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Abstract Seeing an object activates both visual and
action codes in the brain. Crucial evidence supporting this
view is the observation of object to response compatibility
eVects: perception of an object can facilitate or interfere
with the execution of an action (e.g., grasping) even when
the viewer has no intention of interacting with the object.
TRoPICALS is a computational model that proposes some
general principles about the brain mechanisms underlying
compatibility eVects, in particular the idea that top-down
bias from prefrontal cortex, and whether it conXicts or not
with the actions aVorded by an object, plays a key role in
such phenomena. Experiments on compatibility eVects
using a target and a distractor object show the usual posi-
tive compatibility eVect of the target, but also an interesting
negative compatibility eVect of the distractor: responding
with a grip compatible with the distractor size produces
slower reaction times than the incompatible case. Here, we
present an enhanced version of TRoPICALS that repro-
duces and explains these new results. This explanation is

based on the idea that the prefrontal cortex plays a double
role in its top-down guidance of action selection producing:
(a) a positive bias in favour of the action requested by the
experimental task; (b) a negative bias directed to inhibiting
the action evoked by the distractor. The model also pro-
vides testable predictions on the possible consequences of
damage to volitional circuits such as in Parkinsonian
patients.

Introduction

A classical approach to human cognition proposes that the
processes related to perception, high-level cognition (such
as decision making), and action, take place in successive
and relatively independent stages (e.g., Sternberg, 1969).
This approach has been challenged by the view that all
mental processes and their underlying brain mechanisms
are strongly shaped by the need to serve action (Clark,
1996; Noë, 2004; Barsalou, 2008). In the development of
action-based theories of cognition the concept of aVordance
(Gibson, 1979), for which objects and the environment
around us are seen by organisms in terms of the opportunity
for the actions they oVer, has a key role. Behavioural and
brain imaging experiments have shown that the simple
sight of an object tends to elicit (internal) motor representa-
tions, suggesting that for organisms the very notion of
object has fundamental action components (Jeannerod,
1994; Arbib, 1997; Rizzolatti, Fogassi, & Gallese, 1997).

Cognitive psychologists have developed an experimental
paradigm to investigate these issues from a behavioral
perspective, the aVordance compatibility paradigm. In a
typical experiment (Tucker & Ellis, 2001; 2004), the partic-
ipants are requested to respond to visual objects, for exam-
ple to classify them as natural or artifact, by producing
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either a precision or power grip action on a custom joystick.
Performance is enhanced (with faster responses and fewer
errors) whenever the response grip is the same as that aVor-
ded by the object, compared to the incompatible cases.

A previous computational model (TRoPICALS, see
Table 1 for this and all other acronyms) of these phe-
nomena (Caligiore, Borghi, Parisi, & Baldassarre, 2010a)
attempted to capture the key principles underlying compati-
bility eVects (see the original paper for an indication of the
eVects accounted for). These principles state that: (a) the
brain is organised along two broad major neural pathways
(Ungerleider & Mishkin, 1982; Milner & Goodale, 1995): a
dorsal neural pathway, within which object aVordances are
translated into potential actions (Rizzolatti, Luppino, &
Matelli, 1998), and a ventral neural pathway, where infor-
mation on context and object categories are elaborated
(Grill-Spector & Malach, 2004; Weiner & Grill-Spector,
2012); (b) the prefrontal cortex (PFC), acting within the
ventral neural pathway, modulates the selection of
actions based on aVordances on the basis of the current
goals of the agent (Miller & Cohen, 2001; Fuster, 2001);
(c) information on the actions aVorded by the object and
information from PFC on the agent’s goals is sent to a
“clearing mechanism”, based on a neural competition (Erl-
hagen & Schöner, 2002; Cisek, 2007), that generates the
reaction times (RTs) of action initiation (a fourth and last
principle of the model, related to language, is not consid-
ered here as out of the scope of this work). When these
mechanisms work in an integrated fashion, they explain the
RTs found in compatibility eVect experiments: when the
information on aVordances (dorsal pathway) and on goals

(PFC in the ventral pathway) agree, the neural competition
generates a fast response, whereas when they disagree it
generates relatively slow RTs. The value of the model
resides not only in its capacity to account for several com-
patibility eVects but also in the fact that such an account is
based on a macro-architecture of the model, and on speciWc
functions of its components, that have been constrained on
the basis of data on the broad anatomical organisation and
functioning of the brain areas involved (see Caligiore et al.,
2010a, on this and other methodological principles used to
build the model, together forming the computational
embodied neuroscience approach).

The potential of TRoPICALS in explaining compatibility
eVects is also due to the “embodied nature” of some of its
features. In particular, the use of a realistic two-dimensional
simulated retina allowed the two neural pathways of the
model (dorsal and ventral) to process diVerent aspects of
objects, namely object aVordances (based on object shape)
and object categories (based on the object’s general appear-
ance): this would have not been possible by using an abstract
representation of objects (e.g., a symbolic one). Moreover,
the necessity of the system to use all available information to
Wnally produce a unique motor behaviour generated the need
to have the “clearing mechanism” that ultimately generated
the RTs comparable with those of the target experiments (one
idea of the embodied cognition perspective is that all infor-
mation available to the brain needs to funnel into overt
actions and this profoundly inXuences the internal represen-
tations and processing of such information within the system,
see Cisek, 2007, on this, and also Parisi, Ceccon, & NolW,
1990; NolW, 2009, on computational perspectives on the
eVects of embodiment on cognition). To avoid false expecta-
tions in the reader; however, it is also important to anticipate
that the “level of embodiment” of the system used here (as
the original TRoPICALS) is quite low as it uses only a sim-
ple image and a two degrees of freedom motor output.
Indeed, the value of this work does not reside in the compu-
tational and robotic sophistication of the model, but rather in
the bio-constrained system-level account of the target experi-
ments, as is further explained below (see Borghi, Di Ferdi-
nando, & Parisi, 2011, for another model on compatibility
eVects that does not include constraints on brain-anatomy but
has a stronger embodiment).

This new work accomplishes another important step,
with respect to the original formulation of TRoPICALS, in
understanding the grounding of cognition in the real world.
The world is full of objects and features most of which are
irrelevant to the agent’s purposes (distractors). The key idea
investigated here is that if the internal representation of
objects involves various aspects of the aVordances they
elicit, then the processing of the aVordances related to dis-
tractors might inXuence the representation of target objects
in complex ways. This is indeed what has been observed in

Table 1 Acronyms used in the article

AIP Anterior intraparietal area

BG Basal ganglia

dfs Degrees of freedom

IT Inferior temporal cortex

MC Motor cortex

OpenGL Open graphics library

PC Parietal cortex

PD Parkinson’s disease

PDC Proportional derivative controller

PFC Prefrontal cortex

PMC Premotor cortex

RTs Reaction times

SMA Supplementary motor area

SOM Self-organising map

TRoPICALS Two routes prefrontal instruction competition 
of aVordances language simulation

VC Visual cortex

VOT Ventral occipito-temporal cortex
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the experiments of Ellis, Tucker, Symes, and Vainio
(2007). The authors required their participants to categorize
the shape of abstract, three-dimensional target objects, in
displays containing two objects, by performing a precision
or power grip. The usual target compability eVect was
observed; it was easier to classify the object with a response
that was congruent with the grip it aVorded. In contrast, the
ignored object (the distractor) gave rise to a negative com-
patibility eVect. It was actually harder to respond to the tar-
get when the distractor aVorded the same grip compared to
the incompatible cases.

The explanation and modeling of these phenomena is
quite challenging as a number of diVerent, and possibly
contrasting, pieces of information reach the areas of brain
that have to process: (a) the top-down information on the
categorisation task to be performed, based on the target;
(b) the top-down information on the need to ignore the dis-
tractors; (c) the bottom-up information on the target aVor-
dances; (d) the bottom-up information on the distractor
aVordances. What could be the nature of the mechanisms
that succeed in merging these pieces of information and
that result in the RTs measured in the behavioural experi-
ments? Ellis et al., (2007) suggest that the target-related
compatibility eVects are produced by the agreement/dis-
agreement of the task response with the target object’s
aVorded actions (as also proposed by Tucker & Ellis, 2001;
2004), whereas the novel distractor-related eVects are a
consequence of the need to inhibit the distractor, including
inhibition of the actions associated with it. However, the
detailed mechanisms that might lead to these eVects, and
the interplay between the various sources of information, is
not clear. Furnishing this account with a model having a
macro-architecture that fulWlls biological constraints, as
done here, renders the explanation even more challenging.

This work presents a version of TRoPICALS where the
PFC control of action and the aVordance representations have
been extended to take into account the information related to
the distractors, in particular their top-down and bottom-up
eVects on action selection (points “b” and “d” mentioned
above; note that some other parts of the original model, neces-
sary to account for compatibility eVects related to language or
to the performance of reaching movements, are not used here
as they are not relevant to the eVects under investigation).

More speciWcally the model has been extended as fol-
lows. First, the dorsal and ventral pathways of the model
are now capable of processing information related to the
distractor and to the target in parallel. Second, the PFC con-
trol of action is extended to include an inhibitory control
along with the original excitatory control: this allows the
model to refrain from executing the actions suggested by
the distractors. This extension is based on the idea that PFC
might play a double role in its top-down guidance of action
selection, namely (Knight, Staines, Swick, & Chao, 1999):

(a) producing a positive bias that facilitates the triggering of
the actions requested by the target and goals; (b) producing
a negative bias that inhibits the execution of actions that are
suggested by objects but that are not needed based on cur-
rent context and goals.

With respect to the last point, key empirical evidence that
gives important insights on excitatory and inhibitory mecha-
nisms involved in compatibility eVects come from the
research on Parkinson’s disease (PD) patients (Lang & Loz-
ano, 1998; Redgrave et al., 2010). PD involves the damage of
excitatory and inhibitory mechanisms underlying action
selection and execution. These diYculties are caused by the
loss of dopaminergic cells of the nigrostiatal pathway inject-
ing dopamine into the basal ganglia (BG), in particular into
their portions that form loops with the premotor (PMC) and
the motor cortex (MC). These loops play a key role in action
learning, selection, and preparation and their damage in PD
patients has a particularly strong eVect on the initiation of
voluntary movements. This deWcit is attributed to the low
activation of the supplementary motor area (SMA), again
caused by dopaminergic deWcits in this case involving the
portions of BG that form loops with this cortical area (Jahan-
shahi et al., 1995). Indeed, the SMA bridges the PFC (where
goals and needs are represented) to the PMC/MC (responsi-
ble for action preparation and execution) and so plays a cru-
cial role in generating actions with an internal origin
(Nachev, Kennard, & Husain, 2008; Haggard, 2008). In con-
trast to this diYculty in initiating voluntary actions, PD
patients are strongly aVected by aVordances (Galpin, Tipper,
Dick, & PoliakoV, 2010). It has been suggested that such sen-
sitivity to externally evoked actions can help the movements
of PD patients by compensating the eVects of the low activa-
tion of the SMA (e.g., see Galpin, Tipper, Dick, & PoliakoV,
2010; Oguro et al., 2009). Given that the sites of brain dam-
age in PD patients are known, it is possible to simulate simi-
lar damage in our model and furnish empirical predictions on
compatibility eVects in PD patients.

Summarising the goals of the paper, this work presents
an enhanced version of (some components of) the model
TRoPICALS that furnishes detailed hypotheses on the pos-
sible mechanisms underlying the compatibility eVects pro-
duced by target objects and distractors. These hypotheses
are based on system-level architectural principles con-
strained by the known macro-anatomy and macro-functions
of relevant areas of brain. The model also furnishes some
detailed predictions on the possible behaviour that PD
patients might exhibit in compatibility experiments involv-
ing both targets and distractors.

The target psychological experiment and its simulation

Ellis, Tucker, Symes, and Vainio (2007) had their participants
select a target object (cued by its colour) from a two-object
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scene and classify it as a ‘curved’ or ‘straight’ object by
pressing a response device with either a precision or power
grip. The stimuli consisted of combinations of four abstract,
three-dimensional objects: two large objects (cylinder and
parallelepiped) and two small objects (sphere and cube).
The target and distractor on each trial always diVered in
terms of their response category (curved or straight).

The simulations aimed at reproducing this experiment, sim-
plifying secondary aspects of it. The simulated participant
could see eight diVerent objects drawn from the original exper-
imental set: four blue target objects (small sphere, large cylin-
der, small cube, large parallelepiped), and four red distractor
objects with the same shape as the target objects. The small
objects could be graspable with a precision grip, whereas the
large objects with a power grip. In the simulated experiments,
the nervous system of 25 participants was simulated using 25
diVerent instances of the model, obtained with 25 diVerent
seeds of a random number generator (hence, diVerent initial
connection weights and learning history). After this training,
the response RTs of the participants was recorded.

Before the experiment, the simulated participant Wrst
learned to associate a suitable kind of grip (e.g., a precision
one) to each object (e.g., a small sphere). This learning pro-
cedure was used to mimic what happens in the life of real
participants when they learn to suitably respond to aVor-
dances of objects. Note how this is an essential element of
the explanation of the compatibility eVects presented here
as such explanation relies on the hypothesis of the reactiva-
tion of internal representations of aVordances acquired
before the psychological experiment.

Methods

The body of the simulated participants 
(camera and robotic hand)

The model sent grasp commands to a simulated agent
endowed with a human-like hand and visual system

(Fig. 1a; see Caligiore et al., 2010a, for more details). The
simulated hand had the same parameters as the humanoid
robot iCub (http://www.icub.org). The visual system was
formed by a simulated “eye” represented by a 630 £ 630
pixel RGB camera. The eye was controlled by a hardwired
colour-based “focussing reXex” that allowed it to foveate
the barycentre of target objects. During the experiments the
agent was exposed to a scene showing two objects: a target
and a distractor. The target was chosen from four diVerent
blue objects: two large objects (cylinder: radius 34 mm,
length 70 mm; parallelepiped basement side 60 mm, length
80 mm), and two small objects (sphere: radius 15 mm; cube:
side 25 mm); the distractor was chosen from the same objects
as the target, but with a diVerent colour (red instead of blue).
The image of the object was directly sent to the simulated
camera. The hand and the objects were simulated on the basis
of a 3D physical engine (NEWTON) whereas the eye was
simulated based on a 3D graphic interface (OpenGL).

The grasping movement was implemented in a minimal-
istic way using two “virtual Wngers” (Iberall & Arbib,
1990). In particular, the model issued only a two-value
command to the hand in order to implement a grip. The
degrees of freedom (dfs) of the thumb were changed pro-
portionally to the Wrst command value, whereas the dfs of
the four remaining Wngers were changed proportionally to
the second command value. The arm and wrist were kept
still as in the target experiment. The grasping signal was
encoded by the output 2D neural map (PMC in Fig. 1b).
The activation of such neurons represented the desired hand
posture in terms of joint angles (equilibrium points, Feld-
man, 1986). These angles were sent to a proportional deriv-
ative controller (PDC) used to mimic, in a simpliWed way,
the spring and damping properties of muscles (see Berthier,
Rosenstein, & Barto, 2005; Caligiore, Guglielmelli, Borghi,
Parisi, & Baldassarre, 2010b, for similar approaches, and
Caligiore et al., 2010a, for the equations and parameters).
The PDC generated torques that decreased the diVerence
between the desired joint angles and the actual ones. Grav-
ity had no eVect as the Wngers moved horizontally.

Fig. 1 a The simulated robotic 
hand and eye, used to test the 
model, interacting with a simu-
lated cylinder. The line that goes 
to the object marks the gaze 
direction, the other four lines 
mark the visual Weld. 
b Architecture of the modiWed 
TRoPICALS model used in this 
work. The Wgure highlights the 
hardwired connections and the 
connections which are updated 
with Hebbian or anti-Hebbian 
covariance learning rules, or 
with a Kohonen learning rule

(a) (b) 

arm 

hand 

gaze 

eye

object 
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Despite using only two dfs, the set-up illustrated above
is suYcient to produce diVerent actions in terms of diVerent
Wnal apertures of the hand. This minimal Xexibility of the
system allowed it to learn to perform diVerent grips (or,
more precisely, “hand apertures”) in correspondence to
diVerent sizes of the objects (see below). This allowed the
system to perform small and large apertures as needed in
the simulation of the target experiments (see Caligiore
et al., 2010a, for some examples). This minimal level of
sophistication does not aim to compete with the accuracy
and richness of other computational models in reproducing
grasping actions (e.g., Oztop, Bradley, & Arbib, 2004), but
is enough to tackle the target problems discussed in the
introduction while at the same time keeping the simplicity
of the model to a maximum. In the following we shall use
“power grip” and “precision grip” instead of “large hand
aperture” and “small hand aperture”, respectively. This just
to keep the homogeneity among the terms used in the simu-
lations and the terms used in the experiment with real sub-
jects. In this way the data comparison will be easier.

The architecture of the model

Figure 1b illustrates the architecture of the model. This is
formed by Wve components each corresponding to a diVer-
ent brain cortical area: the visual cortex (VC; this is formed
by three RGB maps of 21 £ 63 neurons), the anterior intra-
parietal area (AIP, located in the parietal cortex, PC; one
map of 21 £ 63 neurons), the premotor cortex (PMC; one
map of 21 £ 21 neurons), the ventral occipito-temporal
cortex (VOT; one map of 21 £ 21 neurons), and the pre-
frontal cortex (PFC; one map of 21 £ 21 neurons). The
choice of these components broadly agrees with brain
imaging evidence showing which cortical areas are active
during the performance of compatibility-eVect experiments
(Grèzes, Tucker, Armony, Ellis, & Passingham, 2003). The
functions played by the components of the model and the
biological reasons for assuming them are now considered in
detail. Note that all the equations for the implementation of
the components and their parameters that are not reported
here can be found in Caligiore et al., (2010a). Preliminary
ideas about the model presented here were also discussed in
Caligiore et al., (2011).

Visual cortex (VC)

NeuroscientiWc evidence on primates and humans (Van
Essen et al., 2001; Grill-Spector & Malach, 2004) shows
that VC extracts increasingly abstract information from
images in succeeding stages: from simple edges to complex
visual features (Hubel, 1988; Vinberg & Grill-Spector,
2008). These processes are important for both the visual
ventral neural pathway (e.g., they support object recogni-

tion in VOT) and the visual dorsal neural pathway (e.g.,
object shape and other features contribute, together with
somatosensory information, to the extraction of aVordances
from objects within AIP).

In contrast to the original model, VC processes the
image of a target and a distractor at the same time. As
before, VC is formed by three maps encoding three colours
(red, green, and blue). However, now VC has a central
region representing the fovea and its surroundings, and two
lateral regions representing the peripheral left and right
parts of the retina (this strong simpliWcation is enough for
the purposes of this work). The central region is always
activated by the target object whereas either one of the
peripheral regions is activated by the distractor (the model
assumes that the eye always foveates the target on the basis
of the focusing reXex illustrated above). The neurons of the
central region have an activation which ranges in [0, 1]
whereas those of the peripheral regions have an activation
which ranges in [0, 0.4] to simulate the lower density of
receptors of the peripheral areas of the retina. The three col-
our maps encode the information about shape and colour of
the seen object obtained through three distinct Sobel Wlters
(Sobel & Feldman, 1968) applied to the three colour maps.
These processes abstract the edge detection processes per-
formed by the retina and the subsequent early stages of VC.

Anterior intraparietal area (AIP)

AIP is a key region for the detection of aVordances (Fagg &
Arbib, 1998; Oztop, Bradley, & Arbib, 2004). In this
respect, evidence from monkeys (Rizzolatti, Luppino, &
Matelli, 1998; Murata, Gallese, Luppino, Kaseda, & Sak-
ata, 2000) and humans (Culham & Kanwisher, 2001;
Simon, Mangin, Cohen, Hihan, Dehaene, 2002) shows that
AIP encodes information important for guiding the control
of object manipulation (e.g., object shape and size).

In the model, AIP simply encodes the object shape, in
that its neurons are activated with the average of the activa-
tion of the three corresponding RGB edge-detection neu-
rons of VC. This implies that the model assumes that when
the system processes two objects located in diVerent posi-
tions at the same time (e.g., target and distractor) such pro-
cessing activates diVerent areas of AIP (Behrmann, Geng,
& Shomstein, 2004). Note that the representation of only
shape is a strong simpliWcation with respect to aVordance
information encoded in AIP. This assumption is however
suYcient for the scope of this work (cf. Caligiore et al.,
2010a, for further discussions on this).

As in Caligiore et al., (2010a) the activation of AIP neu-
rons is scaled according to the object size using a coeY-
cient equal to 1 for large objects and 3.2 for small ones.
This assumption is derived from the evidence that small
objects activate a greater number of AIP neurons than large
123
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ones (cf. Ehrsson et al., 2000). This avoids possible distor-
tions of the RTs due to the number of VC neurons activated
by diVerent objects, as shown in pilot experiments.

Premotor cortex (PMC)

Experiments on monkeys and humans (Rizzolatti, Luppino,
& Matelli, 1998; Rizzolatti et al., 1998; Rizzolatti & Craig-
hero, 2004) show that activation of some PMC neurons
(“mirror neurons”) encoding grasping actions Wre both when
actions are performed and when they are observed. As a part
of the system forming loops with basal ganglia BG (Kandel,
Schwartz, & Jessel, 2000; Cisek & Kalaska, 2005; Redgrave,
Prescott, & Gurney, 1999), PMC also plays an important role
in action selection. For simplicity, here we do not explicitly
simulate the BG but implement a neural competition within
PMC that abstracts the processes underlying action selection
performed by the BG–PMC system.

In the model, PMC encodes the motor commands issued
to the robotic hand. The desired hand angles are “read out”
from the PMC map as a weighted average of the desired
angles of each neuron (encoded by their position within the
neural map), with weights of the average corresponding to
the activation of the neurons themselves (“population code
hypothesis”, Pouget, Dayan, & Zemel, 2000). Importantly,
in the model PMC implements the selection of hand pos-
tures through a dynamic neural competition process involv-
ing leaky neurons connected by reciprocal inhibitory
connections. In detail, the PMC is a dynamic Weld network
(Erlhagen & Schöner, 2002) that gets as input the (one-to-
one) signals from AIP and the PFC. The leaky PMC neu-
rons have lateral, excitatory, short connections, which form
neural clusters, and lateral inhibitory long connections, that
leads to competition between neural clusters. In particular,
each neuron sends a connection to each other neuron of the
map equal to a Gaussian function of the distance with it (the
height � of the Gaussian was set to 1.2 and its standard
deviation � to 0.6) minus a Wxed inhibitory value (I = 0.4).

When one cluster wins a competition it suppresses all
other clusters and when a given threshold (set to 0.7) is
exceeded, a grasping action is triggered with command val-
ues based on the reading out of the map described above.
The model simulates RTs as the time needed by at least one
neuron of the PMC winner cluster to reach the threshold. In
the real experiments RT is measured as the time elapsing
between the visual stimulus presentation and the comple-
tion of the grip action (cf. Ellis, Tucker, Symes, & Vainio,
2007). However, the real experiments use a customised joy-
stick for which the hand “is already in contact” with the
part of the joystick that it has to act on, so the actual dura-
tion of the movement is negligible and hence we have not
considered it in the model. Also, we did not consider the
time needed by the signal from premotor cortex to reach the

motor cortex, spinal cord, and muscles as: (a) we wanted to
keep the model as simple as possible, so we decided to not
simulate these further neural areas; (b) the time needed by
the signal for this further propagation is expected to be sim-
ilar in compatible and incompatible cases; (c) the model
aimed to reproduce qualitative diVerence between compati-
ble and incompatible cases, not quantitative ones.

The PFC-PMC and the AIP-PMC connection weights,
which were trained (see below), could achieve a maximum
value of 0.35 and 0.15, respectively. This constraint
allowed PFC signals to overwhelm the AIP aVordance-
related signals when necessary (Miller & Cohen, 2001;
Caligiore et al., 2010a).

Ventral occipito-temporal cortex (VOT)

The inferior temporal cortex in monkeys (IT), and its
homologous VOT in humans, is the highest-level visual
processing stage of the ventral neural pathway and plays a
key role in visual object recognition (Van Essen et al.,
2001; Logothetis, Pauls, & Poggio, 1995; Grill-Spector &
Malach, 2004; Vinberg & Grill-Spector, 2008).

In the model, VOT is represented by one self-organising
map (“SOM”; Kohonen, 1997). The map receives all-to-all
connections from the three RGB maps of the VC. An
important assumption of the model is that when the VC-
VOT connection weights corresponding to one of the three
regions of VC are updated (see below), the corresponding
weights of the other two regions are also updated (but those
of the peripheral regions are updated with a learning rate
that is 40% of that used for the fovea-region connections to
reXect their lower density of receptors, cf. Grill-Spector,
2008). This technique (cf. Plunkett & Elman, 1997) is used
to assure a spatially-invariant representation of objects
within VOT typical of high-level visual processing stages
of brain. Note that this assumption also allows VOT to rep-
resent two or more diVerent objects at the same time when
these are perceived contextually. The SOM map is acti-
vated using the same equations and parameters used in the
previous version of TRoPICALS.

Prefrontal cortex (PFC)

Primates exhibit very Xexible behaviour thanks to their
capacity to learn rich repertoires of actions. This, however,
also generates the problem of the potential interference
between actions as many of them can be executed at each
moment. PFC plays a key role in biasing the selection of the
actions to be performed at each moment on the basis of the
current context and goals (Fuster, 2001; Miller & Cohen,
2001; Deco & Rolls, 2003). Importantly, PFC implements
working memory, so it is capable of keeping track of the
recent past and use it to make decisions (Fuster, 1997).
123
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In the original version of TRoPICALS, the PFC received
information not only about objects (VOT) but also on the
task to accomplish, and integrated it on the basis of a Koho-
nen algorithm. To solve the experimental task considered
here, the PFC needs only the information from the visual
scene, so it gets information only from VOT. To simulate
the working memory properties of the PFC, in the model it
is a map of leaky neurons activated one-by-one by the cor-
responding neurons of VOT. Pilot tests showed that this
property of PFC neurons prevents the PFC inhibitory sig-
nals suppressing the signals reaching the PMC via the dor-
sal pathway before they have an eVect on RTs.

Learning mechanisms

The model is trained in two learning stages which mimic
learning during life and learning during the psychological
experiment.

Phase 1. Learning to interact with objects during life

The Wrst phase simulates the participants’ learning to grasp
objects during life. During this phase the model acquires:
(a) AIP-PMC connections (aVordances) within the dorsal
pathway; (b) VC-VOT connections (objects’ identity)
within the ventral pathway. The training was performed by
repeatedly presenting, one by one, the eight objects to the
model (trials). For each object presentation we systemati-
cally varied the colour (target: blue; distractor: red), and the
position in space of the object (central or periphery
positions). At each object presentation, VC performed
colour-based edge detection of the object image and AIP
performed colour-independent shape detection.

The AIP-PMC all-to-all connection weights were
updated to form Hebbian associations between the per-
ceived shape of the object (AIP) and the corresponding
hand posture (PMC). To this purpose, the object was set
close to the hand palm, the hand dfs were progressively
decreased, and the resulting hand angles (averaged for each
virtual Wnger) were used for learning based on a covariance
Hebb learning rule (Dayan & Abbott, 2001; Caligiore et al.,
2008). This allowed the model to perform a suitable grasp
action with the hand in correspondence to the seen object.
The maximum value of the weights was set to 0.15. The
VC-VOT connection weights were updated on the basis of
a Kohonen learning rule (Kohonen, 1997). This allowed the
ventral stream to acquire the capacity to categorise objects
on the basis of their appearance.

Phase 2. Learning to accomplish the experimental task

The second learning phase mimicked learning to perform
the experimental task. This involved repeated interactions

(trials) with the objects presented in isolation (either the tar-
get or the distractor). At each step of a trial the model per-
ceived the object and this activated the VC, AIP, VOT, and
the PFC.

If the perceived object was the target, the PMC was acti-
vated so as to perform the grip requested by the psycholog-
ical tasks (power grip for straight objects, precision grip for
spherical objects); this amounts to assuming that the correct
grip, dependent on the experimental instructions and appa-
ratus, was performed thanks to memories and processes
related to such instructions not explicitly simulated here. In
particular, the PFC-PMC connection weights were updated
on the basis of the Hebb covariance learning rule men-
tioned above (the maximum weight value was set to 0.35).

If the perceived object was a distractor, the PMC was
activated so as to perform the grip according to the aVor-
dance evoked by the object (power grip for a large distrac-
tor, precision grip for a small distractor), so always in
agreement with the signal coming from the AIP to be inhib-
ited. The PFC-PMC connection weights were updated on
the basis of a negative learning coeYcient so as to imple-
ment an anti-Hebbian covariance learning rule that progres-
sively forms inhibitory connections (Lisman, 1989).

Results

This section reports and discusses the results of the simulations
of selecting and responding to a target object with a simulta-
neously present distractor. The results of the simulations repli-
cate and account for the main results of Ellis, Tucker, Symes,
and Vainio (2007). The using of Wring rate neurons which
reproduce the functioning of real neurons with a relatively high
level of abstraction (Dayan & Abbott, 2001) entailed the deri-
vation of only qualitative data on RTs (cf. Caligiore et al.,
2010a for a further discussion on this point). In addition, the
section also presents two testable predictions on the possible
consequences that damages in excitatory and inhibitory mech-
anisms have on volitional movements in PD patients (cf.
Haggard, 2008; Knight, Staines, Swick, & Chao, 1999).

During the experiment, the simulated participants were
shown scenes containing the target in a central position and
the distractor in one of the two peripheral positions. All
data reported below refer to 25 repetitions of the experi-
ment run with diVerent simulated participants having diVer-
ent initial, random connection weights.

Given that the distribution of the simulated data was not
normal, we transformed the data by means of a logarithmic
transformation [Log 10 (RTs)]. The transformed simulated
data were subjected to an analysis of variance (ANOVA) with
the factors: target (large vs. small), distractor (large vs. small)
and grip (power vs. precision). All main eVects and all inter-
actions were signiWcant. The main eVect of target
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(F(1,24) = 35.42, MSe = 0.013, p < 0.0001) was due to the
fact that large targets (M = 2.31) responded slower than small
targets (M = 2.22); the eVect of distractor (F(1,24) = 20.65,
MSe = 0.002, p < 0.001), was due to the fact that processing
large distractors (M = 2.25) required less time than processing
small distractors (M = 2.28). Both results diVer from those
found in the target experiments, but this was not a target of
this study (as suggested by Ellis and colleagues, the device
used by the participants to perform a kind of grip was harder
to use for a precision grip (just because of mechanical issues)
and this tended to reduce the diVerence between power and
precision responses to precision objects thus disguising the
distractor eVect in this case). The main eVect of grip reXected
the results found with human participants (F(1,24) = 103.34,
MSe = 0.008, p < 0.0001) as precision grip responses
(M = 2.20) were faster than power grip ones (M = 2.33).

The interaction between target and distractor was signiW-
cant (F(1,24) = 23.27, MSe = 0.003, p < 0.0001). Post hoc
Newman-Keuls tests showed that, while with small targets
there was no diVerence between distractors, with large tar-
gets RTs were faster with large distractors (M = 2.28) than
with small ones (M = 2.35) (Newman-Keuls, p < 0.001).

The interaction between target and grip was signiWcant
(F(1,24) = 453.69, MSe = 0.008, p < 0.0001). Post hoc

Newman-Keuls tests showed that all the comparisons were
signiWcant, beyond the not very interesting comparison
between large target graspable with a precision grip and small
target graspable with a power one. These results accord with
those described by Ellis, Tucker, Symes, and Vainio (2007):
responses are faster when the target is compatible with the grip
aVordance, and slower when the response is incompatible with
it. The advantage of compatible pairs was particularly marked
with small targets which elicited a precision grip.

Post hoc Newman-Keuls on the interaction between dis-
tractor and grip (F(1,24) = 54.30, MSe = 0.003, p < 0.0001)
showed that all comparisons were signiWcant. Interestingly
for us, while with large distractors responses with power
grip (M = 234) were signiWcantly slower than those with
precision grip (M = 2.15), with small distractors the preci-
sion grip (M = 2.25) was signiWcantly faster than the power
grip (M = 2.31). The overall pattern of results is similar to
the one found by Ellis Tucker, Symes, and Vainio (2007)
and conWrm the presence of a negative compatibility eVect.

Neural mechanisms underlying target and distractor eVects

The target-related compatibility eVects shown on Fig. 2a, b
can be accounted for by considering that in the target-

Fig. 2 Average reaction times 
(y-axis) versus kind of grip (x-
axis). a, c Data from real partici-
pants in the experiments of Ellis, 
Tucker, Symes and Vainio 
(2007) (reproduced with permis-
sion). b, d Data produced by the 
model. a, b Data relative to the 
target-based compatibility 
eVects. c, d Data related to the 
distractor-based compatibility 
eVects
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incompatible trials the processing of the target by the
ventral pathway (VC-VOT-PFC-PMC) evokes an action
diVerent from the action evoked by the dorsal pathway
(VC-AIP-PMC) (e.g., a precision grip to categorise a large
cylinder), thus causing a conXict within the PMC (Fig. 3a).
As the PFC-PMC signal is stronger than the AIP-PMC sig-
nal, the excitatory bias from PFC wins the competition
(e.g., by triggering a precision grip to correctly categorise
the large cylinder) but the resulting RTs are relatively long.
Indeed, when PFC and AIP signal clusters mismatch they
lead to a slower charge of the PMC leaky neurons which
will win the competition, so these neurons will take longer
to reach the threshold required to trigger the action. Instead,
in the target-compatible trials (Fig. 3b) the signals from
PFC and AIP will match and converge onto the same action
represented by the neurons within PMC, these neurons will
rapidly charge and reach the action triggering threshold,
and so the RTs will be relatively fast.

The distractor eVects shown on Fig. 2c, d can be
explained by noting that the processing of the distractor by
the ventral pathway (VC-VOT-PFC-PMC) always sends

signals to the neurons representing the same action recalled
by the dorsal pathway (VC-AIP-PMC) by the same object,
but such signals travel along inhibitory connections
(indeed, these connections are developed by the partici-
pants precisely to inhibit the aVordances when these should
not lead to an action execution). When the action requested
by the experiment is the same action evoked by the distrac-
tor, the inhibition from the distractor tends to inhibit such
action and this results in longer reaction times.

As an example, consider the case reported in Fig. 3c
related to a distractor-compatible trial where the action
requested by the experiment is the same action evoked by
the distractor: a power grip to categorise a straight target
object (a small cube) with a large distractor (cylinder). In
this case, the inhibition caused by the distractor via the ven-
tral pathway fully inhibits (as it is larger) the aVordance-
related activation caused by the same distractor along the
dorsal pathway. However, such inhibition in part also
inhibits the target-related activation travelling along the
same ventral pathway and so slows down the production of
the action requested by the psychological experiment (also

Fig. 3 a-b Neural mechanism 
underlying target-related com-
patibility eVects. a Example of 
PMC activation in the case of 
incompatibility: the signals from 
PFC to AIP generate two neuron 
clusters competing until the PFC 
cluster suppresses the other and 
starts the action corresponding 
to it. b Activation of the PMC in 
the case of compatibility: the 
biases from the PFC and the AIP 
overlap and cause only one 
cluster of neurons to form and 
generate the action to exsecute. 
Activations after 70, 100, and 
300 ms. c Neural mechanism 
underlying distractor-related 
compatibility eVects: average 
signal (projected on one dimen-
sion of the map) received by 
PMC neurons in correspondence 
of a scene recalling a power grip 
to categorise as “straight” a 
small cube-target, and to inhibit 
the automatic response elicited 
by a large cylinder-distractor

70 ms 100 ms 

300 ms 100 ms 70 ms (a) 

300 ms (b) 

(c) 
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note the excitation caused by the precision-grip aVordance
of the target caused via the dorsal pathway, incompatible
with the power-grip action requested by the same target to
accomplish the task).

Predictions of the model: compatibility eVects 
in Parkinson’s disease (PD) patients with damage 
in the volitional movements circuits and in the action 
selection circuits

We used the model to simulate the dopamine deWcit impair-
ments caused by PD on the circuits involving the loops
formed by BG with the SMA, the cortical “bridge” which
allows the PFC to exert voluntary executive control on the
PMC, and also the dopamine deWcits that PD produces on
the BG loops that allow PMC (and motor cortex) to per-
form action selections. Assuming that the Wrst type of dam-
age renders both the PFC-PMC excitatory and inhibitory
biases less eVective (Jahanshahi et al., 1995), we repro-
duced the impairments in the model by reducing the maxi-
mum absolute value achievable by the connection weights
of the PFC-PMC pathway (the maximum value achievable
by the connection weights was changed from 0.35 to 0.25).
Assuming that the second damage renders the action

selection process of the BG-PMC loops less eVective, in
particular that the lower dopaminergic levels imply a less
eVective disinhibitory mechanism within the BG (Lang &
Lozano, 1998; Redgrave et al., 2010), we simulated this
damage by reducing the strength of the excitatory signals
which fuel the dynamical competition within PMC (the
height � of the Gaussian function was set from 1.2 to 0.5).
The training processes used for the intact model were also
used with the lesioned models.

Figure 4a and d show target- and distractor-related com-
patibility eVects exhibited by PD patients simulated by
TRoPICALS by implementing both impairments described
above, or either one of the two impairments. The data
related to the double lesion condition can be considered to
represent the condition of real PD patients. The data related
to the single lesion could not be possibly obtained with real
patients and are obtained thanks to the possibility of imple-
menting focused lesions in the model. These tests are
important as they allow the isolation of speciWc aspects of
complex diseases, such as the PD, and their aVects on
observed behaviour. The data reported in the Wgures and
analysed below refer to average data obtained by repeating
the experiment with twenty-Wve diVerent simulated partici-
pants for each lesioning condition.

Fig. 4 Average reaction times (y-axis) versus kind of grip (x-axis) for
diVerent kinds of damages of PD patients simulated with the model.
a–c Compatibility eVects related to the target objects. d–f Negative
compatibility eVects related to the distractors. a, d Compatibility
eVects related to a fully lesioned model reproducing two types of PD

damages: those related to the volitional PFC-SMA-PMC neural path-
way, and those related to the action-selection BG-PMC circuit. b,
e Behaviour of the model with only the damages of the volitional PFC-
SMA-PMC neural pathway. c, f Behaviour of the model with only the
damages of the action-selection BG-PMC circuit
123



Psychological Research (2013) 77:7–19 17
As in the baseline simulation, we performed an ANOVA
on the normalized data [Log 10 (RTs)] with the factors: tar-
get (large vs. small), distractor (large vs. small), and grip
(power vs. precision). When both circuits were lesioned,
the eVect of grip was the only signiWcant main eVect
(F(1,24) = 99.63, MSe = 0.046, p < 0.0001): RTs were
slower with power (M = 2.81) than with precision grips
(M = 2.50). The interaction between target and grip was
signiWcant (F(1,24) = 366.54, MSe = 0.044, p < 0.0001),
indicating that the compatibility eVect was preserved. The
interaction between distractor and grip was signiWcant as
well, (F(1,24) = 7.75, MSe = 0.022, p < 0.05), due to the
fact that with power grip large distractors (M = 2.83) were
processed slower than small distractors (M = 2.77; with
precision grip, instead, the diVerence among distractors did
not reach signiWcance. Thus we found only a partial nega-
tive compatibility eVect.

In the single lesioning condition, in which only the BG-
SMA circuit was damaged, the main eVects of the target,
distractor and grip were preserved. Large targets (M = 2.39)
were processed slower than small ones (M = 2.29);
(F(1,24) = 29.31, MSe = 0.02, p < 0.0001); large distrac-
tors (M = 2.31) were processed faster than small ones
(M = 2.37); (F(1,24) = 53.46, MSe = 0.03, p < 0.0001); and
power grip (2.41) was slower than precision one (2.27);
(F(1,24) = 58.57, MSe = 0.016, p < 0.0001). In addition,
the interaction between target and distractor was signiW-
cant, (F(1,24) = 7.74, MSe = 0.004, p < 0.05), due to the
fact that with small targets, the disadvantage of the preci-
sion grip over the power one was more marked than with
large targets. Finally, we found a signiWcant interaction
between target and grip (F(1,24) = 1,086.29, MSe = 0.005,
p < 0.0001), indicating that the compatibility eVect was
preserved.

In the ANOVA applied to the transformed data obtained
by lesioning only the BG-PMC competitive mechanism, all
main eVects and interactions were signiWcant. Large targets
(M = 2.51) were responded to slower than small targets
(M = 2.40); (F(1,24) = 10.39, MSe = 0.049, p < 0.01), large
distractors (M = 2.43) were faster than precision distractors
(M = 2.48) (F(1,24) = 17.12, MSe = 0.005, p < 0.001) and
power grip (M = 2.54) was slower than precision grip
(M = 2.37), (F(1,24) = 41.82, MSe = 0.035, p < 0.0001). The
interaction between target and distractor (F(1,24) = 15.45,
MSe = 0.005, p < 0.01) was due to the fact that, while with
small distractors no diVerence was present, the performance
with large targets was better with large than with small dis-
tractors. The interaction between target and grip,
(F(1,24) = 141.82, MSe = 0.06, p < 0.0001) revealed that the
compatibility eVect was preserved. Finally, the interaction
between distractor and grip (F(1,24) = 48.99, MSe = 0.004,
p < 0.0001) revealed that, with the precision grip, large dis-
tractors were faster than small ones.

These analyses highlight some important points. First, the
model with both lesions (most similar to a fully expressed
PD damage) predicts that the PD patients having a level of
impairment comparable with that of the model would still
exhibit target-related compatibility eVects while failing to
exhibit clear distractor-related negative compatibility eVects.
Second, the simulations related to the speciWc damages
caused by the PD revealed that the damage of the PFC-SMA-
PMC pathway leads to the elimination of the distractor-
related (negative) compatibility eVect as the lower “volitional
signals” related to the distractor and supported by this path-
way are not enough to exert a strong inXuence on action.
Last, the damage of the BG-PMC circuit, which underlies the
integration of information from various sources and imple-
ments action selection as an outcome, would leave all eVects
intact. Concerning the interaction between the target and the
grip, the reason why it is signiWcant both in the control and
the lesioned group is that the eVect of the aVordance, even if
reduced, is still present. Instead, the reason why the interac-
tion between the distractor and the grip is maintained is
diVerent: the cause of the eVect, namely the top-down sup-
pression mechanism, is not impaired by such lesion.

Conclusions

This paper presented an enhanced version of the embodied
computational model TRoPICALS. Caligiore et al., (2010a)
showed that TRoPICALS, thanks to the constraints used
to formulate its overall functioning principles and speciWc
assumptions (neuroscientiWc data, behavioural data,
embodiment, and reproduction of learning processes), was
able to replicate the results of a number of experiments on
object to action compatibility eVects, to provide a neural-
based account of such results, and to advance new predic-
tions to test in novel experiments. The present work shows
that TRoPICALS also replicates and accounts for further
results on compatibility eVects in scenes having multiple
objects. It also allows the formulation of speciWc predic-
tions on the possible outcome of the same experiments if
run with PD patients.

The major novelty of the present work is the inclusion,
within TRoPICALS, of two diVerent circuits connecting the
prefrontal cortex to motor areas, one excitatory and one
inhibitory. Both are involved in the accomplishment of task
responses when target- and distractor-objects are presented
simultaneously. This enhanced the model in two ways. First,
it allowed it to replicate and provide a brain-based neural
account of the results obtained by Ellis, Tucker, Symes, and
Vainio (2007) on compatibility eVects in the presence of dis-
tractors. This account is based on the idea that the prefrontal
cortex might play a double role in its top-down guidance of
action selection: (a) a positive bias in favour of the action
123



18 Psychological Research (2013) 77:7–19
requested by the experimental task; (b) a negative bias
directed to inhibiting the action automatically evoked by the
distractor (Knight, Staines, Swickc, & Chaoc, 1999).

The hypothesis concerning the excitatory/inhibitory con-
nections linking the prefrontal cortex to motor areas also
had a second advantage: it allowed us to advance speciWc
predictions on the behaviour that PD patients would exhibit
in multiple object experiment. The prediction indicates that:
(a) target-related compatibility eVects are still present in PD
patients (in line with Oguro, Ward, Bracewel, Hindle, &
Rafal, 2009); (b) distractor-related compatibility eVects
would tend to disappear in the PD patients mainly due to
the overall higher inhibitory eVects caused by dopamine
depletion caused by the disease.

Overall, we believe that the results presented here have a
number of important implications for the literature on compat-
ibility eVects and implications for how knowledge on objects
and the world is represented in the mind. First, the replication
of the experimental results on compatibility eVects in the pres-
ence of distractors provides a neural account of the mecha-
nisms underlying them. Second, the model allows speciWc
predictions that can be veriWed with PD patients. In this
respect, the possibility of separately lesioning diVerent circuits
as it happens in PD allows understanding which speciWc
aspects of it produce which speciWc eVects on behaviour and
knowledge representation. Third, the Wnding that with PD-like
lesions the main target-related compatibility eVects are pre-
served while the distractor-related ones tend to disappear has
important theoretical implications as it suggests that the excit-
atory mechanisms underlying compatibility eVects are more
prominent and robust than inhibitory ones. Importantly, note
how all these results point to the fundamental role played in
cognition by the embodied/action-based components of the
internal representations of objects. These components are both
related to the aVordances of objects and to the speciWc actions
that can be implemented on them, or should not be imple-
mented on them, on the basis of prefrontally-driven higher-
level cognitive processing.
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