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Abstract We used a novel stimulus set of human and

robot actions to explore the role of humanlike appearance

and motion in action prediction. Participants viewed

videos of familiar actions performed by three agents:

human, android and robot, the former two sharing human

appearance, the latter two nonhuman motion. In each trial,

the video was occluded for 400 ms. Participants were

asked to determine whether the action continued coher-

ently (in-time) after occlusion. The timing at which the

action continued was early, late, or in-time (100, 700 or

400 ms after the start of occlusion). Task performance

interacted with the observed agent. For early continua-

tions, accuracy was highest for human, lowest for robot

actions. For late continuations, the pattern was reversed.

Both android and human conditions differed significantly

from the robot condition. Given the robot and android

conditions had the same kinematics, the visual form of the

actor appears to affect action prediction. We suggest that

the selection of the internal sensorimotor model used for

action prediction is influenced by the observed agent’s

appearance.

Introduction

Action perception is often discussed within the framework

of motor resonance, whereby action understanding

involves an internal simulation of the seen action by the

observer (Rizzolatti, Fogassi, & Gallese, 2001). But what

are the boundary conditions for this resonance? What if the

actor looks different from the observer? Or moves differ-

ently? It has been suggested that the closer the match

between the observed action and the observers’ own body,

the stronger the resonance should be (e.g., Calvo-Merino,

Grezes, Glaser, Passingham, & Haggard, 2006; Cross,

Hamilton, & Grafton, 2006). On the other hand, brain areas

that are active during action perception also respond to

simple animations (Pelphrey et al., 2003) or to point-light

displays (Saygin, 2007), indicating they may be relatively

insensitive to the surface properties of the stimuli depicting

the actions.

With recent advances in technology, lifelike humanoid

robots are becoming commonplace and assistive technolo-

gies based on such agents are starting to change the face of

education and healthcare (Coradeschi et al., 2006). How-

ever, there is little systematic research on human perception

of such agents (Saygin, Chaminade, & Ishiguro, 2010).

Artificial agents can have various different appearances and

movement kinematics. As such, they can provide us with

unique opportunities to test theories of perception and

cognition (Saygin, Chaminade, Urgen, & Ishiguro, 2011b).

There is an existing literature on the perception of

actions of robots. Although some have explored behavioral

measures, previous work has largely focused on whether or

not the so-called mirror neuron system (Rizzolatti et al.,

2001) responds during the perception of robots. Unfortu-

nately, the results are inconsistent, suggesting a need for

further exploration (Saygin et al., 2011a, b).
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Here, we tested the effects of the observed agent’s

form and motion on behavioral performance in a dynamic

action prediction task. Action prediction has been linked

to internal sensorimotor models and in some studies, to

motor or premotor areas of the brain (Prinz, 2006; Schutz-

Bosbach & Prinz, 2007; Sparenberg, Springer, & Prinz,

2011; Springer et al., 2011; Wilson & Knoblich, 2005).

This notion was highlighted by studies reporting predictive

gaze behavior during action observation (Flanagan & Jo-

hansson, 2003), and by predictive activation of premotor

areas of the brain in humans (Kilner, Vargas, Duval,

Blakemore, & Sirigu, 2004) and in nonhuman primates

(Umilta et al., 2001). Moreover, explicit action prediction

during action occlusion engages premotor areas more

strongly than other tasks (Stadler et al., 2011). Such results

suggest a link to the motor resonance concept discussed

above, and may be indicative of on simulation of the

observed/predicted action in the motor programs of the

observer. On the other hand, prediction appears to pref-

erentially engage premotor cortex whether or not the

predicted event is produced by a human (Schubotz, 2007).

More generally, prediction has been proposed as a ubiq-

uitous processing principle in the brain (Bar, 2009; Bubic,

von Cramon, & Schubotz, 2010; Friston, 2005). Studies

of action prediction may also be helpful in linking

research on motor resonance and simulation more gen-

erally to established computational frameworks of senso-

rimotor control (Kawato & Wolpert, 1998; Wolpert,

Doya, & Kawato, 2003), which could help bridge findings

from neuroimaging studies of action perception to neuro-

computational theory (Kilner, Friston, & Frith, 2007).

The present study explored the prediction of human and

artificial agents’ actions. Consistent with the increased

perceptual sensitivity or neural activity for actions that are

in the observer’s ‘‘motor repertoire’’ (Calvo-Merino et al.,

2006; Casile & Giese, 2006; Catmur, Walsh, & Heyes,

2007; Cross et al., 2006; Kilner, Paulignan, & Blakemore,

2003; Press, Gillmeister, & Heyes, 2007), we may expect

artificial agents’ actions to be predicted less precisely than

those of human agents since their body form differs from

those of the observer and their motion is not biological

(Pollick, Hale, & Tzoneva-Hadjigeorgieva, 2005). Con-

versely, if predictive functions are more generally appli-

cable, and/or if information from different sources than

match to the observer’s own body dominate in action

prediction, then we may find no difference in prediction

accuracy between actions of human and artificial agents.

Here, we used an explicit action prediction task to study

processing of human and artificial agent actions (Graf

et al., 2007; Stadler et al., 2011). During each trial, actions

were briefly occluded from view. The participants were

required to mentally continue, i.e., predict the actions in

order to perform the task, which was to decide whether or

not the action’s timing continued naturally and coherently

(i.e., in-time) after occlusion.

In addition to comparing human and artificial agents,

the present study used novel stimuli that allowed us to

delineate the influence of humanlike form on the one hand,

of biological motion kinematics on the other. Instead of

using toys or industrial robot hands as previous studies did,

we collaborated with a robotics lab and worked with state-

of-the-art humanoid robots. This allowed us to address

the role of robot appearance, which was not explored in

previous work, though it is known that appearance can

affect action perception (Chaminade, Hodgins, & Kawato,

2007). Furthermore, by using actual robots, we can engage

more productively with social robotics, a rapidly devel-

oping field (Chaminade & Cheng, 2009; Saygin, et al.,

2011a).

Our stimuli were video clips from the Saygin-Ishiguro

Action Database (SIAD, Fig. 1), which contains actions

performed by natural and artificial agents (Saygin et al.,

2011a). Our study had actions from three agents from

SIAD: the android Repliee Q2 (Ishiguro, 2006), which has

a highly humanlike appearance (android condition); the

android after stripping off its humanlike form, but retaining

exactly the same kinematics (robot condition); and the

human that the android was designed to replicate in

appearance (human condition). Although future robotics

systems may be able to mimic human motion kinematics,

motions of present-day robots, including those of Repliee

Q2, are noticeably different from biological motion

dynamics (Pollick et al., 2005; Minato & Ishiguro, 2008;

Shimada, Minato, Itakura, & Ishiguro, 2006). Thus in terms

of motion, the android and robot featured nonhuman

kinematics, whereas biological motion was unique to the

human condition. In terms of form or appearance, the

human and android conditions featured humanlike, bio-

logical appearance, whereas the robot condition featured a

nonbiological, mechanical appearance (Fig. 1). This design

allowed us to not only ask whether action prediction differs

between humans and nonhuman artificial agents, but also to

explore the role of visual form, biological motion (as well

as their interaction) in action prediction (Saygin et al.,

2011b).

In a recent fMRI adaptation study using SIAD stimuli,

we found that brain activity in a network of areas sub-

serving action perception was modulated not only by the

appearance and the motion of the agent, but also by the

congruence of form and motion, indicating these factors

may interact (Saygin et al., 2011a). The present study

complements this work using a more dynamic paradigm to

continue to explore the different influences of visual form

and motion on action perception.

Psychological Research (2012) 76:388–394 389

123



Methods

Participants

Sixteen right-handed healthy adults (mean age 25.3; SD

2.8; range 22–32; 8 males) participated. All participants

had normal or corrected vision, no cognitive, attentional, or

neurological abnormalities by self-report. All participants

were natives of Germany and were blind to the hypotheses

or design of the study. Studies were carried out under

ethical approval in accordance with the standards of the

1964 Declaration of Helsinki. All participants gave written

informed consent and were paid for their participation.

Stimuli

The stimuli were videos from the Saygin-Ishiguro Action

Database (SIAD), which comprises body movements of

human and artificial agents. We used 2-second action clips

performed by three agents: robot, android, and human (Fig. 1).

Actions were performed by the android Repliee Q2 and

by the human ‘‘master’’ after whom it was modeled. Rep-

liee Q2 was developed at Osaka University in collaboration

with Kokoro Inc., and with brief exposures, can be mis-

taken for a human being (Ishiguro, 2006). Repliee Q2’s

actuators were programmed over several weeks at Osaka

University. The android has 42 degrees of freedom and can

make head and upper body movements.

SIAD contains videos of Repliee Q2 both with its full

humanlike appearance (android condition), and also with a

mechanical appearance (robot condition). For the robot

condition, the surface elements of the android were

removed to reveal the materials underneath (e.g., wiring,

metal limbs and joints), but retaining exactly the same

mechanical movements. The silicone on the hands and face

and some of the fine hair around the face could not be

removed and were covered. The removed components were

all foam and their weight did not influence the motion

kinematics between the conditions (the resulting movies

were matched frame by frame). In the robot condition,

Repliee Q2 could no longer be mistaken for a human.

However, the kinematics of the android and robot condi-

tions was identical, since these conditions in fact featured

the same robot, performing the very same movements.

For the human condition, the female adult on whom

Repliee Q2’s appearance was based was videotaped. She

watched each of the Repliee Q2’s actions, and performed

the same action as she would naturally. The human per-

formed these movements several times and the version of

the action that most closely matched the speed of the

robot’s movement was selected for inclusion in SIAD. The

motion kinematics was not altered.

There were thus three agent conditions: human, android,

and robot. Human and android conditions featured bio-

logical (humanlike) appearance, whereas the robot condi-

tion did not. In terms of motion, biological motion was

unique to the human condition, with the other two agents

having nonbiological, mechanical motion. The robot and

the human are different from each other in both motion and

appearance dimensions, whilst sharing a feature with the

android. On the other hand, the robot and the human

conditions both feature congruent appearance and motion,

whereas the android features incongruent appearance and

motion (biological appearance, mechanical motion, Fig. 1).

SIAD thus allowed us to address the role of biological

appearance and biological motion, as well as the congru-

ence of the two features, in action prediction.

All SIAD actions were videotaped in the same room and

with the same background, lighting and camera settings.

Only the upper body was visible (cf. Fig. 1). For each

agent, four different 2-second clips including both transi-

tive and intransitive movements were used in the present

study (wiping with a towel, drinking from a cup, picking up

an object, nudging someone). Video recordings were dig-

itized, converted to grayscale and cropped to 400 by 400

pixels. A semi-transparent white fixation cross (40 pixels

across) was superimposed at the center of the movies.

Procedure

We used an occlusion paradigm to assess action prediction

behaviorally (Graf et al., 2007; Stadler et al., in this issue).

Stimuli were presented and responses recorded using Pre-

sentation software (Version 13, http://www.neurobs.com).

In each trial, after at least 500 (mean 575 ± 62 ms, range

500–633 ms) from the start of the action, the videos were

occluded for 400 ms. The occlusion point was varied from

trial to trial in order to avoid learning effects that may

result from repetitive presentations of the same videos. The

video speeds were not altered.

Fig. 1 Images from Saygin-Ishiguro action database (SIAD; Saygin

et al., 2010) and the features each condition represents
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After the 400 ms occlusion, the action continued either

in-time, with natural timing (i.e., at a frame corresponding

to 400 ms after the last frame before occlusion, which was

also 400 ms), or with early timing (100 ms after the last

frame before occlusion), or late timing (700 ms after the

last frame before occlusion).

There were thus three continuation conditions (early,

in-time, late), and three agent conditions (robot, android,

human). There were 20 trials with each agent–timing pair,

which resulted in a total trial number of 180, not

including practice trials. The task was to determine

whether or not the continuation of the video continued in-

time after occlusion and was the same for all conditions

(Fig. 2).

An experimental session began with the presentation of

all the video clips to be used in the study without occlusion

so that subjects had uniform exposure to the stimuli at the

start of testing. Subjects had not seen the videos or any

other videos of these robots before the experiment. Par-

ticipants were then briefly trained the experimental task

with an example of each agent and with three repetitions of

each continuation condition receiving feedback about their

performance (9 trials total). Videos that were shown in the

experiment could also appear in the practice session. Three

videos of each agent were chosen randomly for each par-

ticipant for the practice session. The actual experiment

lasted 30 min and featured no feedback.

Data analysis

Data were analyzed with repeated-measures ANOVA (3

agents 9 3 continuations; Greenhouse-Geisser corrected)

with prediction accuracy as a dependent variable. Given

our agent conditions related to our experimental interests of

form and motion but not in a factorial design, we planned

pairwise t tests for assessing form and motion effects (e.g.,

robot vs. android for the effect of form while keeping

kinematics constant; android vs. human for the effect of

motion kinematics with humanlike form). Bonferroni

correction was used to correct for multiple comparisons.

All p values are reported two-tailed.

Results

The results are summarized in Fig. 3. When the continua-

tion was in-time, subjects were able to discriminate the

continuation successfully only barely above chance (i.e.,

subjects still perceived it to be not in-time almost half of

the time); this pattern of performance did not vary across

agents. The early and late continuations were easier to

discriminate. This overall difference was reflected in a

trend to significance of the main effect of continuation

[F(2,30) = 3.28, p = 0.062, g2 = 0.10]. There was a sig-

nificant interaction between agent and continuation

[F(4,60) = 3.12, p \ 0.05, g2 = 0.05), driven by the early

and late continuation conditions (Fig. 3). Subjects were

significantly less accurate in the robot condition compared

to the others when the continuation was early. Approxi-

mately 43% of these trials were perceived to be coherent in

the robot condition, compared with 33 and 31% for the

android and human conditions. The pattern was reversed

for the late continuation condition, where *41% of the

Fig. 2 Schematic of an experimental trial. A trial from the android

condition is shown here, but the procedure was identical for all

conditions. The trial started with an action video, which was played

for at least 500 ms before an occlusion period of 400 ms. After

occlusion, the video continued at a point that was in-time (400 ms

from offset), early (100 ms from offset), or late (700 ms from onset)

compared to the point of occlusion. The participant then decided

whether or not the continuation was coherent

Fig. 3 Results. Accuracy is plotted on the y-axis for each agent

(robot (R) in dark grey, android (A) in medium grey, and human

(H) in light grey) and continuation (in-time, early, late). Error bars
are SEM
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trials were perceived to be coherent in the human condi-

tion, compared with 35 and 38% for the robot and android

conditions. A paired-samples t test revealed a significant

difference between the agents with human appearance and

the robot (human vs. Robot: [t(15) = -3.04, p \ 0.05];

android vs. Robot [t(15) = -3.58, p \ 0.05] for the late

continuation condition. For early continuations, the dif-

ference between the human and the robot was marginally

significant [t(15) = 2.08, p = 0.056]. The overall main

effect of agent was not significant.

A similar ANOVA carried out for reaction time (RT)

revealed a significant main effect for continuation

[F(2,30) = 4.26, p \ 0.05, g2 = 0.10], resulting from a

general decrease of RTs in the late continuations. A similar

trend was found in the study by Stadler et al. (in this issue)

where a discussion of this effect is provided.

Discussion

We presented new data from a behavioural study exploring

the role of humanlike form and/or motion in action pre-

diction. We used an occlusion paradigm, along with a

novel stimulus set, which allowed us to study the predictive

use of sensorimotor representations during action percep-

tion (Graf et al., 2007; Stadler et al., 2011). Stimuli

depicted human and artificial agents that either had a bio-

logical appearance, or biological motion, or both (Fig. 1).

The results revealed an interaction between the observed

actor (human, robot, android) and the continuation

manipulation of our occlusion paradigm, expressing a

complex interaction between the observed agent’s appear-

ance and movement kinematics during action prediction.

The occlusion paradigm allows studying internally

guided aspects of action prediction (Stadler et al., 2011).

Graf et al. (2007) used point-light animations in a similar

paradigm and showed that natural human movement is

predicted with higher accuracy during brief occlusions.

From the high sensitivity to violations in the actions’ time

course, they concluded that the participants might have

relied on real-time simulation in their motor repertoire

during occlusion. Correspondingly, Stadler et al. (2011)

have shown that premotor areas (including the pre-SMA

which is particularly involved in internal guidance) are

activated during the explicit prediction of occluded action

sequences. Thus, the performance in the prediction task is

likely to reflect the application of internal models.

Action processing is often discussed in relation to an

embodied motor simulation (Rizzolatti et al., 2001). Con-

sistent with our recent neuroimaging studies (Saygin et al.,

2011b), the present data indicate that action processing

mechanisms are not selectively tuned to process our con-

specifics (Cross et al., 2006; Saygin et al., 2011a). Instead,

action processing (and prediction) shows evidence for

sensitivity for humanlike form and biological motion, but

not selectivity for these features.

Overall, the present study found a significant effect of

the actor’s visual form on action prediction performance.

When continuations after occlusion were early (i.e., the

action continued at a point that corresponded to 100 ms

after the start of a 400 ms occlusion), subjects were most

accurate in the human condition and least accurate in the

robot condition. Performance in the android condition was

more similar to the human condition (both conditions dif-

fered significantly from the robot condition). Conversely,

when action continuations were late (i.e., the action con-

tinued at a point that corresponded to 700 ms after the start

of a 400 ms occlusion), the relationship between the agents

was reversed, with the human condition producing highest

error rates and lowest error rates in the robot condition.

Our results show that predictive processing under the

early and late continuation conditions is modulated dif-

ferentially depending on the viewed agent. Given the

asymmetry in the continuation conditions it may be useful

to consider the relationship between the timing of the

continuation of the stimuli, and the prediction process

during the occlusion. In this way, the results can be

examined in terms of the speed of the internal prediction

during the occlusion period: when an early continuation is

considered in-time by the subjects (lower accuracy in our

task), the internal predictive models during the occlusion

period may be thought to be operating in a relatively

‘‘slow’’ mode, since a point of continuation 100 ms after

the start of a 400 ms occlusion is perceived as being in-

time. This situation occurred most frequently for the robot

and less frequently for the android and the human (Fig. 3).

Vice versa, when a late continuation is perceived as being

in-time, we may view the prediction process operating in a

relatively ‘‘fast’’ mode, since a point of continuation

700 ms after the start of a 400 ms occlusion is judged in-

time. This situation occurred least frequently for the robot

(Fig. 3). Thus, accuracy patterns for both the early and the

late continuation conditions are consistent with a ‘‘slower’’

predictive model being used for the robot compared with

agents that have humanlike form. Note that actual in-time

continuations were not being judged as such for any of the

agents, but since subjects did not have to indicate whether

the timing was perceived to be early or late, future work is

needed to explore the possibility that the lack of an agent

difference in the in-time continuation condition may also

mask a similar differential timing of the internal simulation

process for the different agents.

Given the dynamic nature of the task, and previous work

with motor interference paradigms (e.g., Christensen, Ilg,

& Giese, 2011; Kilner, Hamilton, & Blakemore, 2007;

Press et al., 2007; Saunier, Papaxanthis, Vargas, & Pozzo,
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2008), differences in prediction performance based on the

motion of the agent may have been expected. Note that an

asymmetry was found in a reversed form when point-light

characters with artificial movement kinematics were used

in the same paradigm: prediction errors for artificial

movement were lowest in early continuations and highest

in late continuations (submission by Stadler et al., to this

issue). While Stadler et al.’s goal was to abstract away

from form, the study constitutes an interesting counterpoint

to ours, where the kinematics was matched between robot

and android, but the appearance varied.

The observed interaction with visual appearance is

especially interesting, given the robot and android condi-

tions were actually the same machine, with the same action

kinematics, matched frame-by-frame in the videos. The

appearance of the agents thus appears to exert significant

influence (perhaps via modulatory signals from visual areas

that process form) on the process of action prediction. A

role for motion cannot be ruled out however, given the

accuracy in the android condition generally fell in between

robot and human conditions.

Why would appearance affect action prediction? Previ-

ous work suggests an agent’s appearance might induce

expectations about its movement kinematics (Saygin et al.,

2011a; Ho & MacDorman, 2010). Whereas a human form

would lead to an expectation of biological motion based on

a lifetime of experience with how people move, a robotic

or mechanical appearance is less likely to lead to an

expectation of smooth, biological motion (Pollick, 2009;

Saygin et al., 2011a). Although the precise mechanisms can

only be speculated from the present data, the appearance of

the agent appears to have biased the selection and/or use of

internal models that led to an advantage for predicting

movements of the android over the Robot, even though the

two agents had identical kinematics. A humanlike

appearance may facilitate the selection of a more precise

and/or more human-like sensorimotor model with which to

predict the action. It is also possible that what is more

precise is not the model itself, but its timing: If we view the

results from the alternate perspective of the speed of the

internal prediction mechanisms, it is possible to view

the mental continuation process for the robot as being

‘‘slower’’, according to which, early continuations would

be harder to discriminate from in-time continuations (as we

observed). It is possible that, to reduce conflict between

appearance and movement [cf. uncanny valley effects

(Mori, 1970; Saygin et al., 2011a)], during the occlusion,

the android ‘‘is not allowed to move as jerky’’ in the

prediction process, even though in fact the kinematics are

identical to the robot’s (Saygin et al., 2011a).

In a recent fMRI adaptation study using SIAD stimuli,

we found a network of areas subserving action perception

to be modulated by the appearance and the motion of the

observed agents (Saygin et al., 2011a). A region in lateral

temporal cortex (the extrastriate body area, EBA, in the left

hemisphere) responded similarly in the human and android

conditions, but exhibited less activation in the robot con-

dition (an effect of form). In a larger network, most notably

in parietal cortex, distinctive responses were found for the

android condition, which features a mismatch between

appearance and motion. We interpreted these data within a

predictive coding account of neural responses (Friston,

2005; Rao & Ballard, 1999). It is possible that visual areas

of the brain that specialize in processing form (especially

bodily form, such as the EBA, which had a response pat-

tern that parallels the findings here, as described above) can

modulate the efficacy of the internal models used for action

prediction. Given the present paradigm yielded a role for

visual form in action prediction performance (whilst the

effects of form-motion congruence or the uncanny valley

had dominated the fMRI data), future work will be bene-

ficial in linking fMRI studies of action perception and

studies that allow access to more dynamic aspects of pro-

cessing such as prediction paradigms, or neuroimaging

studies with more time-resolved techniques (e.g., EEG or

MEG).

Conclusion

We observed that the visual appearance of the observed

actor affects performance on a dynamic action prediction

task. We have a lifetime of experience viewing the actions

of other humans. It is possible that that the brain can use

internal sensorimotor models for action prediction more

effectively for entities that have a humanlike form, even

when they do not move biologically.
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