume, Nys, Mussolin, &

Content, 2013). Hence, our result indicate that set size

might—in combination with other factors like the index

used to assess ANS acuity, age group, or congruence of the

visual properties—contribute to the inconsistencies of the

results regarding the relationship between ANS acuity and

math performance. In contrast, presentation duration did

not influence the relationship between non-symbolic mag-

nitude comparison and arithmetic performance.

Having identified set size as moderator of this rela-

tionship leads to the question which processes involved in

the solution of a non-symbolic magnitude comparison task

might drive this moderating effect. We considered several

strategies which might contribute to the varying strength of

the relationship between non-symbolic magnitude com-

parison and arithmetic performance. Importantly, the

reported frequency of all considered strategies was influ-

enced by set size. We observed that participants reported

primarily visual strategies in trials with larger set size,

whereas in the small set size condition also other strategies

were applied. In particular, in about 50% of the trials in the

small set size condition participants reported counting

strategies. Previous research has demonstrated a link

between visual-spatial abilities and mathematical abilities

(Assel et al., 2003; Guay & McDaniel, 1977; Gunderson

et al., 2012; Kurdek & Sinclair, 2001; Mazzocco & Myers,

2003; Reuhkala, 2001). Hence, participants with better

visual-spatial abilities might also perform better in the

large set size condition, which might explain the observed

correlation between non-symbolic magnitude comparison

and math performance. Future research is needed to

investigate the role of specific visuospatial abilities as

potential moderators of the relationship between non-

symbolic magnitude comparison and arithmetic. It remains

to be clarified which visuospatial abilities are involved in

the solution process and how visuospatial abilities are

linked to strategy selection and task performance.

In contrast, in the small set size condition in a large

percentage of the trials counting abilities were measured. It

can be assumed that students are able to count up to 15

(i.e., the maximal number of dots in a set of the small set

size condition). Accordingly, this should reduce the vari-

ance of participants’ performance in the non-symbolic

magnitude comparison task and thereby, also a potential

correlation between non-symbolic magnitude comparison

and math performance. Thus, the moderator effect of set

size might be caused by the differential use of strategies

depending on set size and the involvement of additional

processes like visual-spatial abilities or counting.

Validity of the non-symbolic magnitude comparison

task in assessing ANS acuity

Recently, increasing research interest was paid to the

validity of the non-symbolic magnitude comparison task as

a measure of ANS acuity. In this context, studies focused

especially on non-numerical processes involved in the

solution of a non-symbolic magnitude comparison task.

Results revealed the involvement of additional processes,

like inhibitory control or relying on visual properties of the

stimuli instead of numerosity information (Clayton &

Gilmore, 2015; Fuhs & McNeil, 2013; Gebuis & Reynvoet,

2012; Sz}ucs et al., 2013). In line with previous suggestions

that participants’ weight visual properties when solving the

task (Gebuis & Reynvoet, 2012), the verbal reports col-

lected in the present study revealed a major involvement of

visual strategies in solving non-symbolic magnitude com-

parison tasks. Moreover, our results indicated that partici-

pants referred to more than one visual property when

making their judgments. This finding supports the claim of

Gebuis & Reynvoet (2012) that participants integrate the

information from multiple visual properties. Moreover, the

findings of the present study suggested that strategies

reported in the context of numerosity estimation such as

calculation-based strategies or counting (Gandini et al.,

2008b), were also applied in non-symbolic magnitude

comparison. In sum, previous and present results suggest

the involvement of other processes or strategies involving,

for instance, visual cues or counting, in non-symbolic

magnitude comparison and thus challenge the validity of

the non-symbolic magnitude comparison task as a measure

of ANS acuity.

Nevertheless, we observed a ratio effect for numerosity

in the present study, which is commonly taken as hallmark

of the involvement of the ANS (e.g., Price et al., 2012).

Moreover, participants also reported numerosity-based

strategies in solving the task. These findings support the

notion that the task indeed measures ANS representation, at

least in a part of the trials. However, when calculating the

ratio effect only for the trials in which participants reported

to having used only visual strategies, the ratio effect

remained significant (p\ 0.001). This finding questions

the validity of the ratio effect as a measure of the under-

lying representation (see also Lyons, Nuerk, & Ansari,

2015). Moreover, the question remains why a (numerical)

ratio effect is observed, when participants rely solely on
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visual cues. One possible explanation might be that par-

ticipants rely on visual cues only in case of congruent tri-

als, where a ratio effect might be also expected for visual

cues. To examine this question, we calculated the number

of congruent and incongruent trials when participants

reported visual cues. However, the number of congruent

and incongruent trials was quite similar and hence, cannot

explain the ratio effect.

Another possibility might be that participants integrate

different visual cues when comparing the numerosity of

two dot sets. Evidence for this suggestion comes from the

finding that participants considered more than one visual

cue. As shown by DeWind et al. (2015), the numerosity of

dots can be calculated and, hence, estimated by partici-

pants, based on visual properties of the two dots sets: the

log of the numerosity of a given dot set is equal to the log

of the total surface area divided by the item surface area, or

the field area divided by the sparsity.

Of course, participants are probably not aware of this

equation. Nevertheless, they might intuitively understand

this relationship and draw inferences based on a specific

constellation of visual cues. We have found evidence for

this suggestion in the present experiment. For example, a

participant reported the following strategy: ‘‘The dots on

the left side were smaller and denser than on the right side,

but the area was approximately the same. That is why there

have to be more dots on the left side.’’ Thus, they might

indirectly calculate the numerical ratio between the two dot

sets based on visual cues, which in turn would explain why

a ratio effect is observed, even when participants rely on

visual cues. Hence, a significant ratio effect for numerosity

might not necessarily indicate that participants relied on the

numerosity of the dots. Instead, they might integrate dif-

ferent visual cues to draw conclusions about the

numerosity of a dot set and use this information for com-

paring the dot sets. Taken together, in line with previous

findings the present results indicate that several processes

and strategies are involved in the solution of a non-sym-

bolic magnitude comparison task. Hence, this task cannot

be assumed to assess ANS acuity exclusively and, hence,

should not be taken as pure ANS task (see also Sz}ucs et al.,

2013). However, it cannot be ruled out that the task also

assesses numerosity-related processes like the acuity of the

underlying ANS representations. Future research is needed

to unravel the interplay of numerical and non-numerical

processes and strategies involved in non-symbolic magni-

tude comparison and develop possibilities to quantify them.

Methodological constraints

In the present study, participants had to report immediately

after each trial how they solved it. Verbal reports have

often been used to get insights in the strategies participants

use to solve numerical or arithmetic tasks (Gandini et al.,

2008; Kirk & Ashcraft, 2001; Robinson, 2001; Seyler,

Kirk, & Ashcraft, 2003; Smith-Chant & LeFevre, 2003).

Nevertheless, the validity of verbal reports has been dis-

cussed regarding two main issues: veridicality and reac-

tivity (Crutcher, 1994; Kirk & Ashcraft, 2001; Seyler et al.,

2003).

First, veridicality refers to the issue whether verbal

reports reflect the underlying cognitive processes accu-

rately. Processes that rely on short-term memory—like

counting or calculation-based strategies—can be reported

validly. In contrast, processes that are automatic and,

hence, not easily accessible are difficult to be transferred

into a verbal report (Kirk & Ashcraft, 2001; Seyler et al.,

2003). This might have affected the report of numerosity-

based strategies, as the ANS is assumed to be an automatic

and intuitive process (Nieder & Dehaene, 2009), which

might not be accessible to participants. However, partici-

pants reported numerosity-based strategies in 20% of the

strategies. Nevertheless, it might be possible that this value

underestimates the frequency of numerosity-based strate-

gies in a regular task setting.

Similarly, it might be argued that visual strategies are

rather automatic as well. However, these strategies were

reported very frequently. On the one hand this can either be

interpreted as evidence that automatic strategies are not

reported less frequently per se, or on the other hand, that

visual strategies are not that automatic. Evidence for the

latter argument comes from our results that participants

often considered several visual properties and their rela-

tion, which is an integration process and, hence, short-term

memory might be involved in some way. Another critical

issue is that in case two processes occur concurrently, the

slower process is reported more frequently than the faster

process (Kirk & Ashcraft, 2001; Seyler et al., 2003).

However, the present findings contradict this argument, as

visual and numerosity-based strategies—which are rather

fast—have been reported more often than counting or

calculation-based strategies.

Second, reactivity relates to the possibility that mental

processes or strategies might differ between settings with

and without verbal reports. In a setting requiring verbal

reports participants might prefer accuracy over speed

(Russo, Johnson, & Stephens, 1989). This might have been

the case in the present study, as the mean RT in our

experiment was rather slow compared to other studies (e.g.,

Dietrich, Huber, Moeller, & Klein, 2015a; Halberda, Ly,

Wilmer, Naiman, & Germine, 2012; Price et al., 2012).

However, recently, we provided evidence that experiments,

in which participants prefer accuracy over speed, seem to

be better suited at measuring ANS representations (Diet-

rich et al., 2016). Moreover, the present study as well as

many previous studies showed that the performance in a

Psychological Research (2019) 83:590–612 607

123



non-symbolic magnitude comparison task depends on

certain aspects of task design, which makes it difficult to

directly compare task performance across different studies

(e.g., Inglis & Gilmore, 2014). Moreover, also for the

present setting we replicated previous findings, including

the main effect of set size (Clayton & Gilmore, 2015), the

main effect of presentation duration (Inglis & Gilmore,

2013), and the ratio effect (Bartelet et al., 2014; Gilmore

et al., 2011; Halberda et al., 2008; Soltész et al., 2010).

Thus, the results of the present study and hence, also the

strategies applied should not be considerably different from

studies investigating ANS representations.

Conclusion

The present study extends previous research on moderators

of the often reported relationship between non-symbolic

magnitude comparison and mathematic abilities. We

observed that the design parameter set size moderated this

relationship: The association was higher for larger set sizes

(here: 30–70 dots) than for smaller set sizes (5–15 dots).

This moderating effect of set size might be due to the

differential use of strategies depending on set size and

related processes like visual-spatial abilities or counting.

This finding supports the notion that different design

characteristics of the non-symbolic magnitude comparison

task contribute to the inconsistent findings regarding the

relationship between non-symbolic magnitude comparison

and mathematical performance by inducing different

strategies and additional processes (see e.g., De Smedt

et al., 2013; Feigenson, Libertus, & Halberda, 2013).

Furthermore, our results revealed several strategies in

the solution process of non-symbolic magnitude compar-

ison task including numerosity-based strategies, which

might reflect ANS like processing. However, also other

strategies were reported including visual strategies,

counting strategies, calculation-based strategies, and

subitizing. This questions the assumption that the non-

symbolic magnitude comparison task measures ANS acuity

purely. In particular, visual strategies were reported most

frequently, whereby participants often reported to rely on

more than one visual parameter. These findings are in line

with the notion that participants integrate multiple visual

parameters when solving the task (see Gebuis & Reynvoet,

2012). Moreover, participants reported on average more

than a single strategy per trial. Hence, the present results

challenge the validity of the non-symbolic magnitude

comparison task in assessing ANS acuity.

Regarding the relationship between the frequency of

reported strategies and arithmetic performance, we found

that it was not possible to predict arithmetic performance

based on a single strategy. However, when considering all

reported strategies, arithmetic performance could be pre-

dicted. Thus, it seems that not the application of a strategy

per se, but the individual composition of strategies seems

to be indicative of arithmetic performance and contribute to

the relationship between non-symbolic magnitude com-

parison and arithmetic.
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Table 7 Examples of how different verbal reports were coded

Verbal report in German English translation Num. Vis Count. Calc. Sub.

Relativ sicher; rechts waren relativ wenig Punkte zu

sehen; relativ sicher das links mehr Punkte zu

sehen waren

Relatively sure; on the right side there were

relatively few points; relatively sure that on the

left side there were more points

1 0 0 0 0

Auf der rechten Seite waren die Abstände kleiner

und auch die Fläche größer

On the right side spacing was smaller and

additionally, areas were larger

0 1 0 0 0

Rechts mehr als links ich hab so ein bisschen

abgezählt

Right more than left. I counted a little bit 0 0 1 0 0

Rechts, weil links habe ich kurz ein paar Punkte

gezählt und abgeschätzt wie lange das bei rechts

hätte dauern können und rechts sah es daher

eindeutig nach mehr aus

On the right side, because on the left side I count

some of the dots and estimated how long it would

take to count the dots on the right side, and it

looked like that there are definitely more on the

right side

0 0 0 1 0

Links waren 4, rechts 3 Punkte On the left side there were 4, on the right side 3

points

0 0 0 0 1

Rechts; links waren eindeutig zu viele Lücken und

rechts sind mir die Punkte zwar groß erschienen,

aber von der Menge her eindeutig mehr

Right. On the left side, there were more gaps and on

the right side, dots appeared to be large, but in

terms of quantity definitely more

1 1 0 0 0

links habe ich gezählt, waren nur 6; rechts habe ich

nicht gezählt, aber war klar ein bisschen größer

I counted the dots on the left side. There were only

6. I did not count on the right side, but there were

clearly more

1 0 1 0 0

Jetzt hab ich mich wieder für rechts entschieden

auch nicht so richtig eindeutig weil ich es nicht so

richtig geschafft hab mich zu einigen ob ich dreier

oder vierer Paare bilde es kam mir trotzdem so

vor, dass rechts mehr sind vielleicht auch weil da

die Punkte größer waren

Now, I chose right again. Not that clear-cut, because

I was not able to agree with me, whether I should

form pairs of three or four points. Nevertheless, it

looked like that there were more on the right side,

because there were larger points

0 1 0 1 0

Für linke Seite entschieden, weil man zumindest

anteilig die Punktewolke zählen konnte und sich

in etwa ausrechnen konnte, wie groß die

Punktewolken waren

Chosen the left side, because it was possible to

count the point cloud—at least proportionally—

and to calculate approximately, how large the

point clouds were

0 0 1 1 0

Links waren es vier und rechts eben mehr als vier

durch zählen

On the left side there were four and on the right side

there were more than four by counting

0 0 1 0 1

Num. numerosity-based strategy, Vis. visual strategy, count. counting strategy, calc. calculation-based strategy, sub. subitizing
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Noël, M. P., & Rousselle, L. (2011). Developmental changes in the

profiles of dyscalculia: an explanation based on a double exact-

and-approximate number representation model. Frontiers in

Human Neuroscience, 5, 165. doi:10.3389/fnhum.2011.00165.

Piazza, M. (2010). Neurocognitive start-up tools for symbolic number

representations. Trends in Cognitive Sciences, 14(12), 542–551.

doi:10.1016/j.tics.2010.09.008.

Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004).

Tuning curves for approximate numerosity in the human

intraparietal sulcus. Neuron 44(3), 547–555

Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012).

Nonsymbolic numerical magnitude comparison: Reliability and

validity of different task variants and outcome measures, and

their relationship to arithmetic achievement in adults. Acta

Psychologica, 140(1), 50–57. doi:10.1016/j.actpsy.2012.02.008.

Ratcliff, R. (1993). Methods for dealing with reaction time outliers.

Psychological Bulletin, 114(3), 510–532. doi:10.1037/0033-

2909.114.3.510.

Reuhkala, M. (2001). Mathematical skills in ninth-graders: Relation-

ship with visuo-spatial abilities and working memory. Educa-

tional Psychology, 21(4), 387–399. doi:10.1080/

01443410120090786.

Revkin, S. K., Piazza, M., Izard, V., Cohen, L., & Dehaene, S. (2008).

Does subitizing reflect numerical estimation? Psychological

Science, 19(6), 607–614. doi:10.1111/j.1467-9280.2008.02130.

x.

Robinson, K. M. (2001). The validity of verbal reports in children’s

subtraction. Journal of Educational Psychology, 93(1), 211–222.

doi:10.1037/0022-0663.93.1.211.

Russo, J. E., Johnson, E. J., & Stephens, D. L. (1989). The validity of

verbal protocols. Memory & Cognition, 17(6), 759–769. doi:10.

3758/BF03202637.

Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S.,

Stricker, J., & De Smedt, B. (2016). Associations of non-

symbolic and symbolic numerical magnitude processing with

mathematical competence: A meta-analysis. Developmental

Science. doi:10.1111/desc.12372.

Seyler, D. J., Kirk, E. P., & Ashcraft, M. H. (2003). Elementary

Subtraction. Journal of Experimental Psychology: Learning,

Memory, and Cognition, 29(6), 1339–1352. doi:10.1037/0278-

7393.29.6.1339.

Singmann, H., Bolker, B., & Westfall, J. (2015). afex: Analysis of

factorial experiments. Retrieved from http://cran.r-project.org/

package=afex.
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