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Abstract This study tested the common assumption that,

to be most effective, working memory (WM) training

should be adaptive (i.e., task difficulty is adjusted to indi-

vidual performance). Indirect evidence for this assumption

stems from studies comparing adaptive training to a

condition in which tasks are practiced on the easiest level

of difficulty only [cf. Klingberg (Trends Cogn Sci

14:317–324, 2010)], thereby, however, confounding

adaptivity and exposure to varying task difficulty. For a

more direct test of this hypothesis, we randomly assigned

130 young adults to one of the three WM training proce-

dures (adaptive, randomized, or self-selected change in

training task difficulty) or to an active control group. De-

spite large performance increases in the trained WM tasks,

we observed neither transfer to untrained structurally dis-

similar WM tasks nor far transfer to reasoning. Surpris-

ingly, neither training nor transfer effects were modulated

by training procedure, indicating that exposure to varying

levels of task difficulty is sufficient for inducing training

gains.

Introduction

Can fluid cognitive abilities such as working memory

(WM) and reasoning be improved through computer-based

WM training? This is a highly controversial question, with

prior empirical studies (for reviews, see Morrison & Chein,

2011; von Bastian & Oberauer, 2014) and meta-analyses

(Au et al., 2014; Karbach & Verhaeghen, 2014; Lampit,

Hallock & Valenzuela, 2014; Melby-Lervåg & Hulme,

2013) providing contradictory findings. Although multiple

previous studies revealed promising effects (e.g., Jaeggi,

Buschkuehl, Jonides & Perrig, 2008; Jaeggi, Buschkuehl,

Shah & Jonides, 2014; Jaeggi et al., 2010, Klingberg et al.,

2005; Schmiedek, Lövden & Lindenberger, 2010; Sch-

weizer, Hampshire & Dalgleish, 2011; Stepankova et al.,

2014; von Bastian & Oberauer, 2013), a growing number

of other WM training interventions failed to induce such

broad transfer (e.g., Chein & Morrison, 2010; Chooi &

Thompson, 2012; Colom et al., 2013; Harrison et al., 2013;

Redick et al., 2013; Salminen, Strobach & Schubert, 2012;

Sprenger et al., 2013; Thompson et al., 2013; von Bastian,

Langer, Jäncke & Oberauer, 2013). The factors contribut-

ing to the success of WM training interventions in terms of

improving WM and reasoning are still unclear (see von

Bastian & Oberauer, 2014), and large variations (and, in

some occasions, serious flaws) in the methodologies and

training regimens used complicate comparisons across

studies (cf. Shipstead, Redick & Engle, 2012), and thus the

identification of such factors. Therefore, before we can

conclude whether and under which circumstances WM

training can induce transfer, carefully controlled, system-

atic investigations of factors potentially contributing to

training effectiveness are needed.

In theory, cognitive plasticity occurs if there is a ‘‘pro-

longed mismatch between functional organismic supplies
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and environmental demands‘‘(Lövden, Bäckman, Linden-

berger, Schaefer & Schmiedek, 2010, p. 659). According to

Lövden and colleagues (2010), this mismatch occurs if the

environmental demands exceed the routine demands the

cognitive system usually faces. If those environmental

demands are too high, however, individuals might simply

give up on the task or develop task-specific strategies to

solve this seemingly otherwise unsolvable task. Hence, to

trigger cognitive plasticity, the authors argue that the de-

mands should still be manageable with the current range of

functional supplies. In other words, improvement in cog-

nitive abilities such as WM can be induced by constantly

challenging individuals slightly above their current routine

performance level. Hence, the authors suggest that cogni-

tive training programs should be adaptive, that is during

training, task difficulty should be continuously adjusted

automatically to the individual’s current level of perfor-

mance to maximize and prolong the supply–demand mis-

match. WM training studies showing larger performance

gains after adaptive than low-level training seem to support

this theoretical assumption (e.g., Brehmer, Westerberg &

Bäckman, 2012; Karbach, Strobach & Schubert, 2014; see

Klingberg, 2010 for an overview).

However, participants in the adaptive training condition

do not only experience adjustment of task difficulty to in-

dividual performance, but are also exposed to various

levels of task difficulty, whereas participants in the low-

level training condition practice constantly on the easiest

level of task difficulty only. Thus, adapting task difficulty

to individual performance and exposure to varying levels

of task difficulty are confounded in those studies. Such

varying levels of task difficulty, however, pose constantly

changing environmental demands forcing the cognitive

system continuously out of its routines and hence could be

sufficient to trigger cognitive plasticity. In line with this

assumption, Schmidt and Bjork (1992) gave an overview of

motor and verbal concept training studies demonstrating

that training with variability in task demands leads to

greater transfer effects than training with constant task

demands.

In the present study, we therefore tested the hypothesis

that adaptive WM training is superior to other training

procedures because task difficulty is continuously adapted

to individual performance instead of being varied perfor-

mance-independently, thus differentiating between adap-

tivity and variability of task difficulty. Hence, adaptive

training was compared to another WM training procedure

in which task difficulty varied randomly. In addition, a

third WM training procedure was included in which par-

ticipants themselves could modify training task difficulty.

The purpose of this training procedure was to explore

whether change in training task difficulty across the train-

ing period in the adaptive training condition approximately

matches what the average individual would choose as the

optimal modification of task difficulty across training. Fi-

nally, to evaluate whether we could replicate our earlier

findings showing benefits after adaptive WM training on

untrained, structurally dissimilar WM and reasoning tasks

(von Bastian & Oberauer, 2013), we added an adaptive

active control group solving trivia quizzes with low WM

demand.

In our pretest–posttest study design, we aimed at

avoiding the methodological issues occasionally observed

in previous training research. First, training tasks were

selected both theory-driven and based on empirical find-

ings. We chose the complex span paradigm, which is a

well-established measure of WM capacity (cf. Conway

et al., 2005), as well as an excellent predictor for reasoning

(e.g., Engle, Tuholski, Laughlin & Conway, 1999; Süß,

Oberauer, Wittmann, Wilhelm & Schulze, 2002). More-

over, in our recent study mentioned above (von Bastian &

Oberauer, 2013), we found that training with complex span

tasks was more effective than training with other tasks of

WM capacity in terms of transfer to untrained WM and

reasoning tasks. Second, the training regimen was intensive

(20 sessions within 4 weeks, each lasting approximately

30 min) and followed recommendations for facilitating

transfer effects such as providing variability and feedback

(Schmidt & Bjork, 1992). To enhance variability, each

group practiced three different tasks (each for ap-

proximately 10 min per session). Feedback was provided

after each trial, after each task, and across sessions at the

beginning of each session. Third, we assessed each transfer

range (intermediate transfer to structurally dissimilar WM

tasks and far transfer to reasoning tasks) with multiple

indicators to avoid task-specific features being responsible

for the detection of transfer effects (cf. Noack, Lövden &

Schmiedek, 2014; Shipstead et al., 2012). Fourth, the study

included a relatively large sample of N = 130 participants.

Method

Over the course of 4 weeks, participants completed 20

sessions of intensive cognitive training (approximately

30–45 min per session). They were randomly assigned to

one of the three WM training procedures (adaptive, ran-

domized, or self-selected task difficulty) or an adaptive

active control group practicing tasks with low WM demand

(trivia questions on general knowledge). The study was

double-blind, hence neither the participants nor the ex-

perimenters collecting the outcome measures were aware

of which group the participants were assigned to. To assess

training and transfer effects, we administered a test battery

immediately before and after training. For facilitating be-

tween-groups baseline comparisons, which are essential for
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establishing the comparability across groups and occasions,

we used an identical test battery at both assessments.

Participants

Participants were recruited from the participant pools of

the Department of Psychology and the International

Normal Aging and Plasticity Center of the University of

Zurich, and through advertisements at the campuses of

several universities in Zurich. Participants were informed

that they would take part in a cognitive training study, but

not about the different training conditions. All par-

ticipants were German native speakers or highly proficient

in German, and gave written consent to participate. Of the

overall 145 recruited individuals, 8 dropped out during the

training phase due to lack of time (2), loss of interest (1),

or technical issues (1). Four participants withdrew consent

without comment. We excluded four additional par-

ticipants as they lacked compliance in proceeding with the

training sessions, and three participants as they reported

medical conditions potentially impacting cognitive func-

tioning (traumatic brain injury, epilepsy, or medication

with possible cognitive side effects). Basic demographics

of the remaining 130 individuals (93 female, Mage = 23,

SD = 3, age range 18–34 years) who completed the study

are listed in Table 1. There were no significant group

differences in these variables. At study completion, par-

ticipants received CHF 80 (about USD 88) or course

credits.

Design and materials

Training

Training was self-administered at home using Tatool (von

Bastian, Locher & Ruflin, 2013), a Java-based open-

source training and testing tool (www.tatool.ch). After

each training session, data were automatically uploaded to

a web server running Tatool Online, which permits to

constantly control participants’ compliance. Several

measures were taken to maximize compliance and ex-

perimental control, such as automated online analyses of

training data for detecting irregularities (e.g., accuracy

below chance level). Another experimenter than those

collecting the outcome measures monitored the

participants’ training compliance and served as their

contact during training. To increase individual commit-

ment, participants signed a participant agreement and

were informed that their training data would be mon-

itored. To stay in regular contact with the participants,

they received e-mails at multiple events (e.g., when half

of the training sessions were completed, or when the time

since the last data upload exceeded 2 days). In addition,

participants could always contact the experimenters in

case of technical difficulties. For each group, the training

intervention comprised three tasks (each approximately

10 min per session), the order of which was randomized

for each session.

WM training tasks

Modeled after the storage and processing training inter-

vention in an earlier study (von Bastian & Oberauer,

2013), WM training consisted of three complex span tasks

(Conway et al., 2005; Daneman & Carpenter, 1980) with

varying material (numerical, verbal, and figural–spatial).

In these tasks, the presentation of memoranda (each for

1 s) alternates with a secondary distractor task, in which

participants have to make a decision as quickly and as

accurately as possible. After a certain number of memory/

decision sequences (i.e., the set size), participants have to

recall the memoranda in correct serial order, for which

they have unlimited time. In the numerical version, par-

ticipants had to memorize two-digit numbers and judge

the correctness of equations. In the verbal complex span,

letters served as memoranda and a lexical decision (word

vs. non-word) had to be made on strings of characters. In

the figural–spatial version of the task, memoranda were

positions (i.e., colored squares) in a 5 9 5 grid. In-be-

tween the display of memoranda, participants had to de-

cide whether the long side of an L-formed shape

composed of colored squares displayed in the grid was

oriented horizontally or vertically. In each session, par-

ticipants completed up to 12 trials in each task. As the

level of difficulty was varied by adjusting the set size, trial

length increased with difficulty (see also Chein & Mor-

rison, 2010; von Bastian & Oberauer, 2013). To keep the

average duration of training sessions between 30 and

45 min, each task ended when task duration exceeded

15 min.

Table 1 Participant

demographics
Group

Demographics Adaptive Randomized Self-selected Active control

Sample size (n) 34 30 34 32

Gender (f/m) 25/9 21/10 24/10 23/9

Age (M ± SD) 23.00 ± 3.01 22.50 ± 3.33 23.12 ± 3.80 23.00 ± 3.05
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Active control training tasks

Participants had to solve trivia questions on general

knowledge with four alternative answers, one of them be-

ing correct. To hold variability of the training tasks con-

stant across groups, the active control training also

comprised three task versions, which differed with respect

to the subject (geography, history, and natural science).

Participants completed 50 trials per task and session. The

level of difficulty was raised by presenting increasingly

difficult questions. We ran a pilot study to determine the

questions’ difficulties (i.e., the percentage of correct an-

swers for each question). We then rank-ordered the ques-

tions by their difficulty and assigned 50 questions to each

training level (e.g., the 50 easiest questions were assigned

to level 1). Thus, questions were repeated in case par-

ticipants remained on the same training level across mul-

tiple sessions.

Training algorithms

Depending on the WM training condition, task difficulty

was adjusted adaptively, varied randomly, or was self-

selected. Apart from this manipulation, we aimed at

maximizing the between-groups comparability regarding

the overall task difficulty across the training phase. All WM

training groups started all training tasks at the same level of

difficulty with three memoranda, and the active control

group started with the 50 easiest questions. In the adaptive

WM training condition and in the active control training,

task difficulty was adjusted to individual performance using

the default adaptive score and level handler included in

Tatool (see von Bastian et al., 2013), and corresponded to

the presentation of one additional memorandum or one less

(WM training) or more challenging or easier quiz questions

(active control), respectively. Task difficulty was increased

if participants scored at least 80 % correct in the preceding

session or decreased in case performance dropped below

60 %. In WM training, participants had to additionally

score 80 % correct in the processing component of the

complex span task to move up a level.

In the randomizedWM training condition, task difficulty

varied randomly and independently of individual perfor-

mance between 3 and 9 memoranda. We chose this range

because it approximates the range which most participants

practiced on in a previous study that implemented a similar

adaptive WM training regimen as the adaptive one used in

the present study (von Bastian & Oberauer, 2013). In the

self-selected WM training condition, participants were in-

structed to modify the task demands themselves by setting

the level of task difficulty for the next training session at

the end of each task. Task difficulty could be set to remain

on the same level, to increase, or to decrease one level (i.e.,

one additional memorandum or one less). This mirrors the

range of possible change in task difficulty in the adaptive

WM training condition from session to session as well as

across sessions (i.e., 3–22 memoranda due to the total

number of 20 sessions).

Training feedback

Participants in all conditions received performance-based

feedback across sessions, after each trial, and after each

task. Feedback across sessions was presented at the be-

ginning of each session, visualized in form of a graph

plotting level against session for each task. Trial-by-trial

feedback was presented as a green check mark for a correct

response, and a red cross for a wrong answer. In addition,

after each task, participants received feedback visualized as

1–5 stars1 reflecting their overall performance in this task

in the current session. After receiving feedback about their

task performance in the current session, participants in the

self-selected WM training condition were asked to choose

the level of task difficulty for that task in the next session.

At the same time, participants in the other conditions were

informed about the level of task difficulty they would

practice on in the next session. Thus, participants in the

self-selected condition could make informed decisions

without sacrificing comparability between conditions re-

garding the quantity of instructions and information about

the upcoming level of difficulty.

Training questionnaires

At the end of each session, participants were asked to

complete a short questionnaire comprising two questions

adapted from the Intrinsic Motivation Inventory (Deci &

Ryan, 2015) on their enjoyment and effort concerning the

training tasks (‘‘Today’s training session was fun to do’’

and ‘‘I tried to do well in today’s training session’’, re-

spectively), and one question on the perceived fit between

difficulty and ability (‘‘The difficulty of today’s training

session was just right’’). They had to indicate their agree-

ment or disagreement with these statements on a 7-point

scale (1 = does not apply at all, 7 = does apply very well).

In addition, participants were asked to indicate their

arousal and valence on a 9-point scale using self-

1 The number of stars corresponded to the proportion of correct

responses: 5 stars for at least 80 % correct, 4 stars for more than 70 %

correct, 3 stars for more than 60 % correct, and 2 stars for less than

60 % correct. In WM training, 1 star was given if recall performance

was less than 60 % or performance in the processing task was below

80 % (having at least 80 % correct in the processing task was a

prerequisite to receive any higher number of stars). In the active

control condition, participants received 1 star if performance was

below 50 %.
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assessment manikins (Bradley & Lang, 1994). These data

will be reported elsewhere. As a further measure of moti-

vation, participants completed the Questionnaire on Cur-

rent Motivation (QCM, Rheinberg, Vollmeyer & Bruns,

2001) after the first training session (in which all par-

ticipants practiced on the same level of difficulty) and after

the tenth training session (i.e., after half of the training

intervention was completed). The QCM comprises 18

items that assess four factors of achievement motivation

(anxiety, probability of success, interest, and challenge) in

current learning situations.

Pre- and post-assessment

Before and after the training intervention, we administered

a test battery comprising three tests assessing practice ef-

fects in the WM training tasks, three tests measuring in-

termediate transfer to untrained and structurally dissimilar

WM tasks, and five tests determining far transfer to rea-

soning. In addition, participants completed a control test

(trivia quiz) to which we did not expect any transfer.

Participants were tested in groups of up to four individuals

in one lab session that took about 3 h including two 10-min

breaks. Half of the participants in each group completed

the test battery in reverse order (relative to the other half of

participants) to control for linear effects of fatigue and

practice. For each task, participants completed several

practice trials preceding test blocks of pseudo-randomized

trials. The tasks were programmed with Java in Tatool (von

Bastian al., 2013).

In addition to cognitive assessment, participants were

asked to complete several questionnaires preceding the

pretest and at the posttest assessment (Need for Cognition,

Bless, Wänke, Bohner, Fellhauer & Schwarz, 1994; NEO-

FFI, Borkenau & Ostendorf, 2008; Cacioppo & Petty,

1982; Costa & McCrae, 1992; Intrinsic Motivation Inven-

tory, Deci & Ryan, 2015; Theories of Intelligence Scale,

Dweck, 1999; Cognitive Failures Questionnaire, Klumb,

2001; Prospective and Retrospective Memory Question-

naire, Smith, Del Sala, Logie & Maylor, 2000), the results

of which will be reported elsewhere.

Training tasks

To compare practice effects between the training condi-

tions, we administered three complex span tasks. The de-

sign and type of material was the same as for the training

tasks. Each of the tasks consisted of 16 trials with varying

set sizes (4–7 memoranda). The proportion of items re-

called at the correct position served as dependent variable

(partial-credit unit score; for details, see Conway et al.,

2005).

Intermediate transfer tasks

To measure intermediate transfer, participants completed

three tasks which are assumed to capture WM but are

structurally dissimilar to the complex span training tasks

(von Bastian & Oberauer, 2013; Wilhelm, Hildebrandt &

Oberauer, 2013).

Word-position binding task Participants had to memor-

ize the positions of 3–5 words presented sequentially on the

screen (cf. the local recognition task in Oberauer, 2005).

Each word was displayed for 2 s. Probe words in a dif-

ferent color were shown immediately afterward. Par-

ticipants had to decide for each of the probes whether it

matched the word previously shown at this exact position.

Probes not matching the original stimulus at that position

could be new probes (distractors not presented anywhere in

the list) or intrusion probes (words presented in the list but

at a different position). Whereas new probes can be cor-

rectly rejected based solely on item recognition, correct

rejection of intrusion probes requires recollection of the

word-position binding. Participants completed two blocks

of 8 trials per set size. Across all 48 trials, 50 % of the

probes were positive, 25 % were negative new probes, and

25 % were negative intrusion probes. The positive probes

were distributed equally across temporal and spatial posi-

tions. Scores were derived by computing the discrimination

parameter d0 from signal detection theory, taking hits and

false alarms to intrusion probes into account: d0 = z(H) -

z(FA), where H is the hit rate, FA the false alarm rate, and

z refers to the z value corresponding to the probability of

the given argument. Using only false alarms to intrusion

probes, d0 serves a pure measure of binding memory (see

also von Bastian & Oberauer, 2013).

Brown–Peterson task We adapted the classic Brown–

Peterson paradigm (Brown, 1958) to serve as a dual task

combining a simple span and a distractor decision task.

Participants first had to memorize sequentially presented

words, and then to decide for a series of letter pairs whether

they rhyme (e.g., ‘‘A’’ and ‘‘K’’) or not (e.g., ‘‘A’’ and

‘‘E’’). After four such decisions, participants had to recall

the words memorized before in correct serial order. The

task consisted of 16 trials with set sizes varying between 3

and 6. As for the complex span tasks, scores were derived

from the proportion of items recalled at the correct

position.

Memory updating task In this task, participants have to

constantly manipulate and update information (cf. Ober-

auer, 2006; see also von Bastian & Oberauer, 2013). Each

trial started with the simultaneous presentation of 1–3

digits, which were shown in different colors (blue, orange,

and purple). Afterward, participants had to complete a

series of 20 arithmetic operations (additions or subtractions

Psychological Research (2016) 80:181–194 185
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indicated by signed colored digits) that had to be applied to

the digit in the same color. The previously memorized digit

had to be replaced by the result of the operation and the

result had to be entered via the keyboard. All digits (i.e.,

memoranda, summands or subtrahends, and the results)

ranged from 1 to 9. Participants had to complete 24 trials

presented in three blocks. The proportion of correct re-

sponses to the arithmetic operations served as score.

Far transfer tasks

Transfer to reasoning was assessed with five tasks adapted

from standard test instruments.

Raven’s Advanced Progressive Matrices (RAPM, Raven,

1990) Participants had to complete a pattern presented by

choosing one of the eight alternatives. We used the 12-item

short version developed by Arthur and Day (1994; see also

Arthur, Tubre, Paul & Sanchez-Ku, 1999). Time for

completion was restricted to 15 min.

Letter Sets Test (Ekstrom, French, Harman & Dermen,

1976) Five sets of four letters were presented. Except for

one set, all sets followed a certain logical pattern. The task

was to choose which of the letter sets deviated from the

others. Participants had 14 min to complete 30 problems.

Locations Test (Ekstrom et al., 1976) In this task, five

rows of dashes separated by blank spaces are given. In the

first four rows, one dash is replaced by an ‘‘x’’, following a

certain pattern across rows. Participants have to discover

the rule and to choose which position of the ‘‘x’’ out of five

is the correct one in the fifth row. Participants had 12 min

to complete 28 problems.

Nonsense Syllogisms Test (Ekstrom et al., 1976) The

task was to judge whether the conclusion drawn from two

premises was logically valid (e.g., following the premises

‘‘all trees are fish’’ and ‘‘all fish are horses’’, it would be

logically correct to conclude that ‘‘therefore all trees are

horses’’). Nonsensical content was used to avoid the scores

being influenced by past learning. Participants had 8 min to

complete 30 problems.

Diagramming relationships Sets of three nouns (e.g.,

animals, cats, and dogs) were presented. Participants had to

choose which one out of five diagrams represents the re-

lationship between the nouns best (in this example, one

circle representing animals containing two separate circles

representing cats and dogs, respectively). Participants had

8 min to complete 30 problems.

Control task

We included a trivia quiz as a control test to which we did

not expect any transfer of WM training (cf. Noack et al.,

2014). In addition, the test served to increase the believ-

ability of the control condition because all participants

experienced a task in pre- and post-assessment that was

similar to their training tasks. The test included 30

questions which were drawn from the same subjects (i.e.,

geography, history, and natural science) but had not been

presented during the active control training. Therefore,

the knowledge required to solve these questions could not

have been acquired in the active control training. Hence,

the control group was not expected to perform better than

the WM training groups in this task as a result of training.

In addition, another response format than in the training

version was chosen (open text instead of multiple choice

questions). Time for responses was not restricted.

Results

Missing data

Due to technical issues at pretest, data for the memory

updating task were lost for one participant. Data of three

participants are missing for the QCM assessment after the

tenth training session. Participants with missing data were

excluded from analyses including the respective measure.

Some participants had difficulties scheduling their training

sessions and hence did not complete the required 20 ses-

sions, but only 17 (1 participant), 18 (1 participant) or 19

sessions (9 participants), while one participant completed

21 training sessions. For the analyses of training progress,

we included only participants with complete training data

sets. For the analyses of training and transfer gains, the

results were qualitatively similar independent of whether

the participants with less or more than 20 sessions were

included or excluded in the analyses. Therefore, we in-

cluded also participants with irregular numbers of training

sessions to maximize power.

Group comparability at baseline

To determine whether baseline cognitive performance was

comparable across groups, we first conducted a multivari-

ate analysis of variance (MANOVA) with all pretest

measures as dependent variables. The main effect of group

was not significant, F(36, 348) = 1.09, p = 0.345,

gp
2 = 0.10. In addition, none of the Bonferroni corrected

post hoc between-groups comparisons for single tasks was

significant, with one exception. The adaptive training

group showed worse baseline performance in the figural

complex span training task than the active control group

(Mdiff = 0.13, p = 0.033) with a medium effect size

(d = 0.67). Table 2 lists the means and standard deviations

for each group in each cognitive task.
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Training progress

Training performance

For each training task, we ran mixed ANOVAs using the

level of difficulty achieved as dependent variable, and

training session and group as independent variables. We

coded training session as linear contrast to evaluate

monotonic trends instead of potentially erratic fluctuations

across sessions. As summarized in Table 3 and reflected by

Fig. 1, all groups but the one completing the randomized

condition showed large effects of session for all training

tasks (all ps B 0.001). Furthermore, there was no differ-

ence in level of difficulty achieved between adaptive and

self-selected training (linear contrasts of session 9 group

interaction [F(1, 58) = 0.38, p = 0.541, gp
2 = 0.01; F(1,

58) = 1.01, p = 0.318, gp
2 = 0.02; F(1, 58) = 0.87,

p = 0.356, gp
2 = 0.02 for the numerical, verbal, and figural

complex span, respectively]). As a consequence of the

study design, the average level of difficulty did not follow a

monotonic trend across sessions (all ps C 0.256) in the

randomized WM training condition because the level of

difficulty varied randomly across sessions and participants.

The active control group also showed large linear training

effects in all three versions of the trivia quiz (geography:

F(1, 30) = 1131.77, p\ 0.001, gp
2 = 0.97; history: F(1,

30) = 1142.45, p\ 0.001, gp
2 = 0.97; natural science: F(1,

30) = 1554.20, p\ 0.001, gp
2 = 0.98).

Even though we defined the range of possible levels of

task difficulty in the randomized training condition based

on observations from a previous study (von Bastian &

Oberauer, 2013), an ANOVA using task difficulty averaged

across sessions and tasks as dependent variable and WM

training condition as independent variable revealed a sig-

nificant main effect of group, F(2, 75) = 10.13, p\ 0.001,

gp
2 = 0.18. Bonferroni corrected post hoc comparisons

showed that on average, the randomized training group

practiced on lower levels of task difficulty than both the

adaptive (Mdiff = 1.81, p = 0.001, d = 1.16) and the self-

selected training group (Mdiff = 1.39, p = 0.010,

d = 1.04). As described in the Method section, each WM

task ended when task duration exceeded 15 min. There-

fore, because participants in the randomized training con-

dition practiced with trials of shorter list lengths, they

completed slightly more trials than the other two WM

training groups (adaptive: M = 11.37, randomized:

M = 11.90, self-selected: M = 11.22). An ANOVA using

the number of trials averaged across sessions and tasks as

dependent variable and WM training condition as inde-

pendent variable yielded a significant effect of group, F(2,

Table 2 Mean performance for the test battery tasks as a function of training group and time of assessment

Group

Adaptive Randomized Self-selected Active control

Task Pretest Posttest Pretest Posttest Pretest Posttest Pretest Posttest

Training tasks (complex span)

Numerical 0.40 (0.14) 0.59 (0.2) 0.41 (0.18) 0.62 (0.20) 0.38 (0.16) 0.58 (0.19) 0.44 (0.17) 0.48 (0.18)

Verbal 0.81 (0.12) 0.94 (0.08) 0.79 (0.12) 0.92 (0.10) 0.82 (0.13) 0.94 (0.08) 0.81 (0.12) 0.86 (0.12)

Figural 0.51 (0.21) 0.80 (0.18) 0.53 (0.18) 0.78 (0.17) 0.60 (0.17) 0.82 (0.13) 0.63 (0.18) 0.69 (0.15)

Intermediate transfer

Word-position binding 2.45 (0.96) 2.94 (1.00) 2.45 (0.79) 2.56 (1) 2.30 (0.96) 2.86 (1.03) 2.37 (0.95) 2.80 (0.84)

Brown–Peterson 0.70 (0.16) 0.80 (0.14) 0.69 (0.17) 0.75 (0.17) 0.72 (0.16) 0.77 (0.14) 0.73 (0.15) 0.77 (0.13)

Memory updating 0.85 (0.13) 0.90 (0.11) 0.83 (0.12) 0.89 (0.11) 0.86 (0.08) 0.91 (0.07) 0.87 (0.11) 0.90 (0.10)

Far transfer

RAPM 7.44 (2.63) 8.00 (2.74) 8.00 (2.68) 8.10 (2.70) 8.38 (2.26) 8.18 (2.29) 8.31 (2.72) 8.81 (2.21)

Letter sets 20.71 (5.05) 22.59 (4.45) 21.77 (4.49) 22.5 (3.69) 20.53 (4.95) 21.38 (4.99) 22.31 (5.29) 23.28 (4.16)

Locations test 15.18 (5.37) 16.91 (5.41) 15.2 (4.46) 17.8 (3.74) 14.00 (5.09) 15.71 (4.58) 14.69 (4.37) 17.94 (6.12)

Diagramming

relationships

22.91 (4.50) 23.06 (4.02) 21.8 (4.58) 23.83 (3.72) 22.44 (3.54) 24.03 (2.70) 23.34 (4.01) 24.78 (4.01)

Nonsense syllogisms 17.18 (4.41) 19 (4.04) 17.03 (4.54) 18.33 (4.51) 17.06 (5.03) 17.59 (4.45) 18.25 (4.38) 19.88 (4.72)

Control task (trivia quiz) 0.59 (0.07) 0.73 (0.08) 0.60 (0.06) 0.72 (0.09) 0.61 (0.07) 0.74 (0.06) 0.59 (0.07) 0.69 (0.07)

Standard deviations are given in parentheses. All values are given in proportional accuracy, except binding (d0) and far transfer measures

(number of correctly solved items)
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84) = 3.14, p = 0.049, gp
2 = 0.07. Bonferroni corrected

post hoc between-groups comparisons showed a trend for

more completed trials in the randomized than in the self-

selected training group (p = 0.056). None of the other

comparisons was significant (ps[ 0.193).

Motivation during training

To determine whether the three training algorithms had

differential effects on motivation during training, we ran a

set of mixed ANOVAs using the three one-item training

motivation measures (enjoyment, effort, and perceived fit

between task difficulty and ability) that participants com-

pleted after each session as dependent variables, and group

(3) and session (20) as independent variables. There was no

main effect of group on two of the three motivation mea-

sures, showing that the three experimental training groups

did not differ in their overall enjoyment experienced during

training [F(2, 84) = 0.44, p = 0.643, gp
2 = 0.01] or overall

effort spent on training, F(2, 84) = 0.21, p = 0.810,

gp
2 = 0.01. However, there was a marginal effect of group

on the overall perceived fit between task difficulty and

ability, F(2, 84) = 2.93, p = 0.059, gp
2 = 0.07. Random-

ized training yielded a smaller perceived fit than the other

two training conditions, which reached significance when

compared to self-selected training (MDiff = 0.53,

p = 0.019), but not adaptive training, MDiff = 0.34,

p = 0.129. There was no difference between adaptive and

self-selected training, MDiff = -0.19, p = 0.374.

For enjoyment, neither the linear [F(1, 84) = 0.96,

p = 0.335, gp
2 = 0.01] nor the quadratic trend for session

[F(1, 84) = 1.20, p = 0.277, gp
2 = 0.01] was significant.

However, the interaction between group and the quadratic

trend of session [F(2, 84) = 3.96, p = 0.023, gp
2 = 0.09]

was significant, indicating that participants’ enjoyment in

the randomized condition decreased after the first session

and increased again in the last sessions, whereas enjoyment

1
2
3
4
5
6
7
8
9

M
ea

n 
tr

ai
ni

ng
 le

ve
l

adap�ve
randomized
self-selected

A

1

3

5

7

9

11

13

M
ea

n 
tr

ai
ni

ng
 le

ve
l

B

1
2
3
4
5
6
7
8
9

M
ea

n 
tr

ai
ni

ng
 le

ve
l

C

1

3

5

7

9

11

13

1 5 10 15 20

M
ea

n 
tr

ai
ni

ng
 le

ve
l

Session

geography
history
natural science

D

Fig. 1 Change in performance during the training phase: WM

training progress in a numerical complex span, b verbal complex

span, c figural complex span, and in d active control training (trivia

questions). Note the varying scaling of the dependent variable. Error

bars confidence intervals (95 %) for within-subjects comparisons,

calculated according to Cousineau (2005) and Morey (2008)

Table 3 Linear contrasts of training effects on performance in the trained tasks during working memory training

Group

Adaptive Randomized Self-selected

Training task

(complex span)

M (SD) F

(1, 29)

p gp
2 M (SD) F

(1, 26)

p gp
2 M (SD) F

(1, 29)

p gp
2

Numerical 4.87 (4.42) 14.04 0.001 0.33 3.52 (1.70) 1.35 0.256 0.05 5.10 (3.55) 31.71 \0.001 0.52

Verbal 10.87 (4.34) 95.39 \0.001 0.77 3.44 (1.85) 0.23 0.638 0.01 9.50 (4.48) 74.40 \0.001 0.72

Figural 6.43 (4.47) 27.03 <0.001 0.48 3.67 (1.62) 0.52 0.477 0.02 7.17 (4.31) 45.77 <0.001 0.61

Bold p values indicate significant effects. Only participants with complete training data sets were included in the analyses. The dependent

variable was the level of difficulty achieved in each training session. Means and standard deviations are given for the last training session
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ratings in the other groups did not vary much across ses-

sions. For effort, the data followed a quadratic trend for

session (F(1, 84) = 22.27, p\ 0.001, gp
2 = 0.21) with

higher effort ratings in the beginning and the end of the

training phase than in-between. This trend was not

modulated by group, F(2, 84) = 1.31, p = 0.276,

gp
2 = 0.03. For the rating of perceived fit between task

difficulty and ability, neither the linear (F(1, 84) = 2.59,

p = 0.111, gp
2 = 0.03) nor the quadratic trend (F(1,

84)\ 0.01, p = 0.995, gp
2\ 0.01) was significant. Fur-

thermore, we observed no significant group x session in-

teractions (F(2, 84) = 1.35, p = 0.265, gp
2 = 0.03 and F(2,

84) = 0.44, p = 0.645, gp
2 = 0.01 for the linear and the

quadratic trend, respectively).

In addition to the one-item motivation measures, we

administered the QCM after the first and the tenth session.

For the QCM, there was no main effect of group [F(2,

92) = 0.39, p = 0.676, gp
2 = 0.01], but a large main effect

of session [F(1, 92) = 24.49, p\ 0.001, gp
2 = 0.21], with

motivation decreasing from session 1 to session 10. How-

ever, the effect was not modulated by group, F(2,

92) = 0.52, p = 0.596, gp
2 = 0.01.

Training and transfer gains

To evaluate gain from pre- to post-assessment, we com-

puted standardized gain scores (i.e., difference between

posttest and pretest score divided by the pretest standard

deviation) for each individual and each task (cf. von

Bastian & Oberauer, 2013). We then ran linear mixed-

effects (LME) models to estimate these gain scores on the

level of generalization range (i.e., training, intermediate

transfer and far transfer effects) rather than on the level of

single tasks (for a more detailed discussion of the ad-

vantages of using LME models over analyses of variance,

see Baayen, Davidson & Bates, 2008; Bates, 2010; see

also von Bastian & Oberauer, 2013). We ran separate

LME models on the gain scores for each range of gen-

eralization. LME models can simultaneously account for

multiple sources of variances, which can be either fixed

effects or random effects. The fixed-effects predictor was

group. The four levels of group were coded as three

contrasts according to our research questions (adaptive vs.

active control, adaptive vs. randomized, and adaptive vs.

self-selected training), entered as sum contrasts (i.e., -1

vs. 1) with the intercept reflecting the grand mean of the

gain scores.

We included two crossed random effects (Baayen et al.,

2008) in the models: the random effect of subject to account

for random variability between participants, and the random

effect of task to account for the fact that the paradigms we

used in our study to assess WM and reasoning reflect only a

sample of possible tasks that could be administered to

measure these theoretical constructs (cf. von Bastian &

Oberauer, 2013). Random effects can be assumed for in-

tercepts (i.e., random variation around the overall mean of

the dependent variable) and for slopes (i.e., additional ran-

dom variation in the size of effects of all predictors). The

results of a recent simulation study demonstrated that

models with design-driven maximal random-effects struc-

ture generalize best (Barr, Levy, Scheepers & Tily, 2013).

Given that each subject belonged to one group only, we

included the random effect of subject for the intercept only,

while we introduced the random effect of task for both in-

tercept and slope. In one case (intermediate transfer to WM),

the model with this random-effects structure did not con-

verge. Following the recommendations by Barr et al. (2013),

we chose to remove the random intercept of task for this

model, leaving a random effect of task on the slope, and a

random effect of subject on the intercept.

Model fitting was carried out using the statistics pro-

gram R (R Core Team, 2014) with the package ‘‘lme4’’

(Bates, Maechler, Bolker & Walker, 2014). Kenward–

Roger approximation with the package ‘‘pbkrtest’’ (Hale-

koh & Højsgaard, 2014) was used to compute the degrees

of freedom to derive information about the significance of

the predictors. Results of the LME models are summarized

in Tables 4 (fixed effects) and 5 (random effects). All re-

ported p values are two-tailed.

Training gains

The significant intercept (b = 0.98, p\ 0.001) indicates

that performance in the trained tasks generally increased

Table 4 Parameter estimates for fixed effects of the linear mixed-

effects models relating effects of training algorithm to training and

transfer gains

Transfer range/parameter Estimate SE t p

Training effects (complex span)

Intercept (grand mean) 0.98 0.07 14.86 <0.001

Adaptive vs. active control 0.97 0.19 5.13 0.002

Adaptive vs. randomized -0.07 0.17 -0.41 0.698

Adaptive vs. self-selected -0.17 0.16 -1.03 0.343

Intermediate transfer (working memory)

Intercept (grand mean) 0.43 0.04 10.39 <0.001

Adaptive vs. active control 0.20 0.12 1.62 0.174

Adaptive vs. randomized -0.18 0.15 -1.20 0.292

Adaptive vs. self-selected -0.05 0.11 -0.42 0.697

Far transfer (reasoning)

Intercept (grand mean) 0.28 0.06 4.92 0.002

Adaptive vs. active control -0.07 0.11 -0.70 0.507

Adaptive vs. randomized 0.02 0.12 0.18 0.866

Adaptive vs. self-selected -0.09 0.11 -0.79 0.461

Bold p values indicate significant predictors (p\ 0.05)
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from pre- to post-test. The first contrast (active control vs.

adaptive training) being significant shows that the adaptive

training group’s improvement in the trained tasks is larger

than the one observed for the active control group

(b = 0.97, p = 0.002). Hence, it can be concluded that

there was a WM training effect that went beyond simple

retest or non-specific intervention effects. The non-sig-

nificant comparisons between adaptive and non-standard

WM training procedures indicate that training gains were

similar for all three training algorithms (see also Fig. 2a).

Transfer gains

Performance in the intermediate (WM) and far (reasoning)

transfer tasks generally increased from pre- to post-test,

indicated by the significant intercepts (b = 0.43, p\ 0.001

and b = 0.28, p = 0.002). Figure 2b illustrates that there

was a tendency of adaptive training yielding larger inter-

mediate (WM) transfer gains than active control training,

which, however, was not significant (b = 0.20, p = 0.174).

There was also no significant difference between these two

groups in reasoning gain scores (b = -0.07, p = 0.507,

see also Fig. 2c). None of the contrasts examining differ-

ences between WM training algorithms were significant;

hence, the type of WM training procedure did not modulate

intermediate and far transfer effects.

In summary, the results showed that adaptive WM

training led to larger gains in the trained tasks than active

control training. However, there was no consistent evi-

dence for transfer to structurally dissimilar WM tasks or to

reasoning tasks. Furthermore, we observed no differences

between adaptive and non-standard (i.e., randomized or

self-selected) WM training procedures for neither training

nor transfer gains.

Control task

Improvement in the open format trivia quiz for the active

control group was tested against the conjoined ex-

perimental groups. As expected, the time (pretest vs.

posttest) and group (experimental vs. active control) in-

teraction was not significant, F(1, 128) = 1.81, p = 0.181,

gp
2 = 0.01.
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Table 5 Estimates for random

effects of the linear mixed-

effects models relating effects

of training algorithm to training

and transfer gains

SD

Random effect Training Intermediate transfer Far transfer

Subject

Intercept 0.46 0.25 0.04

Task

Intercept 0.06 – 0.11

Adaptive vs. active control 0.18 0.07 0.16

Adaptive vs. randomized 0.09 0.16 0.21

Adaptive vs. self-selected 0.09 0.06 0.19

Residual 0.76 0.69 0.71
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Discussion

In this study, we tested the hypothesis that to be most

effective, WM training should provide a task difficulty that

continuously exceeds an individual’s routine cognitive

demands, and, thus, has to be adaptive (Lövden et al.,

2010). Previous evidence in favor of this hypothesis

(Klingberg, 2010) was gained from studies comparing

adaptive to low-level WM training (in which individuals

constantly practice with low task difficulty), a design which

confounds adapting difficulty to individual performance

with variation in task difficulty. However, exposure to

continuously varying task difficulty also requires the cog-

nitive system to adjust its functional supplies to changing

environmental demands, thereby potentially inducing

cognitive plasticity.

To differentiate between these two factors, we compared

adaptive to randomized instead of to low-level WM train-

ing. The main finding of our study is that we observed no

differences between training procedures in terms of train-

ing and transfer effects. Thus, our results indicate that

training with varying task difficulty is similarly effective as

individually adaptive training. The fact that participants in

the randomized training condition practiced on average on

overall easier levels of task difficulty than those in the

adaptive condition even indicates that training gains may

indeed be driven by variability in rather than by continuous

adaptation of task difficulty to individual performance.

Furthermore, there was no difference in training pro-

gress between adaptive and self-selected training, showing

that the adaptive procedure applied in our study (i.e., a

threshold of 80 % correct before progressing to the next

higher level of difficulty, and a threshold of 60 % correct

for moving to the next lower level of difficulty) matches

what individuals themselves would define as an optimal

modification of training task difficulty. This is in line with

a recent study by Gibson and colleagues (2013) demon-

strating that an adaptive algorithm operating in this range is

more effective than one pushing for higher WM perfor-

mance (i.e., requiring perfect performance for reaching the

threshold).

To investigate whether adaptive training is superior to

other training procedures in terms of motivation (and with

it, trainees’ compliance), we measured training enjoyment,

effort, and perceived fit between task difficulty and cog-

nitive ability (after each session) and current overall

training motivation (at the beginning and halfway through

the training period). Given that task difficulty was inde-

pendent of individual performance in the randomized

condition, it can be expected that the perceived fit is lower

in this group compared to the two other WM training

groups, which should not differ. This was precisely the

case. Importantly, however, this lower perceived fit had no

negative impact on the other motivational measures (en-

joyment, effort, and overall training motivation). The only

exception was that participants in the randomized training

condition rated their enjoyment higher after the first and the

last training session than participants in the other training

groups (i.e., their ratings followed a U-shaped function,

whereas the ratings of participants in the other groups re-

mained roughly the same across sessions). It is unclear why

the randomized training procedure was regarded more en-

joyable in the first training session than the other two WM

training procedures, as all groups started on the same level

of task difficulty in that first training session. In sum, apart

from the first and last training session, all three WM

training procedures were perceived as similarly enjoyable

and challenging and thus could be applied similarly well in

practice. Moreover, these findings suggest that training and

transfer effects cannot be attributed to differences in

training motivation or effort between training groups alone.

Finally, we evaluated whether we could replicate pre-

vious findings showing transfer effects to untrained WM

tasks and reasoning after a similar adaptive complex span

training (von Bastian & Oberauer, 2013). Despite the large

training effects we observed in the present study, we found,

however, no evidence for transfer effects. There are three

major methodological differences between the present and

our previous study that could potentially contribute to the

diverging results: (1) our modifications to the adaptive al-

gorithm, (2) a different activity in the active control con-

dition, and (3) the lack of a follow-up assessment.

First, we modified the adaptive algorithm in several

aspects due to design requirements. To keep comparability

of single sessions between training conditions as high as

possible, task difficulty was modified only once per session

(i.e., after 100 % of the trials per session). In contrast, in

the previous study, task difficulty was adjusted within

sessions, a procedure more typical in the training literature

(e.g., Chein & Morrison, 2010; Dunning, Holmes &

Gathercole, 2013; Jaeggi et al., 2008; von Bastian et al.,

2013). Furthermore, in the present study, task difficulty

could increase or decrease, whereas it was only increased

in the earlier study. Hence, it is possible that participants in

the previous study could have reached higher levels of

difficulty that were more challenging and thus induced

larger magnitudes of transfer. To test this possibility, we

ran ANOVAs comparing the span levels reached in the two

studies across the 20 training sessions for the figural and

the numerical complex span. We refrained from doing so

for the verbal complex span, as stimuli were letters in the

present study and words in the earlier study. There were

neither significant group effects (both Fs\ 1) nor sig-

nificant linear trends for the group 9 session interactions

[figural: F(1, 54) = 1.46, p = 0.232, gp
2 = 0.03; nu-

merical: F(1, 54) = 1.64, p = 0.206, gp
2 = 0.03]. Thus, the
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levels of difficulty achieved were about the same across the

two studies, suggesting that our modifications to the

adaptive algorithm (i.e., spacing and direction of difficulty

adjustment) did not affect training progress and are there-

fore an unlikely explanation for the absence of transfer.

However, further studies are needed to clarify how such

modifications affect training and transfer gains.

The second difference between the previous and the

present study concerns our choice of control intervention

(perceptual matching and trivia quizzes, respectively). As

we observed large improvements in processing speed after

perceptual matching training in the earlier study (which

strongly contributes to WM performance, see Schmiedek,

Oberauer, Wilhelm, Süß & Wittmann, 2007; cf. von Bas-

tian & Oberauer, 2013), we chose to use trivia quizzes

instead. Theoretically, such questions on general knowl-

edge should demand only little WM and draw mainly on

crystallized intelligence. Still, as we discussed in a recent

review (von Bastian & Oberauer, 2014), there are two

potential drawbacks of using trivia quizzes as a control

condition. First, trivia quizzes could be more fun to do than

complex span tasks. However, there were no differences in

enjoyment ratings during training between the adaptive

WM and the control training group (linear trend F\ 0).

Second, trivia quiz questions could evoke reasoning

strategies (e.g., rejection of implausible answers) that

would require—and hence, practice—relational integration

processes; that is, the coordination of information elements

into structures. Recent theories consider relational inte-

gration as crucial part of WM (e.g., Oberauer, 2010;

Oberauer, Süß, Wilhelm & Wittmann, 2003), and research

has shown that such processes are highly related to fluid

intelligence (e.g., Oberauer, Süß, Wilhelm & Wittmann,

2008). We can only speculate whether such processes took

place during active control training, but it could serve as an

explanation for the active control group also showing some

improvement in the transfer tasks. Arguably, however,

WM demands can still be expected to be higher for com-

plex span tasks than trivia quizzes. Furthermore, previous

training studies using trivia quizzes as control activity were

in fact successful in detecting transfer (e.g., Jaeggi et al.,

2014). Therefore, even though we cannot exclude that the

active control group’s improvements obscure transfer ef-

fects of WM training, we believe it is unlikely that they

fully explain the lack thereof.

The third methodological deviation concerns the

assessment of transfer effects. In our previous study (von

Bastian & Oberauer, 2013), participants were tested twice

for transfer: once immediately after training and once

6 months later. As we found no significant decrease in

performance from post to follow-up assessment, we were

able to evaluate transfer effects taking both points in time

together, yielding larger statistical power to detect potential

transfer effects. We cannot exclude that the addition of a

follow-up assessment to our study would have resulted in

observable transfer gains. The duration of the testing ses-

sions is another feature of transfer assessment that has been

recently discussed as one potential explanation for the in-

consistencies observed in the training literature. Green,

Strobach and Schubert (2014) argue that long testing ses-

sions could foster unwanted effects of fatigue, resource

depletion, or practice, thereby making it difficult to detect

transfer. Even though our testing sessions were indeed

relatively long (3 h), the fact that we used two different

orders of test administration should control for such effects.

In addition, the testing sessions in the previous study were

considerably longer (4.5 h), making testing session dura-

tion an unlikely explanation for the absence of transfer.

Conclusion

The absence of transfer effects in this study questions the

potential of adaptive complex span WM training to induce

transfer effects in general and change in reasoning ability in

particular, given that other studies using similar training

paradigms did not detect far transfer to reasoning either

(Chein &Morrison, 2010; Colom et al., 2010; Harrison et al.,

2013; Licini, 2014). Notwithstanding the absence of transfer

effects, our findings contradict the assumption that WM

training has to be adaptive to individual performance to yield

training-induced gains in cognitive performance, as the ex-

perimental training manipulation had neither an effect on

practiced (for which effects would be expected to be stron-

gest) nor on untrainedWM and reasoning tasks (intermediate

and far transfer). Rather, the present data suggest that ex-

posing participants to varying levels of difficulty is sufficient

for challenging the flexibility of the cognitive system by

exceeding routine demands (cf. Lövden et al., 2010) and

thereby inducing performance improvements.
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Gedächtnishilfen im Alltag. Zeitschrift für Entwicklungspsy-
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