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Abstract Considerable evidence suggests that human

category learning recruits multiple memory systems. A

popular assumption is that procedural memory is used to

form stimulus-to-response mappings, whereas declarative

memory is used to form and test explicit rules about cat-

egory membership. The multiple systems framework has

been successful in motivating and accounting for a broad

array of empirical observations over the past 20 years.

Even so, only a couple of studies have examined how the

different categorization systems interact. Both previous

studies suggest that switching between explicit and pro-

cedural responding is extremely difficult. But they leave

unanswered the critical questions of whether trial-by-trial

system switching is possible, and if so, whether it is

qualitatively different than trial-by-trial switching between

two explicit tasks. The experiment described in this article

addressed these questions. The results (1) confirm that

effective trial-by-trial system switching, although difficult,

is possible; (2) suggest that switching between tasks

mediated by different memory systems is more difficult

than switching between two declarative memory tasks; and

(3) point to a serious shortcoming of current category-

learning theories.

Introduction

Evidence that humans have multiple memory systems

(Eichenbaum & Cohen 2001; Squire 2004; Tulving &

Craik 2000) inspired the development of theories that

category learning is also mediated by multiple qualitatively

distinct systems (Ashby et al., 1998; Ashby & O’Brien,

2005). According to this view, procedural memory is used

to form many-to-one stimulus-to-response mappings (i.e.,

S-R associations), whereas declarative memory is used to

apply rules and test explicit hypotheses about category

membership. This arrangement raises a number of impor-

tant questions as to how these putative systems resolve

their competition for access to the motor systems that they

must share. For example, given a daily need to perform a

variety of tasks—some best served by declarative systems,

and others best served by procedural systems—can control

be flexibly passed between systems on a moment-by-mo-

ment basis?

ATRIUM (Erickson & Kruschke, 1998) and COVIS

(Ashby et al., 1998), the two dominant multiple system

category-learning theories, each assume that trial-by-trial

switching is a routine and common occurrence. However,

both theories were formulated in the absence of any data on

this important issue. Unfortunately, during the ensuing 18

years, the landscape has only marginally changed. We

know of only two studies that directly address this issue

(Ashby & Crossley, 2010; Erickson, 2008). Both studies

used experiments that required participants to switch

between procedural and declarative categorization strate-

gies on a trial-by-trial basis to achieve optimal perfor-

mance. Ashby and Crossley (2010) reported that only 2 of

53 participants (� 4%) showed any evidence of trial-by-

trial switching, whereas Erickson (2008), using a design

that included more switching cues, reported that only 51 of
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170 participants (� 30%) successfully switched between

systems on a trial-by-trial basis.

The poor success rates reported by Erickson (2008) and

Ashby and Crossley (2010) suggest that the current theories

might be much too optimistic about the ability of people to

system switch and, therefore, that a more valid and con-

servative theory of system switching is badly needed.

Constructing such a theory on the basis of these two studies

seems fruitless, however, because too many critical ques-

tions remain unanswered. For example, why did the two

studies find such different success rates? Can trial-by-trial

switching between systems ever be reliably achieved? If so,

what conditions trigger a system switch? Is switching

between declarative and procedural systems qualitatively

different than switching between two tasks both mediated

by declarative systems?

The primary goal of this article was to address these

questions. The experiment described below included two

conditions. In one, participants were required to switch

between declarative and procedural strategies on a trial-by-

trial basis following a training procedure that was similar to

the one used by Erickson (2008). Both prior studies esti-

mated the number of participants that successfully swit-

ched between systems by using decision bound model fits

to count how many participants were able to adopt strate-

gies of the optimal type. The present experiment extends

this method by adding an additional behavioral probe at the

end of the experiment to test whether switching was suc-

cessful. A second condition replicated the first, except

participants were instead required to switch between two

different declarative strategies on a trial-by-trial basis. Our

results suggest that trial-by-trial switching between

declarative and procedural systems is possible given

enough training and under optimal conditions and that

switching between declarative and procedural strategies is

more difficult than switching between different declarative

strategies.

A secondary goal of this article is to relate system

switching to the large task-switching literature, which has

been primarily concerned with switching back and forth

between different declarative-memory-based tasks (e.g.,

Kiesel et al., 2010; Monsell, 2003). Many such studies

have established that switch trials reliably increase

response times (RTs) and often decrease accuracy. The

properties of the component tasks that determine switch

costs are of increasing interest in this field. For example,

some of the factors that have been explored include the

number and identity of response effectors (Philipp, Weid-

ner, Koch, & Fink, 2013), the complexity of the stimuli

(Witt & Stevens, 2013), the abstractness of the rules

(Stelzel, Basten, & Fiebach, 2011), and the perceptual and

attentional demands of the component tasks (Chiu &

Yantis, 2009; Nagahama et al., 2001; Ravizza & Carter,

2008; Rushworth, Hadland, Paus, & Sipila, 2002). This

article is the first to compare task switching (i.e., between

two declarative-memory tasks) and system switching (be-

tween a declarative- and a procedural-memory task) and,

therefore, makes an important contribution to the task-

switching and cognitive-control literatures, in addition to

the category-learning literature.

Rule-based and information-integration category

learning

The current and previous research on system switching

during categorization depends strongly on prior research

with rule-based (RB) and information-integration (II) cat-

egory-learning tasks. Example stimuli from the present

experiment and example RB and II category structures are

Fig. 1 Examples of one-dimensional RB (top) and II (bottom) stimuli

and category structures
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shown in Fig. 1. In RB tasks, the categories can be learned

via an explicit hypothesis-testing procedure (Ashby et al.,

1998). In the simplest variant, only one dimension is rel-

evant (e.g., bar width), and the task is to discover this

dimension and then map the different dimensional values

to the relevant categories. However, there is no require-

ment that RB tasks be one-dimensional (1D). For example,

a conjunction rule (e.g., respond ‘A’ if the bars are thick

and the orientation is shallow) is an RB task because a

conjunction is a pair of logical conditionals, and thus,

separate 1D rules are first made about each relevant

dimension and then these separate decisions are combined.

In II tasks, accuracy is maximized only if information from

two or more incommensurable stimulus dimensions is

integrated perceptually at a pre-decisional stage (Ashby &

Gott, 1988). In most cases, the optimal strategy in II tasks

is difficult or impossible to describe verbally (Ashby et al.,

1998). Verbal rules may be (and sometimes are) applied

but they lead to suboptimal performance because they

produce a maladaptive focus on only one stimulus

dimension.

A variety of evidence suggests that success in RB tasks

depends on working memory and executive attention

(Ashby et al., 1998; Maddox, Ashby, Ing, & Pickering,

2004; Waldron & Ashby, 2001; Zeithamova & Maddox,

2006), and is supported by a broad neural network that

includes the prefrontal cortex, anterior cingulate, the head

of the caudate nucleus, and medial temporal lobe structures

(Brown & Marsden, 1988; Filoteo et al., 2007; Muham-

mad, Wallis, & Miller, 2006; Seger & Cincotta, 2006). In

contrast, evidence suggests that success in II tasks depends

on procedural learning that is mediated largely within the

striatum (Ashby & Ennis, 2006; Filoteo, Maddox, Salmon,

& Song, 2005; Knowlton, Mangels, & Squire, 1996;

Nomura et al., 2007). For example, switching the locations

of the response keys has no effect on RB categorization,

but as in more traditional procedural-learning tasks,

switching response keys interferes with II categorization

(Ashby, Ell, & Waldron, 2003; Maddox, Bohil, & Ing,

2004; Maddox, Glass, O’Brien, Filoteo, & Ashby, 2010).

The stimuli and category structures used in our experi-

ment are illustrated in Fig. 2. Note that there are two

conditions. The RB/II condition required trial-by-trial

switching between II and 1D RB categories, whereas the

RB/RB condition required switching between two RB

category structures—one that requires a conjunction rule

for optimal performance and one that requires a 1D rule.

A comparison of Ashby and Crossley (2010)

and Erickson (2008)

As mentioned previously, the only two behavioral studies

to examine system switching during categorization

reported somewhat discrepant results. Ashby and Crossley

(2010) reported an almost complete failure to find any

evidence of trial-by-trial switching, whereas Erickson

(2008) reported that 30% of his participants appeared to

switch successfully between systems on a trial-by-trial

basis.

Ashby and Crossley (2010) used circular sine-wave

gratings like those shown in Fig. 1 with a hybrid category

structure that required a procedural strategy for half the

stimuli and a 1D rule for the other half. A 1D rule was

optimal when the bars had a steep orientation and a pro-

cedural strategy was optimal when the orientation was

shallow. Thus, the only cue that signaled which type of

strategy to use was bar orientation. In contrast, Erickson

RB/II Condition

Bar Frequency

B
ar

 A
n

g
le

RB/RB Condition

Bar Frequency

B
ar

 A
n

g
le

Fig. 2 Stimuli and category structures used in the RB/II (top panel)

and RB/RB conditions (bottom panel)
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(2008) included three cues that signaled whether a

declarative or procedural strategy was required. First, the

stimuli requiring a procedural strategy were perceptually

distinct from the stimuli requiring an explicit rule. Second,

stimuli requiring a procedural strategy were presented in

one color, whereas stimuli requiring a rule were presented

in a different color. Third, the II categories required dif-

ferent responses than the RB categories (i.e., A and B

versus C and D).

One possibility is that Erickson (2008) observed more

trial-by-trial switching because of the extra cues that he

used. Another possibility, however, is that Erickson’s

participants did not all actually switch between different

memory systems. Instead, perhaps they were able to per-

form well by switching between two different declarative

strategies. This possibility is difficult to rule out because

the stimuli used by Erickson (2008) were constructed from

commensurable stimulus dimensions (height of a rectangle

and the horizontal position of an internal vertical line

segment). When two stimulus dimensions are in the same

units, then diagonal decision bounds are often easy to

describe verbally and, therefore, easy to discover through

an explicit, logical reasoning process. For example, con-

sider rectangles that vary in height and width. In this case, a

diagonal bound with slope ?1 defines a shape rule. When

the bound has an intercept of zero, then all rectangles

above the boundary are taller than they are wide, and all

rectangles below the boundary are wider than they are tall.

Following this example, it is possible that Erickson’s

(2008) participants used a rule-based strategy on the dif-

ference between the height of the rectangle and the dis-

tance from the internal vertical line to the left edge (for

example) of the rectangle. The appropriate category

response would be chosen depending on whether this dif-

ference exceeded a criterion or not. In general, when

stimuli are constructed from commensurable stimulus

dimensions it is often difficult to determine whether

explicit or procedural strategies are used from an accuracy

or model-fit analysis alone.

Testing for successful switching between systems

Ashby and Crossley (2010) and Erickson (2008) attempted

to diagnose successful system switching by analyzing

block-by-block accuracy and decision-bound model fits.

While each of these techniques makes an important con-

tribution, neither is sufficient to prove system switching

conclusively. In the experiments described below, we

added a test block after training that reversed the locations

of the response keys (which we henceforth refer to as a

button-switch). Previous research suggests that a button-

switch impairs procedural strategies more than declarative

strategies (Ashby et al., 2003; Maddox et al., 2004;

Maddox et al., 2010). Theoretically, this is because pro-

cedural learning is mediated by S-R associations that were

gradually strengthened through trial and error. Reversing

the buttons then requires unlearning of the original S-R

associations, and relearning the new reversed associations.1

Declarative strategies, on the other hand, can be quickly

adapted to accommodate a button-switch because perfor-

mance in this case is driven by explicitly applied rules.

Therefore, if participants are successfully switching

between declarative and procedural strategies, then the

button-switch should impair trials that require a procedural

strategy, but not trials that require a declarative strategy.

There is, however, evidence that button-switches can

also impair sufficiently complex declarative strategies

(Nosofsky, Stanton, & Zaki, 2005). Thus, any impairment

that occurs as a result of a button-switch could conceivably

be due to the use of a complex declarative strategy, rather

than a procedural strategy. We, therefore, ran a control

condition (the RB/RB condition) in which the II structures

were replaced with complex RB structures to specifically

examine this possibility. If button-switch impairments in

our switching task are due to the use of complex declara-

tive strategies, then they should also be present in this

condition. If not, then any button-switch impairment

observed in the RB/II condition is likely due to procedural

learning.

Methods

Participants and conditions

Thirty-four undergraduates at UCSB served as participants

in the RB/II condition, and 22 served as participants in the

RB/RB condition. All participants were given course credit

for their participation, and they all had normal or corrected

to normal vision.

Stimuli were gray-scale, circular sine-wave gratings that

varied across trials in spatial frequency (cycles per degree,

CPD) and orientation (radians, rad). Each stimulus sub-

tended approximately 5 degrees of visual angle and was

displayed against either a blue or a green background using

routines from the Psychophysics toolbox (Brainard, 1997).

Stimuli were sampled from one of four possible distri-

butions (illustrated in the top panel of Fig. 1 for the RB/II

condition, and the bottom panel of Fig. 1 for the RB/RB

1 This account actually predicts that a button-switch should cause

catastrophic interference in procedural strategies, which has never

been observed in an II task. We recently proposed a revision to this

classic account that correctly predicts a more moderate button-switch

interference (Cantwell, Crossley, & Ashby, 2015). The key point,

however, is simply that button-switches reliably interfere with II tasks

more robustly than they interfere with RB tasks.
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condition) following the randomization technique devel-

oped by (Ashby & Gott, 1988). To control for statistical

outliers, the random sample was discarded if its Maha-

lanobis distance (Fukunaga, 1990) was greater than 3.0.

This process was repeated until 400 Category A, 400

Category B, 400 Category C, and 400 Category D exem-

plars had been generated. Parameters for these category

distributions are reported in Table 1. After each sample

was collected, the coordinates of all stimuli were linearly

transformed so that the sample statistics exactly equaled

the population parameter values. Each random sample

(x, y) was converted to a stimulus according to the non-

linear transformations defined by (Treutwein, Rentschler,

& Caelli, 1989), which roughly equates the salience of each

dimension (see Appendix for details).

Procedure

The procedures were identical in both conditions. Each

condition consisted of one session lasting approximately 50

minutes in duration that included 9 blocks of 100 trials

each. Participants were free to rest as long as they wished

between blocks. Participants were required to classify a

stimulus into one of four categories on every trial. Stimuli

sampled from the 1D RB categories were displayed against

a blue background, and stimuli sampled from the II cate-

gories or the conjunction-rule RB categories were dis-

played against a green background. Participants were

informed that the background colors indicated that differ-

ent categorization strategies would be necessary for opti-

mal performance. They were further informed that stimuli

displayed against a blue background (1D RB trials) only

required attention to one dimension and that stimuli dis-

played against a green background (II and conjunction-rule

trials) required attention to both dimensions. They were

instructed to press the ‘s’ key with the second finger of

their left hand for category ‘A’, to press the ‘d’ key with

the first finger on their left hand for category ‘B’, to press

the ‘k’ key with the first finger on their right hand for

category ‘C’, and to press the ‘l’ key with the second finger

on their right hand for category ‘D’. Participants were

further informed that all stimuli displayed against a blue

background belonged to either category ‘A’ or category ‘B’

and that stimuli displayed against a green background

belonged to either category ‘C’ or category ‘D’.

Each trial began with a fixation cross lasting 750 ms. A

stimulus was then presented for a maximum duration of

5000 ms. If the participant responded within 5000 ms the

stimulus disappeared, and 500 ms later a feedback tone was

presented for 1000 ms. Correct responses were indicated

by a pure sine tone (500 Hz, .73 seconds in duration), and

incorrect feedback was indicated by a saw-tooth tone

(200 Hz, 1.22 s in duration).

Participants were first trained on the 1D RB categories

for 100 trials, then on the II (RB/II condition) or con-

junction-rule RB categories (RB/RB condition) for 400

trials, and then on randomly intermixed (with equal prob-

ability) RB and II categories for 300 trials in the RB/II

condition or on randomly intermixed 1D RB and con-

junction-rule RB categories for 300 trials in the RB/RB

condition. Each condition concluded with 100 trials of

intermixed RB and II categories (RB/II condition) or 1D

rule and conjunction-rule categories (RB/RB condition)

with the response key-category label mappings switched.

Specifically, the category A and B response keys switched

locations, and so did the category C and D response keys.

Throughout the entire experiment the category labels ‘A’,

‘B’, ‘C’, and ‘D’ appeared along the bottom of the screen

in a spatial position and order that corresponded to the

correct keyboard key - category label mapping. Thus, when

the button locations were switched, so were the labels.

Decision bound modeling

To identify participants most likely to have switched suc-

cessfully between declarative and procedural strategies, we

partitioned the data from each participant into blocks of

100 trials, isolated and grouped the trials according to their

respective category substructure (i.e., II or RB) and fit

different decision bound models to the responses from each

substructure (Ashby & Gott, 1988; Maddox & Ashby,

1993). Three different kinds of models were fit to each of

these data sets. Rule-learning models assumed either a 1D

rule (on either orientation or bar width) or a conjunction

rule (respond ‘B’ if the bars are wide and the orientation is

shallow; otherwise respond ‘B’). The 1D rule models have

two free parameters (a decision criterion on the relevant

perceptual dimension, and a perceptual noise variance),

and the conjunction rule model has three free parameters (a

separate decision criterion on each dimension, and a per-

ceptual noise variance). Procedural-learning models

assumed a linear decision bound of arbitrary slope and

intercept. These models are consistent with a procedural

strategy since they integrate perceptual information from

the two stimulus dimensions pre-decisionally. Procedural-

learning models have three free parameters (the slope and

intercept of the linear decision bound, and a perceptual

noise variance). The third model class assumed a guessing

strategy. One version assumed unbiased guessing (no free

parameters), and another version (with one free parameter)

assumed biased guessing (guess A with probability p and

guess B with probability 1� p, where p is a free

parameter).

We estimated best-fitting parameters via maximum

likelihood and used the the Bayesian information criterion

(BIC; Schwarz, 1978) for model selection. BIC is defined
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as BIC ¼ r ln N� 2 ln L, where r is the number of free

parameters, N is the sample size, and L is the likelihood of

the data given the model. The BIC statistic penalizes

models for extra free parameters. To determine the best-

fitting model, the BIC statistic is computed for each model,

and the model with the smallest BIC value is the winning

model. As in Erickson (2008), only participants whose

responses during the last block of intermixed trials (i.e.,

trials 701-800) were best fit by a model that assumed a

strategy of the optimal type were classified as ‘switchers.’

Results

Exclusion criteria

Since we are interested in system switching, it is essential

that we identify and remove participants who failed to learn

during any of the single category-structure training phases.

Moreover, previous research led us to expect that many

participants might be unable to reliably switch between RB

and II categories on a trial-by-trial basis (Ashby and

Crossley, 2010; Erickson, 2008). We approached this

problem in two ways. First, we separately analyzed our

data with exclusion criteria of 55, 60, 65, and 70% correct.

The results were qualitatively identical for each of these

criteria, although some of the statistics that were significant

for the more stringent criteria were nonsignificant for the

more lenient criteria. Second, we examined histograms of

the mean accuracy for each subject during the final block of

intermixed training (see Fig. 3). Based on this analysis, we

report results based on an exclusion criterion of 65% cor-

rect because this value reflected a fairly natural break point

that seemed to best separate learners from nonlearners.

Figure 4 shows the proportion of participants in both

conditions that failed to reach this criterion level of accu-

racy (i.e., at least 65% during the single category-structure

training, or during the blocks where the different category

structures were intermixed).

The proportion of participants who failed on II trials in

the RB/II condition during the switching phase was sig-

nificantly greater than the proportion of participants who

failed on conjunction-rule RB trials in the RB/RB condi-

tion [v2ð1Þ ¼ 13:09; p\0:001; h ¼ 1:64]. None of the

other differences between conditions shown in Fig. 4 are

significant [1D training: v2ð1Þ ¼ 0:74; p ¼ 0:39; h ¼
�0:47; II / CJ training: v2ð1Þ ¼ 0:94; p ¼ 0:33; h ¼ 0:51;

1D switching: v2ð1Þ ¼ 1:79; p ¼ 0:18; h ¼ 1:01]. All par-

ticipants that failed any task element were excluded from

further analyses. This left 17 of the 34 participants in the

RB/II condition and 13 of the 22 participants in the RB/RB

condition.

Accuracy-based analyses

Figure 5 shows mean accuracy for every block of 50

trials in both conditions. Recall that participants were

first trained for 100 trials on the 1D RB categories,

followed by 400 trials either on II categories (RB/II

condition) or conjunction-rule RB categories (RB/RB

condition). In both conditions, the single category-struc-

ture training was followed by 300 trials where stimuli

from the two category structures were intermixed.

Finally, the experiment concluded with 100 more inter-

mixed trials, with the response keys switched within each

category structure.

One-dimensional RB training

The 1D RB categories were learned well within the first

training block as indicated by a non-significant effect of

block [Fð1; 28Þ ¼ 2:74; p ¼ 0:11;X ¼ 0:61], and equally

well in both conditions as indicated by a non-significant

effect of condition [Fð1; 28Þ ¼ 0:22; p ¼ 0:64;X ¼ 0:05],

and a non-significant condition 9 block interaction

[Fð1; 28Þ ¼ 1:52; p ¼ 0:23;X ¼ 0:34].

II and conjunction-rule training

The II and conjunction-rule categories were learned with

practice, as indicated by a significant effect of block

[Fð7; 196Þ ¼ 12:36; p\0:001;X ¼ 0:95]. They were mat-

ched in difficulty as indicated by a non-significant effect of

condition [Fð1; 28Þ ¼ 0:32; p ¼ 0:58;X\0:01], and a

non-significant interaction [Fð7; 196Þ ¼ 0:59; p ¼ 0:77;

X ¼ 0:05].

Table 1 Category distribution parameters

lx ly rx ry covxy

RB/II condition

II A 43 57 167.91 119.0 59.36

II B 57 43 167.91 119.0 59.36

RB C 140 50 10 200 0

RB D 160 50 10 200 0

RB/RB condition

Conjunction A1 31.33 48.67 11.4 171.8 0

Conjunction B1 48.67 31.33 11.4 171.8 0

Conjunction A2 51.33 68.67 171.8 11.4 0

Conjunction B2 68.67 51.33 171.8 11.4 0

1-D C 140 50 10 200 0

1-D D 160 50 10 200 0
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Intermixed performance

Performance on 1D RB trials remained considerably better

than performance on either the II or conjunction-rule trials

during the intermixed phase, as indicated by a significant

main effect of trial type [Fð1; 308Þ ¼ 149:25;

p\0:001;X ¼ 0:88]. Performance on both trial types

improved equally well with practice, as indicated by a

significant main effect of block [Fð5; 308Þ ¼ 2:54;

p\0:05;X ¼ 0:07], and non-significant interactions [con-

dition 9 block: Fð5; 308Þ ¼ 0:16; p ¼ 0:98;X\0:01;

condition 9 trial type: Fð1; 308Þ ¼ 0:89; p ¼ 0:34;

X ¼ 0:01; block 9 cue: Fð5; 308Þ ¼ 0:75; p ¼ 0:59;

X ¼ 0:02; condition 9 block 9 cue: Fð5; 308Þ ¼ 0:59;

p ¼ 0:71;X ¼ 0:02].

Button-switch performance

Figure 6 shows button-switch costs for all trial types and

conditions. In the RB/II condition, the cost on 1D trials was

significant during the first button-switch block [tð16Þ ¼
2:23; p\0:05; d ¼ 1:24], but not during the second button-

switch block [tð16Þ ¼ 1:27; p ¼ 0:22; d ¼ 0:41]. The cost

on II trials was significant during the first [tð16Þ ¼
3:67; p\0:01; d ¼ 3:37], and the second [tð16Þ ¼ 2:95;

p\0:05; d ¼ 2:18] button-switch blocks. The cost on II

trials was not significantly greater than the cost on 1D trials

during the first button-switch block [tð16Þ ¼ 0:21; p ¼
0:42; d ¼ 0:01 ], but was marginally greater during the

second button-switch block [tð16Þ ¼ 1:51; p ¼ 0:08;

d ¼ 0:57].
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Fig. 3 Histogram of mean accuracies during the final block of

training before the button-switch, split out by condition and trial type.

We chose to exclude participants that failed to surpass 65% correct

because visual inspection indicates that this value excludes partici-

pants that likely did not learn while preserving sufficient data for

statistical analysis
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In the RB/RB condition, the cost on 1D trials was not

significant during the first [tð12Þ ¼ 1:62; p ¼ 0:13;

d ¼ 0:76], or the second [tð12Þ ¼ 1:17; p ¼ 0:26;

d ¼ 0:40] button-switch block. The cost on conjunction-

rule trials was significant during the first button-switch

block [tð12Þ ¼ 2:41; p\0:05; d ¼ 1:68], but not during the

second button-switch block [tð12Þ ¼ 1:23; p ¼ 0:24;

d ¼ 0:43]. The cost on conjunction trials was marginally

significantly greater than the cost on 1D trials during the

first [tð12Þ ¼ 1:45; p ¼ 0:09; d ¼ 0:60], but not the second

[tð12Þ ¼ 0:46; p ¼ 0:33; d ¼ 0:06] button-switch block.

Note that the II button-switch cost in the RB/II condition

and the conjunction-rule button-switch cost in the RB/RB

condition were similar during the first button-switch block,

and the cost to each decreased during the second button-

switch block. Even so, the recovery on II trials (RB/II

condition) was only partial, whereas complete recovery

occurred on conjunction-rule trials (RB/RB condition).

However, if participants are using a procedural system to

respond to II trials and a declarative system to respond to

conjunction-rule trials, then we would expect the cost

incurred on II trials to be significantly greater than the cost

incurred on conjunction-rule trials. Our data displayed this

pattern qualitatively, but failed to reach significance: the

recovery during conjunction-rule trials was not signifi-

cantly greater than the recovery during II trials

[tð20Þ ¼ �0:74; p ¼ 0:23; d ¼ 0:12].

Trial-by-trial switch cost

The task switching literature has more or less ubiquitously

reported switch costs in the form of decreased accuracy

and/or increased response times (RTs) on switch trials

relative to stay trials (Monsell, 2003; Wylie & Allport,

2000). Here, we examine whether the switch cost incurred

when switching to a procedural system from a declarative

system differs from the switch cost incurred from switching

the opposite direction.

Every stimulus was either from 1D RB categories,

conjunction-rule RB categories, or II categories. Therefore,

let J|K denote the event in which the stimulus on the cur-

rent trial is from type J catgories and the stimulus from the

preceding trial was from type K categories, for J and K =

1D, CJ (for conjunction-rule RB), or II. In the RB/II con-

dition, the four trial types are II|II, II|1D, 1D|II, and 1D|1D

(corresponding to II stay, II switch, RB switch, and RB stay

trials, respectively), whereas in the RB/RB condition, the

four trial types are CJ|CJ CJ|1D, 1D|CJ, and 1D|1D. The

trial-by-trial switch costs are, therefore, defined as II|1D -

II|II and 1D|II - 1D|1D in the RB/II condition and CJ|1D -

CJ|CJ and 1D|CJ - 1D|1D in the RB/RB condition.

Figure 7 shows the trial-by-trial accuracy and mean RT

switch costs of all four types. There was a reliable RT

switch cost for every switch type in both conditions [RB/II

condition: II|1D - II|II: tð16Þ ¼ 5:42; p\0:001; d ¼ 7:34;

1D|II - 1D|1D: tð16Þ ¼ 9:06; p\0:001; d ¼ 20:51; RB/

RB condition: CJ|1D - CJ|CJ: tð12Þ ¼ 6:76; p\0:001;

d ¼ 13:19; 1D|CJ - 1D|1D: tð12Þ ¼ 7:74; p\0:001;

d ¼ 17:28]. The accuracy switch cost was highly signifi-

cant when switching to 1D from II [1D|II - 1D|1D:

tð16Þ ¼ �3:48; p\0:001; d ¼ 3:03], and it was marginally

significant when switching to a conjunction rule from 1D

[CJ|1D - CJ|CJ: tð12Þ ¼ �1:92; p ¼ 0:08; d ¼ 1:06].

The other two types of switch costs were not significant

[II|1D - II|II: tð16Þ ¼ �0:86; p ¼ 0:40; d ¼ 0:19; 1D|CJ -

1D|1D: tð12Þ ¼ �0:66; p ¼ 0:52; d ¼ 0:13].

Failed 1D training Failed II/CJ training Failed 1D switching Failed II/CJ switching

P
ro

po
rt

io
n 

Fa
ile

d
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Condition 1: Switching between 1D and II
Condition 2: Switching between 1D and CJ

Fig. 4 Proportion of

participants failing to avoid the

exclusion criteria during each

phase of the experiment. Error

bars are standard deviations.

(1D = one-dimensional RB, CJ

= conjunction-rule RB)

378 Psychological Research (2018) 82:371–384

123



All prior evidence has indicated that system switching is

difficult (Ashby & Crossley, 2010; Erickson, 2008), which

might seem to suggest that the between-system switch

costs in the RB/II condition should be greater than the

within-system switch costs in the RB/RB condition. Our

results provided only weak support for this prediction. The

accuracy cost of switching to a 1D rule was greater in the

RB/II condition than in the RB/RB condition

[tð26Þ ¼ �1:76; p\0:05; d ¼ 0:61], but the RT cost was

not [tð22Þ ¼ �1:18; p ¼ 0:88; d ¼ 0:30], and the costs of

switching from a 1D rule to an II strategy were not sig-

nificantly different from the costs of switching from a 1D

rule to a conjunction rule [Accuracy: tð26Þ ¼ 0:86; p ¼
0:80; d ¼ 0:14; RT: tð28Þ ¼ �0:63; p ¼ 0:73; d ¼ 0:08].

Model-based analyses

Figure 8 shows the number of participants whose responses

were best fit by each type of decision bound model for

every block in both conditions. Recall that during the first

(100 trial) block in both conditions, participants exclu-

sively practiced the 1D categories, during blocks 2–5 they

exclusively practiced either the II categories (in the RB/II

condition) or the conjunction-rule categories (in the RB/RB

condition), during blocks 6–8 they switched back and forth

between 1D and II (RB/II condition) or between 1D and a

conjunction rule (RB/RB condition), and in block 9 they

continued to switch back and forth except with the

response keys switched.
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Psychological Research (2018) 82:371–384 379

123



Visual inspection of Fig. 8 shows clearly that during the

exclusive training blocks the vast majority of participants

responded in a manner consistent with the optimal strategy

for all category structures in both conditions (i.e., 1D rule

use dominates during 1D training, procedural strategies

dominate during II training, and conjunction rule use

dominates during CJ training). For 3 of the 4 category

structures, optimal strategy use was unaffected by trial-by-

trial switching (i.e., during the intermixed blocks 6–8). The

one exception was on II trials in the RB/II condition.

During the early intermixed blocks (6 and 7), a few par-

ticipants abandoned their procedural strategies to either

guess or use a 1D rule. By the last intermixed block,

however (i.e., block 8), all but 2 were using a procedural

strategy again.

The button-switch (during block 9) had no effect on

strategy use during 1D trials in the RB/RB condition. Three

participants abandoned an optimal-type strategy in favor of

guessing both during the conjunction rule trials in the RB/

RB condition and during 1D trials in the RB/II condition.

However, neither of these reductions was significant [1D

users RB/II condition: v2ð1Þ ¼ 0:94; p ¼ 0:17; h ¼ 0:52;

conjunction rule users RB/RB condition: v2ð1Þ ¼ 0:68;

p ¼ 0:20; h ¼ 0:49]. On the other hand, the button-switch

had a more serious effect on categorization strategies

during II trials in the RB/II condition. In fact, the number

of participants using a procedural strategy dropped by more

than half, which is a significant reduction [v2ð1Þ ¼ 6:31;

p\0:05; h ¼ 1:05]. Of the eight participants who aban-

doned procedural strategies, five resorted to guessing and

three switched to a 1D rule.

Discussion

Ashby and Crossley (2010) reported an almost complete

failure of system switching in a straightforward catego-

rization task in which perfect accuracy was possible if

participants used a simple 1D categorization rule for disks

with steep orientations and a procedural strategy for disks

with shallow orientations. This abysmal performance was

unexpected given that a number of studies have shown that

participants readily learn a variety of nonlinear decision

bounds that are at least as complex as the decision bound in
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the Ashby and Crossley (2010) experiment (Ashby, Wal-

dron, Lee, & Berkman, 2001; Maddox & Ashby, 1993).

One possible key difference though is that in the previous

studies the complex bound had no 1D component (hori-

zontal or vertical). Thus, participants were never consis-

tently rewarded for using an explicit strategy on a

significant subset of trials. As a result, the best interpreta-

tion of those earlier studies may be that participants

responded via the procedural system on every trial.

Erickson (2008) reported a higher success rate at trial-

by-trial system switching than Ashby and Crossley (2010),

using a design that included a number of cues that signaled

whether each stimulus required a declarative or procedural

strategy. Even so, only about 30% of Erickson’s partici-

pants showed evidence of successful switching, and even

this value may be an over-estimation because the stimuli

used by Erickson (2008) were constructed from commen-

surable stimulus dimensions, which sometimes make it

difficult to identify procedural responding.

Thus, in summary, only a couple of prior studies have

investigated trial-by-trial system switching, and those stud-

ies paint a bleak picture. Both studies suggest that switching

between explicit and procedural responding is extremely

difficult. But they leave unanswered a number of critical

questions. Is effective trial-by-trial system switching possi-

ble? If so, is it qualitatively different than trial-by-trial

switching between two explicit tasks? The experiment

described in this article addressed these questions. In the RB/

II condition, participants attempted to trial-by-trial switch

between an explicit 1D rule and a nonverbalizable similarity-

based strategy that depends on procedural learning and

memory. In theRB/RB condition, different participants trial-

by-trial switched between two different explicit rules—the

same 1D rule as in the RB/II condition and a conjunction rule

that was approximately equal in difficulty to the procedural

strategy required in the RB/II condition.

Half of our RB/II participants performed well, and they

did so in a manner consistent with system switching—that
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is, their performance was consistent with the hypothesis that

declarative systems mediated performance on 1D trials and

procedural systems mediated performance on II trials. First,

the responses of almost all of these participants were best

accounted for by a 1D explicit rule on RB trials and by a

model assuming a procedural strategy on II trials. Second,

accuracy on II trials was initially impaired more than

accuracy on 1D trials during the button-switch phase. Third,

the button-switch impairment on 1D trials fully recovered

during the second button-switch block, whereas the

impairment on II trials never recovered. Fourth, in the RB/

RB condition, there was no button-switch impairment at all

on the 1D trials, and the initial impairment on conjunction-

rule trials fully recovered during the second button-switch

block. These latter two points are consistent with the

hypothesis that declarative systems mediated performance

on all trials in the RB/RB condition and control was passed

back and forth between procedural and declarative systems

in the II/RB condition. The key idea here is that initial

button-switch costs may reflect a plethora of processes

indicative of either declarative or procedural processes. For

example, working memory demands and procedural inter-

ference will both be high soon after a button-switch.

However, we suggest that these working memory demands

should ease off with relative ease as participants get used to

the reverse mappings. Procedural interference, on the other

hand, requires the gradual rewiring of associations formed

through trial-and-error, and should, therefore, be consider-

ably harder to adapt to the reversed mappings.

The task switching literature has been primarily concerned

with switching back and forth between different declarative-

memory-based tasks (e.g., Kiesel et al., 2010; Monsell,

2003), and has now examined a variety of factors that influ-

ence this process (see our introduction for some of these

factors). This literature indicates that switch trials reliably

increase response times (RTs) and often decrease accuracy.

Our article is the first to compare task switching (i.e., between

two declarative-memory tasks) and system switching (be-

tween a declarative- and a procedural-memory task). Our

results suggest that switching between tasks mediated by

different memory systems is more difficult than switching

between two declarative-memory tasks. Several results sup-

port this conclusion. First, more RB/II than RB/RB partici-

pants failed to meet the meager accuracy criterion of 65%

correct during the intermixed training phase (see Fig. 4).

Second, more RB/II than RB/RB participants abandoned a

strategy of the optimal type during intermixed training (see

Fig. 8). Third, the trial-by-trial switch costs were slightly

though significantly greater in the RB/II condition than in the

RB/RB condition (i.e., the accuracy cost of switching to a 1D

rule was significantly greater in the RB/II condition).

Our results have important theoretical implications. All

current category-learning models that include multiple

systems assume that trial-by-trial system switching is a

routine and common occurrence. For example, COVIS

(Ashby et al., 1998) assumes that control is passed back

and forth between systems depending on which system is

most confident on each trial. Similarly, ATRIUM (Erickson

& Kruschke, 1998, p. 119) assumes that ‘each module

learns to classify those stimuli for which it is best suited’.

Our results, together with those of Erickson (2008) and

Ashby and Crossley (2010), suggest that system switching

is much more difficult that assumed by such models and,

therefore. that some significant revisions of existing mul-

tiple systems models are in order.

In hindsight, the assumption of effortless trial-by-trial

system switching made by models such as COVIS and

ATRIUM might now seem unrealistic. Even so, at the time

these theories were proposed, no relevant data existed that

would allow a more accurate model of system switching to

be constructed, and the assumption of effortless switching

was easy to implement computationally. In 1998, the pri-

mary focus was on establishing that humans have multiple

category-learning systems, not on building an accurate

model of how control is passed back-and-forth between

those putative and at that time, hypothetical systems. After

nearly two decades of research directed at this primary

focus, the time finally seems propitious to direct attention

at the second-generation question of system switching.

Building a more accurate model of system switching,

however, requires an empirical database. We believe that

our results represent a significant step in this direction, and

for this reason, that the present article fills a critical void in

the literature.
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Appendix: Nonlinear stimulus transform

This appendix describes the method we used to generate

spatial frequency, orientation (f, o) pairs that define our

stimuli. Spatial frequency, f, values carry units of cycles
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per degree of visual angle, and orientation values carry

units of radians. First, (x, y) pairs with arbitrary units were

generated from a bivariate uniform distribution on the

interval (0, 100) for each dimension. Next, these

(x, y) pairs were linearly transformed into ðxT ; yTÞ pairs to
span the interval ð�1; 2Þ on dimension xT and ð p

11
; 3p
8
þ p

11
Þ

on dimension yT via

xT ¼ 3x

100
� 1 ð1Þ

yT ¼ 3p
8

y

100
þ p
11

ð2Þ

Next, xT values were mapped to spatial frequency values, f,

via

f ¼ 2xT ð3Þ

We used a multistep procedure to convert yT values into

o values. First, we collected and sorted in ascending order

all yT values into a vector ys. From ys, we defined new

vectors

z ¼ 4:7 sin2 ys ð4Þ

and

where the n terms reference the nth element of the corre-

sponding vector, and

yT2
ð1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2s ð1Þ þ z2ð1Þ
q

ð6Þ

Finally, the elements of yT2
were returned to their original

sort order and recombined into (f, o) pairs.
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