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Abstract Humans can guide their actions toward the reali-
zation of their intentions. Flexible, rapid and precise reali-
zation of intentions and goals relies on the brain learning to
control its actions on external objects and to predict the
consequences of this control. Neural mechanisms that
mimic the input–output properties of our own body and
other objects can be used to support prediction and control,
and such mechanisms are called internal models. We Wrst
summarize functional neuroimaging, behavioral and com-
putational studies of the brain mechanisms related to acqui-
sition, modular organization, and the predictive switching
of internal models mainly for tool use. These mechanisms
support predictive control and Xexible switching of inten-
tional actions. We then review recent studies demonstrating
that internal models are crucial for the execution of not only
immediate actions but also higher-order cognitive func-
tions, including optimization of behaviors toward long-term
goals, social interactions based on prediction of others’
actions and mental states, and language processing. These
studies suggest that a concept of internal models can con-
sistently explain the neural mechanisms and computational

principles needed for fundamental sensorimotor functions
as well as higher-order cognitive functions.

Introduction

Two opposing approaches have been proposed to under-
standing higher-order cognitive functions, such as tool use,
social interaction, and language, which are generally spe-
ciWc to humans. One approach hypothesizes that these func-
tions are unique faculties of humans, which should be
investigated independently of studies on the cognitive func-
tions of related faculties in other species, such as non-
human primates. This approach is often taken in studies on
language (e.g. Hauser, Chomsky, & Fitch, 2002). In con-
trast, the other approach hypothesizes continuity between
the cognitive functions of humans and those of other spe-
cies from an evolutionary point of view, where the
“human” faculties are based on computational principles in
common with those of other species. For example, humans
and non-human primates share common computational
principles in fundamental sensorimotor control (e.g. reach-
ing and grasping). The latter approach attempts to explore
how these principles can also form the basis for higher-
order cognitive functions.

The current special issue of Psychological Research
focuses on goal-directedness, mirror systems and internal
models, each of which are closely related to common com-
putational principles between basic sensorimotor functions
and higher-order cognitive functions, as well as between
humans and non-human primates. In particular, mirror
systems and internal models have been considered key
concepts for elucidating enigmas in neural mechanisms that
support the human abilities of social interactions and long-
term planning of behaviors based on predictions. This
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article reviews our studies on internal models while
explaining the relationships between internal models and
goal-directedness, or mirror systems, and discusses how
our studies on internal models could be extended to under-
standing higher-order cognitive functions.

Internal models are promising concepts for explaining
neural mechanisms and computational principles support-
ing the Xexible abilities of prediction and learning in cogni-
tive functions. Abilities to learn relationships between
actions and resultant changes in states of external objects
are particularly important for planning of goal-directed
behaviors. Such abilities are largely dependent on neural
mechanisms that can model or simulate the relationships
between an action and its consequences before the action’s
execution. For example, skilled manipulation of a computer
mouse requires the ability to predict how the mouse should
be moved in order to move a cursor to a particular position
on the screen (predictive control: Fig. 1a) and how the cur-
sor will move on the screen if the mouse is moved in a par-
ticular direction (prediction of feedback: Fig. 1b). Neural
mechanisms that mimic the input–output properties of con-
trolled objects can support the predictive control and pre-
diction of sensorimotor feedback, and these mechanisms
are called internal models (Kawato, 1999; Kawato, Furukawa,
& Suzuki, 1987; Wolpert, Ghahramani, & Jordan, 1995).
Although the concept of internal models was developed in
motor neuroscience, many studies have suggested that it
can be extended to explain the fundamental computational
principles of higher-order cognitive functions, such as
goal-directed behaviors, mirror systems, social interactions,
communication, and languages.

In the Wrst part of this article, we review studies on inter-
nal models in the context of sensorimotor learning and use
of tools. These studies revealed brain mechanisms related
to acquisition, modular organization, and switching of
internal models. Next, we summarize studies suggesting
that internal models contribute to the cognitive functions
discussed above. We believe that it is important to under-
stand how the acquisition, modularity and switching of
internal models contribute to the cognitive functions and
that such an understanding can lead to the construction of a
computational framework, which can consistently explain

the neural basis for fundamental as well as higher-order
cognitive functions such as sensorimotor control, tool use,
social interaction, and language.

Cerebellar activity related to an internal model

To investigate the acquisition process of internal models in
the human brain, we measured brain activity using func-
tional magnetic resonance imaging (fMRI) when human
subjects learned to use a novel tool (Imamizu et al., 2000).
Based on previous neurophysiological and computational
studies (e.g. Ito, 1984; Kawato et al., 1987; Kitazawa,
Kimura, & Yin, 1998; Shidara, Kawano, Gomi, & Kawato,
1993), we focused on the cerebellum and conducted
detailed analysis of changes in cerebellar activity during
learning. Subjects manipulated a computer mouse in a mag-
netic resonance (MR) scanner so that the corresponding
cursor followed a randomly moving target on a screen
(tracking task). In test periods, the cursor appeared in a
position rotated 120° around the center of the screen to
necessitate subject learning (novel mouse; Fig. 2), while in
baseline periods it was not rotated (normal mouse). Each
subject’s performance was measured by tracking errors,
i.e., the distance between the cursor and the target.

The errors in the test periods signiWcantly decreased as
the number of sessions increased (Fig. 3a), suggesting that
learning progressed. When we investigated cerebellar activ-
ity that signiWcantly and positively correlated with tracking
error, we identiWed a strong correlation (r2 = 0.82) between
activity and error in the large part of the lateral cerebellum
(white regions in Fig. 3c), suggesting that most of the activ-
ity in the cerebellum reXects the error. However, in a fur-
ther experiment, we found that activity in some parts of the
cerebellum was not explained by the error. In this experi-
ment, we increased target velocity in baseline periods so
that the errors there were equalized to the error in the test
period (Fig. 3b). Then, we subtracted the activity in the
baseline period from that in the test period. We could still
Wnd signiWcant activity in the hatched regions in Fig. 3c,

Fig. 1 Predictive control of a computer mouse (a) and prediction of
consequence of control (b)

Fig. 2 Relationship between direction of mouse movement (black
arrows) and cursor movement (white arrows) when a cursor position
is rotated 120° around the center of a screen (120° rotated mouse)
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suggesting that the activity in theses regions cannot be
explained solely by error.

We investigated how activity in the white regions and
that in the hatched regions in Fig. 3c changed during train-
ing sessions. Activity in the white regions drastically
decreased, as shown in the middle panel of Fig. 3d, while
activity in the hatched regions did not markedly decrease as
shown in the left panel of Fig. 3d. This suggests that activ-
ity in the hatched region includes activity that cannot be
explained by the error. By subtracting the middle curve
from the left curve, we found that the activity unrelated to
the error increased at the beginning and remained high
during the training sessions. This activity was thought to
reXect the acquired internal model representing the input–
output property of the novel mouse.

Although change in activity with learning was not inves-
tigated, an fMRI study indicated that the lateral cerebellum
contributes to an internal model of a complex dynamics
(Milner, Franklin, Imamizu, & Kawato, 2007). Subjects
manipulated an object with a complex dynamics (balancing
an inverted pendulum created by attaching weights to a
Xexible ruler) in a complex condition, and they manipulated
an object with a simple dynamics (squeezing a soft foam

ball) in a simple condition. Muscle activation was precisely
matched between these conditions. Consequently, a signiW-
cant diVerence in activity between the complex and simple
conditions was found only in the lateral cerebellum among
regions where a signiWcant increase in activity was found
by comparing the complex (or the simple) condition with a
rest condition.

In the above studies, we focused on changes in cerebel-
lar activity based on previous neurophysiological and com-
putational studies. Many studies have reported changes in
whole-brain activity with sensorimotor learning when a
force Weld alters limb dynamics (Shadmehr & Holcomb,
1997) or when a screen controlled by a computer program
kinematically alters visual feedback of hand position
(Krakauer et al., 2004) or joystick position (Graydon,
Friston, Thomas, Brooks, & Menon, 2005). These studies
identiWed diVerent cerebral regions related to learning as a
consequence of the diVerences in experimental methods
(e.g. adaptation to a force Weld or altered visual feedback;
diVerent eVectors such as the arm, a computer mouse and a
joystick; tracking a continuously moving target or aiming at
a static target). However, their results are consistent with
ours in that signiWcant activity is found in the lateral

Fig. 3 a Tracking error 
(mean § SD) averaged across 
subjects as a function of number 
of training sessions. b Tracking 
error (mean + SD) in an experi-
ment where a target velocity in 
baseline periods was increased 
to equalize the errors in baseline 
period to the errors in test period. 
c Cerebellar regions where 
activity is related to error signals 
(white regions enclosed by solid 
line) and regions where activity 
contains components unrelated 
to error (hatched regions). d Left 
panel shows activity change in 
hatched regions of c. Middle 
panel shows activity change in 
white regions of c. Right panel 
shows subtraction of the activity 
change in the middle panel from 
that in the left panel. Each curve 
indicates the exponential func-
tion Wtted to the circles
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cerebellum after learning. These results suggest that the
cerebellum is one of the regions where internal models
representing input–output properties of controlled objects
are most likely acquired.

Forward and inverse internal models

It is thought that the central nervous system (CNS) uses two
forms of internal models. Inverse models transform
intended actions or goals into the motor commands to reach
those goals (Kawato et al., 1987; Fig. 1a). Forward models
transform eVerence copies of motor command into the
resultant trajectory or sensorimotor feedback (Kawato
et al., 1987; Miall, Weir, Wolpert, & Stein, 1993; Wolpert
et al., 1995; Fig. 1b). The above imaging studies investigat-
ing neural correlates of internal models do not take these
two forms into account. Because both forward and inverse
models are thought to be necessary for rapid and smooth
movements, the above brain activity probably reXected
activities of both models. Neurophysiological studies have
shown data indicating that Purkinje cells in the cerebellar
cortex contribute to inverse models of motor systems
(Gomi et al., 1998; Shidara et al., 1993). Many functional
neuroimaging studies have shown data circumstantially
indicating that the cerebellum contributes to forward mod-
els as described below.

Miall and colleagues investigated brain activity related
to eye-hand coordination using a tracking task (Miall,
Reckess, & Imamizu, 2001). Subjects followed a moving
target with their eyes while simultaneously moving a joy-
stick to control the cursor. The temporal oVset between tar-
gets for eye and hand motions caused parametric variation
of the degree of eye-hand coordination. The behavioral data
indicated that manual tracking performance was optimal
when the target for eye motion anticipated the target for
hand motion by 38 ms. Synchronous movements of two
eVectors with such a small oVset cannot be achieved simply
by reaction to reaVerents or visual input. This suggests that
a forward model predicts the movement outcome based on
a motor command and that the predicted outcome is sent to
the oculomotor system for programming or modifying the
manual movements. The fMRI data found a parametric
increase in activity of the lateral cerebellum and the oculo-
motor vermis as eye-hand coordination increased, suggest-
ing a contribution of the cerebellum to prediction of the
movement outcome.

Behavioral studies on grip force–load force coupling
have found convincing evidence that the CNS makes use of
forward models in sensory motor control. When an object
is held in a precision grip (e.g. a grasp between the tips of
the thumb and foreWnger) and moved by voluntary move-
ments (e.g. arm movements), the grip force perpendicular
to the contact surface changes in phase with the load force

induced by the movements (Johansson & Westling, 1988).
The coupling between the two forces prevents the object
from slipping while using minimal grip force. This grip
force modulation is anticipatory in the sense that changes in
the grip force occur at the same time as, or even prior to,
changes in the load force. Based on theoretical analysis of
behavioral data (Flanagan & Wing, 1997) suggesting that
output signals from a forward model of arm movements are
used for control of grip force, an fMRI experiment exam-
ined brain activity related to coordination of grip force and
load force (Kawato et al., 2003). The results indicated that
parts of the anterior lobule in the cerebellum contribute to
the coordination.

Other studies have indicated that the cerebellar forward
models contribute to prediction of sensorimotor feedback in
various situations, such as cancellation of tactile sensation
during self-tickling (Blakemore, Frith, & Wolpert, 2001;
Blakemore, Wolpert, & Frith, 1998) and state-dependent
control of arm and Wnger movements (Diedrichsen,
Criscimagna-Hemminger, & Shadmehr, 2007). It has been
suggested that the cerebellum contributes to a prediction of
change in the state of external objects that is not caused by
its own motor commands (O’Reilly, Mesulam, & Nobre,
2008). Regarding neurophysiological studies, Miall and
colleagues proposed that simple spike activity of Purkinje
cells represents prediction of sensory feedback and is cor-
rected by complex spike activity representing a discrepancy
between the prediction and actual feedback (Miall et al.,
1993). They found, as supporting evidence, that the interval
between an increase in simple spike activity and the result-
ing complex spike activity is about 150 ms, which is equiv-
alent to visuomotor feedback delay and necessary for
synchronizing the prediction and feedback (Miall, Keating,
Malkmus, & Thach, 1998). Recently, it has been suggested
that simple spike discharge of Purkinje cells has several
characteristics of a forward internal model of the arm
(Ebner & Pasalar, 2008).

These functional imaging and neurophysiological stud-
ies suggest that the cerebellum is related to both forward
and inverse internal models, but it is unknown how these
two forms of internal models are organized in the cerebel-
lum.

Modular organization of internal models

Humans interact with myriad objects and environments that
often change in a discrete manner. If the CNS maintains
only a small number of global internal models, relearning is
needed whenever manipulated objects and environments
change. However, if the CNS maintains a large number of
internal models or modules for diVerent objects and envi-
ronments, less relearning is needed and thus learning inter-
ference is avoided. Moreover, initial learning of objects and
123



Psychological Research (2009) 73:527–544 531
environments may be facilitated by a combination of stored
modules.

Many lines of behavioral studies have shown the multi-
plicity and modularity of internal models. For example, it
has been demonstrated that humans can independently
learn dynamic properties of their own arms altered by
weights and kinematic properties altered by the rotation of
visual feedback of their hand position (Krakauer, Ghilardi,
& Ghez, 1999). This result suggests that some types of
internal models are independently acquired and do not
interfere with each other. Ghahramani and colleagues indi-
cated that the CNS can appropriately combine output sig-
nals from stored internal models for diVerent sensorimotor
mappings (Ghahramani & Wolpert, 1997). Flanagan and
colleagues made subjects learn a kinematic transformation
(visuomotor rotation), a dynamic transformation (force
Weld), and a combination of these transformations (Flanagan
et al., 1999). When the subjects learned the combined trans-
formation, reaching errors were smaller if the subject Wrst
learned the separate kinematic and dynamic transforma-
tions. These results suggest the ability of subjects to com-
bine internal models as needed, depending on the situation.

In functional imaging studies, we investigated cerebellar
activity after subjects learned to use a velocity-control
mouse in which cursor velocity was proportional to the
mouse position. Here, we examined the diVerence in acti-
vated regions between when subjects used the velocity-con-
trol mouse and when they used the rotated mouse (see
above). By subtraction of activity when subjects manipu-
lated the normal mouse (baseline condition) from activity
when subjects used the rotated or velocity-control mouse
(test conditions), we derived a map speciWc to each type of
mouse. Figure 4 shows three-dimensional displays of the
maps. Similar regions in the lateral cerebellum were acti-
vated, but the rotated-mouse activations (yellow) tend to be
located more anteriorly and laterally than the velocity-con-
trol mouse activations (blue). The diVerent tools evoked
activities in distinct locations with small overlap (2.1% of
the total activated volume), demonstrating the modularity
and multiplicity of internal models for tools.

Higuchi and colleagues measured cerebellar activity
when subjects used sixteen common tools (scissors, a

hammer, chopsticks and so on) and when they mentally
imagined using the tools without actual hand movements
(Higuchi, Imamizu, & Kawato, 2007). Figure 5 shows t
value-weighted centroids of activation when subjects actu-
ally used individual tools (Fig. 5a) or when they imagined
the tools’ use (Fig. 5b) in comparison to rest condition.
Activities during the actual use tend to be located in the
anterior lobule of the cerebellum. In contrast, activities dur-
ing the imaginary use tend to be located more laterally, in
the posterior lobule, than those during the actual use. We
measured the distance of the centroids from the fourth ven-
tricle. Because the fourth ventricle is the most anterior and
medial part of the cerebellum, the longer the distance is, the
more posteriorly and laterally the centroid is located
(Fig. 5c). As shown in Fig. 5e, the mean distance across the
tools during the imaginary use was signiWcantly longer than
that during actual use [t(28) = 2.66, P < 0.05], suggesting
that activities during the imaginary use were located poste-
riorly and laterally. Figure 5e shows lines connecting the
centroids during the actual use (rectangles) with those dur-
ing the imaginary use (circles). Regarding the tools that
evoked activities in the posterior lobule during the imagi-
nary use (thick circles in Fig. 5b), the lines are often
orthogonal to the primary Wssure between the anterior and
the posterior lobules (thick lines in Fig. 5e). This suggests
that the order of the centroids along the primary Wssure for
the tools is almost identical between the anterior and pos-
terior lobules. Activities in the anterior lobule are probably
evoked by activities of limb muscles and sensory feedbacks
(Grodd, Hulsmann, Lotze, Wildgruber, & Erb, 2001), while
activities in the posterior lobule may reXect internal models
for use of the tools. This result suggests that internal
models contributing to skillful use of common tools are
modularly organized, that is, diVerent parts of the lateral
cerebellum contribute to the use of diVerent tools.

Our functional imaging study suggests the ability of the
CNS to combine output signals from internal models
(Imamizu, Higuchi, Toda, & Kawato, 2007). Subjects suY-
ciently learned to use 60° and 160° rotated mice, in each of
which the cursor appeared in a position rotated 60° or 160°
around the center of the screen. Then we investigated brain
activity when subjects learned to use a 110° rotated mouse

Fig. 4 Cerebellar regions relat-
ed to manipulation of the novel 
mice shown in various views. 
Yellow and blue colors indicate 
regions where activation was 
more highly correlated with the 
manipulation of a rotated and 
velocity mouse, respectively, 
than manipulation of a normal 
mouse. L left, R right
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(an intermediate angle between 60° and 160°). In the early
and late stages of learning the 110° mouse, we measured
cerebellar activity speciWc to the 60°, 110° or 160° mouse
according to the same method we used when measuring
activity speciWc to the rotated mouse or the velocity-control

mouse (see above). In the early stage of learning, activated
volumes for 60°, 110° and 160° were 7.5, 5.2, and
11.3 cm3, respectively (across subjects mean based on indi-
vidual activity maps at P < 0.001 uncorrected for multiple
comparisons), suggesting that the volume was the smallest

Fig. 5 Distribution of t value-
weighted centroid of activation 
coordinates when subjects actu-
ally used common tools (a) or 
when they imagined use of the 
tools (b). Thick circles in b indi-
cate centroids in the posterior 
lobule. Subjects used sixteen 
tools but one of the tools (saw) 
could not evoke signiWcant acti-
vation (P < 0.001, uncorrected 
for multiple comparisons in ran-
dom eVect analysis). Thus, the 
number of centroids is Wfteen. 
c Transverse anatomical image 
of the human brain at the cere-
bellum. Thick outlines in a, b, e 
indicate the region of the right 
lateral cerebellar hemisphere as 
shown in c. d Mean distance of 
the centroid from the fourth 
ventricle across tools (+SD) for 
actual use or imaginary use. 
e Lines connecting the centroids 
during actual use (rectangles) 
with those during the imagery 
(circles) for tools that evoked 
activities in the posterior lobule 
during the imagery. Thick black 
lines indicate tools that evoked 
activities in the posterior lobule 
during imaginary use, while thin 
gray lines indicate tools that did 
not evoke activities in the 
posterior lobule
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for 110°. In contrast, in the late stage, the volumes were
3.3, 10.7, and 9.3 cm3. Although these diVerences in vol-
umes among conditions did not reach statistically signiW-
cant levels, we observed that the volume for 110° became
the largest while the volumes for 60° and 160° decreased.
Possible explanations of these changes in activity are as fol-
lows. In the early stage, an internal model for 110° was not
acquired yet, and the CNS combined output signals from
internal models for 60° and 160° to cope with the novel
110° mouse. However, in the late stage, an internal model
for 110° had been acquired, and the necessity of internal
models for 60° and 160° decreased. The CNS may be able
to combine acquired internal models according to the
degree of acquisition of a new internal model.

Studies reviewed in this section suggest that the CNS
maintains multiple internal models for diVerent objects and
environments in a modular fashion and that it can combine
output signals from the stored internal models depending
on the situation.

Neural mechanism for selection and switching of internal 
models

In this section, we review behavioral and imaging studies
investigating neural mechanisms that select or switch inter-
nal models according to changes in the environment and
controlled objects.

Behavioral studies have shown that humans can switch
internal models based on contextual information. For exam-
ple, an auditory tone cue can induce context-dependent
adaptation to prismatic displacement in the opposite direc-
tions (Kravitz & YaVe, 1972). It had long been thought that
simultaneous adaptations to opposing force Welds are
impossible (Brashers-Krug, Shadmehr, & Bizzi, 1996;
Gandolfo, Mussa-Ivaldi, & Bizzi, 1996; Karniel & Mussa-
Ivaldi, 2002). However, it was recently demonstrated that
cognitive cues such as color and shape, and random and
frequent presentation of the force Welds, contribute to
simultaneous learning and predictive switching of internal
models for the opposing Welds (Osu, Hirai, Yoshioka, &
Kawato, 2004).

Using a continuous tracking task in which subjects used
a computer mouse, we investigated brain activity related to
switching of internal models (Imamizu, Kuroda, Yoshioka,
& Kawato, 2004). Subjects suYciently learned to use three
types of computer mouse with diVerent input–output prop-
erties (rotated, velocity-control and normal mice) before
their brain activities were scanned. During the tracking task
in the MR scanner, the input–output property changed at
random timing (from rotated to velocity-control, from nor-
mal to rotated, and so on). We investigated activity that
increased immediately after the change and found that
activities in the dorsolateral prefrontal cortex (DLPF; area

46), the insula, the anterior parts of the intra-parietal
regions, and the lateral cerebellum are related to switching
of internal models.

Our close examination of activation time courses
revealed that there exist two types of temporal proWles in
activity change depending on the brain region. One type of
proWle transiently increased immediately after the switch,
but the levels of sustained background activity 20 s after
switching were almost the same as those before switching,
suggesting that the dominant component of this proWle is
transient response (Fig. 6a). This transient response is prob-
ably related to the switching of internal models correspond-
ing to the change of mouse type. This type of proWle was
found in area 46 and the insula. In the second type of pro-
Wle, we could observe not only a transient increase of activ-
ity but also a change in the sustained activity level. In
Fig. 6b, the level of activation was low before the switch
when the subjects used the normal mouse (open circles). It
transiently increased immediately after switching and then
remained high as long as the subjects used the rotated
mouse (Wlled circles). Thus, this type of proWle consisted of
both transient response and sustained response.

Our further analysis found that the rotated and the veloc-
ity-control mice evoked sustained activity in distinct
regions of the lateral cerebellum, suggesting that the activ-
ity is related to internal models. This type of proWle was
mainly observed in the cerebellum and the anterior part of
the intra-parietal regions. We quantitatively investigated
magnitudes of the transient and sustained responses in time
courses of individual regions using a linear regression anal-
ysis and then calculated the ratio of the magnitude of the
sustained response to that of the transient response
(Fig. 6c). The results conWrmed that transient response is
dominant in the frontal regions (area 46 and the insula),
while both responses are contained in activity in the parietal
regions and the cerebellum. We also investigated the spatial
overlap between the transient response related to the
switching and the sustained response related to the internal
models and found a signiWcant overlap in the cerebellum,
suggesting that internal models contribute to the switching.
As we discuss below in relation to computational models,
this result suggests that internal models play an important
role in switching mechanisms in the parietal and cerebellar
regions.

Predictive switching of internal models

Empirically, two types of information are crucial for the
switching of internal models: contextual information, such
as color or shape of the objects that can be perceived before
movement execution, and information on the diVerence
between actual and predicted sensorimotor feedbacks
calculated during or after execution. For example, when we
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lift a transparent bottle, the CNS can switch between inter-
nal models for light and heavy objects in a predictive fash-
ion, since we know whether the bottle is empty or full
beforehand. However, when lifting up a milk carton, we
cannot estimate the weight, and the CNS relies on the error
between actual and predicted sensorimotor feedbacks (pre-
diction error). It is probably important for anticipatory
adjustment of behavior that a mechanism for predictive
switching of internal models can work before movement
execution independently from a postdictive mechanism
based on prediction error.

We conducted a behavioral experiment to investigate
whether the predictive mechanism is functionally indepen-
dent from the postdictive mechanism (Imamizu, Sugimoto
et al., 2007). Subjects learned to move their index Wngers to
targets while visual feedback of the Wnger movements was
rotated clockwise (CW) or counterclockwise (CCW) by 40°
around the initial position. When subjects adapted to alter-
nating blocks of opposing rotations, we investigated the
eVects on the subjects’ performances due to contextual
information (a verbal instruction) on the forthcoming direc-
tion of rotation. We measured the eVect of such contextual
information on the predictive mechanism by measuring the
performance error at the beginning of each block and that
on the postdictive mechanism by measuring the speed of
gradual decrease of the error within blocks. Consequently,
the contextual information selectively improved predictive
switching performance but did not aVect postdictive
switching performance based on prediction errors, suggest-
ing the existence of functionally independent mechanisms.
Based on the results of our behavioral study, we planned an
fMRI experiment to examine whether these two mecha-
nisms are based on separate neural substrates.

The experimental design of our previous fMRI study
(Imamizu et al., 2004) did not allow us to distinguish the
activity related to predictive switching from that related to
postdictive switching for the following reasons. While sub-
jects tracked a target continuously moving at high speed on
a screen, the mouse type was changed and, simultaneously,
cognitive cues (change of cursor color and letters indicating
the mouse type) were presented. In this way subjects simul-
taneously obtained cognitive cues for predictive switching
and sensorimotor feedback for postdictive switching; con-
sequently, cue-related activity temporally overlapped feed-
back-related activity.

In our new experiment, discrete pointing movements and
event-related fMRI were used to separate activity related to
the presentation of the cognitive cue from that related to
sensorimotor feedback (Imamizu & Kawato, 2008). The
task for subjects followed that in our behavioral study, and
subjects suYciently learned the 40° CW and 40° CCW
visuomotor rotations before scanning of brain activity. During
the fMRI experiment, the direction of rotation changed in a
block-random fashion. A cue was presented at the begin-
ning of each trial and before movement initiation. The color
of the cue corresponded to the direction of rotation of the
feedback in an instructed condition, and thus predictive
switching was possible. However, the color did not corre-
spond to the direction in the non-instructed condition, and
thus subjects relied on prediction errors calculated from
sensorimotor feedback for switching in a non-instructed
condition. Switching-related activity was identiWed as
activity that transiently increased after the direction of rota-
tion was changed. The switching-related activity in cue

Fig. 6 a Activation time course in area 46 when mouse type changed
from the normal to the rotated mouse. b Activation time course in the
cerebellum. c Schematic representation of a ratio of sustained compo-
nent to that of transient component in various brain regions
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periods in the instructed condition, when a predictive
switch is possible, was observed in the superior parietal
lobule (SPL). However, the switching-related activity in
feedback periods in the non-instructed condition, when pre-
diction error is crucial for the postdictive switch, was
observed in the inferior parietal lobule (IPL) and prefrontal
cortex (PFC). These results clearly demonstrate regional
diVerences in neural substrates between the predictive and
postdictive mechanisms.

The above study suggests that the SPL contributes to
predictive switching when the CNS has to select internal
models. By contrast, Bursztyn and colleagues investigated
brain activity related to predictive loading of an internal
model when only one type of skill or an internal model was
required throughout their experiment (Bursztyn, Ganesh,
Imamizu, Kawato, & Flanagan, 2006). In their experiment,
subjects learned to compensate a novel dynamics applied to
their wrist movement. After learning, brain activity was
measured during the interval between the cue and the initia-
tion of movement. Their analysis revealed activity in sup-
plementary motor areas (SMA), the primary motor (M1)
regions, the dorsal premotor (PMd) regions, and the cere-
bellum. These results suggest that regions directly related
to motor control are involved in internal-model recruitment
in preparation for movement execution when selection of
internal models is not needed.

Computational models for task switching

A mixture-of-experts architecture (Fig. 7a) was previously
proposed for a computational model for task switching,
including switching of internal models (Ghahramani &
Wolpert, 1997; Jacobs, Jordan, Nowlan, & Hinton, 1991).
In this architecture, expert modules (i.e., internal models)
are trained so as to split the input data into subparts in
which particular experts are specialized. For example, an
expert module is specialized for the input–output property
of each tool. Depending on the context, a gating module
weights the contribution of the output of each expert mod-
ule to the Wnal output. A computational model for simulta-
neous learning and switching of internal models (MOSAIC
model: Modular Selection and IdentiWcation for Control
model) has recently been proposed (Haruno, Wolpert, &
Kawato, 2001; Wolpert & Kawato, 1998). This model can
explain the above results of behavioral and imaging studies
in a consistent manner. The MOSAIC model (Fig. 7b) has
two features that are largely diVerent from the mixture-of-
experts architecture.

First, in a mixture-of-experts architecture, the switching
function is centralized in the gating module and segregated
from the internal models. By contrast, in the MOSAIC
model, internal models themselves play crucial roles in
switching as follows. Multiple pairs of forward internal

models (predictors: “F” in Fig. 7b) and inverse internal
models (controllers: “I” in the Wgure) are tightly coupled as
functional units in the MOSAIC model. For example, when
we use a new tool, forward models of various types of
similar tools simultaneously predict sensory feedback from
an eVerence copy of motor commands. The prediction of
each forward model is then compared with actual feedback.
The smaller the error, the more likely it is that the forward
model was an appropriate predictor in the current context.
The inverse model paired with the appropriate predictor is
considered an appropriate controller. Accordingly, the
selection mechanism depends on the internal models, and
forward models must be active when switching internal
models. Therefore, the MOSAIC predicts that the switching
activity spatially and temporally overlaps the internal
model activity. Our fMRI study (Imamizu et al., 2004) indi-
cated that activity in the anterior parts of the intra-parietal

Fig. 7 Computational models for switching of internal models. a Mix-
ture-of-experts model having a single switching mechanism (a gating
module). b MOSAIC model having separate switching mechanisms
for predictive switching based on contextual information and postdic-
tive switching based on the prediction error of sensorimotor feedback.
Circled numbers indicate correspondence between information Xows
in the model and neural pathways in Fig. 9
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regions and the lateral cerebellum contains both transient
response related to switching and sustained response
related to internal models. This result suggests that the
MOSAIC model can well explain the switching mecha-
nisms in these regions. Especially in the cerebellum, the
transient response was observed in regions related to an
internal model for the rotated mouse and one for the veloc-
ity-control mouse. This suggests that the transient response
reXects activity of forward internal models for both types of
mice, simultaneously predicting sensory feedback, and that
the sustained response reXects activity of the selected inter-
nal models.

Second, the MOSAIC model has two architectures, each
of which is specialized for predictive switching based on
contextual information or postdictive switching based on
error of prediction derived from sensorimotor feedback.
This is consistent with our behavioral (Imamizu, Sugimoto
et al., 2007) and fMRI (Imamizu & Kawato, 2008) studies
indicating the two independent switching mechanisms.

Cerebellar activity in reinforcement-learning tasks: 
contributions of internal models to goal-directed behaviors

In the above sections, we reviewed behavioral and neuro-
imaging studies investigating internal models for control of
peripheral objects (e.g. tools or objects in the hand) toward
immediate goals in time (e.g. moving a cursor to a target).
However, humans often have to guide their behaviors
toward distal goals in time such as maximizing a reward
that will be obtained in a long-term future under compli-
cated stochastic environments. Learning based on reward
has been investigated in a framework of reinforcement-
learning models (Sutton & Barto, 1998). Neurophysiological
(Schultz, Apicella, & Ljungberg, 1993) and neuroimaging
studies have shown that the basal ganglia and prefrontal
regions play a key role in such types of learning. However,
some studies have shown involvement of the lateral cere-
bellum as well as the basal ganglia in tasks designed for
investigation of reinforcement learning (Doya, Okada,
Ueda, Okamoto, & Yamawaki, 2001; Haruno et al., 2004).
Figure 8 shows examples of cerebellar regions activated in
reinforcement-learning tasks (see also Supplemental movie:
http://www.cns.atr.jp/»imamizu/multi_functions.mpg). Red
regions were activated when subjects conducted a stochas-
tic decision task maximizing monetary rewards, in which
subjects had to learn behaviors involving diVerent task
diYculties that were controlled by probability (Haruno
et al., 2004). Blue regions were activated when subjects
planned their behaviors predicting a log-term reward in a
Markov decision problem (Doya et al., 2001).

The above activations of the lateral cerebellum suggest
that internal models are needed for goal-directed behaviors
in complex environments. Reinforcement-learning algorithms

can be eVective for optimizing a chain of actions in small-
scale stochastic environments. However, many studies indi-
cated limitations of the model-free approach adopted by
plain reinforcement-learning algorithms and suggested the
necessity of complementary use of model-based
approaches. Doya has suggested that the cerebellum is spe-
cialized for supervised learning (model-based approach),
which is guided by the error signal, while the basal ganglia
are specialized for reinforcement learning (model-free
approach), which is guided by the reward signal, and that
each neural mechanism plays complementary roles in
motor control and cognitive functions (Doya, 1999, 2000).
Anatomical connectivity between the basal ganglia and the
cerebellum (Hoshi, Tremblay, Feger, Carras, & Strick,
2005) may support interplay between the cerebellar internal

Fig. 8 Cerebellar regions activated in various kinds of tasks. a Acti-
vated regions shown in superior–posterior–lateral view. b Activated
regions projected onto the sagittal (left), the coronal (right), and the
transverse (bottom) planes. A gray object indicates outline of the cere-
bellum from the same view as a. Red regions were activated when sub-
jects conducted a stochastic decision task maximizing monetary
rewards. Blue regions were activated when subjects predicted a log-
term reward. Green regions were activated when subjects manipulated
an object with complex dynamics. Cyan regions were related to coor-
dination of grip force and load force. Yellow regions indicate activity
related to use of various common tools. Magenta regions were related
to an internal model of a novel tool
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http://www.cns.atr.jp/~imamizu/multi_functions.mpg


Psychological Research (2009) 73:527–544 537
model and reinforcement-learning mechanisms in the basal
ganglia. In the same line of thought, Daw and colleagues
proposed a computational model consisting of two parallel
reinforcement-learning modules in the brain: a model-free
module associated with the dorsolateral striatum in the
basal ganglia and a model-based module associated with
the PFC (Daw, Niv, & Dayan, 2005).

Kawato and Samejima theoretically pointed out the
ineYciency of a plain reinforcement-learning algorithm
when applied to practical problems including multiple
degrees of freedoms, nonlinearity, and large delays
(Kawato & Samejima, 2007). Such problems are often
encountered in optimization of most goal-directed behav-
iors based on learning associations between motor com-
mands and resultant trajectory (or sensorimotor feedback)
and the associations between actions and resultant rewards
in practical environments. They suggested that internal
models contribute to dividing a complex task into simple
subtasks, each of which is learned by separate reinforce-
ment-learning modules. In extending reinforcement-learning
tasks, it is fair to state that humans need good ‘models’ that
can predict long-term changes in environments when they
eYciently plan and select behaviors toward distal goals in
complex environments. Thus, internal models are thought to
be important for goal-directed behaviors in general.

The above results indicate that cerebellar internal models
contribute to reinforcement-learning tasks based on long-
term reward. To illustrate regional diVerences between
activities related to the reinforcement-learning tasks and
those related to sensorimotor control, several types of activi-
ties reviewed in the earlier part of this article were superim-
posed onto Fig. 8. Green regions were activated when
subjects manipulated an object with a complex dynamics
(Milner et al., 2007). Cyan regions are related to coordina-
tion of grip force and load force (Kawato et al., 2003).
Yellow regions indicate activity related to use of various
common tools (Higuchi et al., 2007; Fig. 5). Here, we aver-
aged activities when subjects imagined use of the diVerent
tools. As the Wgure shows, activities related to the sensori-
motor control tend to be located in superior and medial
parts, while those related to the reinforcement-learning tasks
tend to be located in inferior and lateral parts. We found
activity reXecting an internal model of a novel tool (a 120°
rotated mouse; Imamizu et al., 2000) in magenta regions.
These results suggest that activity related to relatively higher
cognitive functions (i.e., maximizing a long-term reward
and use of a novel tool) exist in inferior and lateral parts.

Contributions of internal models to mirror system, 
social interactions, communication, and language

Many neurons in the PMv (F5) of macaque monkeys show
activity in correlation with the grasp type being executed. A

subpopulation of these neurons, the mirror neurons,
responds to observation of goal-directed movements per-
formed by another monkey or an experimenter (Gallese,
Fadiga, Fogassi, & Rizzolatti, 1996). The mirror neurons
and mirror systems (not individual neurons) have been
thought to support the abilities of communication and
social interaction.

Experimental and theoretical studies suggest that inter-
nal models support information processing in mirror sys-
tems. Anatomical connectivity has been found between the
ventral premotor (PMv) regions and the cerebellar output
nucleus (the dentate nucleus) (Middleton & Strick, 1997).
Corresponding to this connection, our fMRI study suggests
that functional connectivity between the lateral cerebellum
and the PMv regions increased after acquisition of internal
models (Tamada, Miyauchi, Imamizu, Yoshioka, &
Kawato, 1999). This study used the novel mouse and con-
Wrmed similar change in activity to our previous study in
the lateral cerebellum (Imamizu et al., 2000). Moreover, the
study investigated change in activity in cerebral regions and
found a signiWcant eVect of learning on the activated vol-
ume (decrease or increase of volume) in frontal and occipi-
tal regions. The authors found that activity in the left lateral
cerebellum increased after learning in comparison to the
right cerebellum. In their analysis, they adopted a hypothe-
sis that increase in activity in the right cerebral region
should be observed in comparison to the left homologous
region if the region has functional connectivity with the lat-
eral cerebellum. They found that the activity in the right
PMv regions increased in comparison to the left homolo-
gous regions after learning. Miall suggested that inverse
models in the cerebellum and projections from parietal
regions to the PMv via the cerebellum contribute to con-
verting observation of another’s action into one’s own
motor control signals (Miall, 2003). Oztop and colleagues
conducted computer simulations of tasks that are closely
related to mirror systems (Oztop, Kawato, & Arbib, 2006,
Oztop, Wolpert, & Kawato, 2005). In their simulations, an
observer estimated the goal of the reaching movements or
the intention of the agent performing grasping movements.
The results theoretically indicated that internal models for
sensorimotor control are eVective in inferring the goals or
mental states of others.

Estimation of mental states of others is essential for
communication and social interactions. “Theory of mind,”
the ability to conceive the intentions and beliefs of others,
has become another important key concept for understand-
ing the mechanisms involved in the estimation (Baron-
Cohen, 1997; Frith & Frith, 1999). Many functional imag-
ing studies have suggested involvement of regions near the
superior temporal sulcus (STS) and other prefrontal regions
in theory of mind (e.g. Decety, Jackson, Sommerville,
Chaminade, & MeltzoV, 2004; Tankersley, Stowe, &
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Huettel, 2007). Our study found that the STS regions are
activated during observation of geometrical shapes whose
movements appear intentional or goal-directed (Schultz,
Imamizu, Kawato, & Frith, 2004). Recently, Haruno and
Kawato indicated that the strength of activation in the STS
regions reXects individuals’ competence to construct inter-
nal models of others’ mental states (Haruno & Kawato, in
press). In their experiment, subjects were categorized into
two groups according to strategies adopted by subjects for
maximizing monetary rewards in a social interaction game
(the “prisoner’s dilemma” game). Subjects in a group tried
to learn the association between one’s own action and
reward independently from the strategy of the other agent.
Their strategies were well explained by a plain (model-free)
reinforcement algorithm. By contrast, the strategies of the
other group could not be explained by such an algorithm,
and behavioral data suggested that the subjects exploited
the agent’s strategies to predict the agent’s behavior in
response to the subjects’ own action (forward internal
model). Their imaging data indicated that activity in STS
regions in the latter group was signiWcantly stronger than
that in the former group.

In our study investigating switching mechanisms for
internal models (Imamizu & Kawato, 2008), activity in the
STS regions increased as accuracy of subjects’ perfor-
mances increased after alteration of environments, and thus
we concluded that the STS is one of the regions that receive
output signals from the acquired internal models. Although
the above experiment using the social interaction game did
not investigate the learning process, we speculate that the
STS region plays an important role in predicting the agent’s
behavior at the initial stage of learning but that the cerebel-
lum acquires internal models of the agent after repeated
games with the same agent. However, to fully understand
the roles of the STS and the cerebellum in social interac-
tions, it would be necessary to reconstruct or decode what
information is presented in these regions and how the
reconstructed information changes with learning.

How do internal models contribute to imitations and the-
ory of minds? An essential problem in imitations is to infer
covert information in others’ brains (such as motor com-
mands and intentions) from observation of their action. An
eVective way for this inference is to utilize one’s own inter-
nal inverse models that translate action to motor commands
or forward models (Oztop et al., 2006, 2005). Similarly,
one’s own internal models that translate actions and com-
munication signals to intention and belief can be utilized
for inference of others’ intentions and beliefs that we
cannot directly observe. Learning internal models of other
people using one’s own internal models may largely rely on
the similarity of musculoskeletal systems and brains across
people. Therefore, it becomes more diYcult to learn
internal models of people with diVerent social and cultural

backgrounds compared to those of people with a common
background. Wolpert, Doya and Kawato pointed out simi-
lar computational diYculties, such as the large amount of
noise, nonlinear properties, high dimensionality, and
delayed feedback encountered in sensorimotor control and
social communication, including imitations and theory of
minds, although these diYculties are more severe in social
communication than in sensorimotor control (Wolpert,
Doya, & Kawato, 2003). It has been suggested that “mental
simulations” using forward and inverse models (Oztop
et al., 2005) and hierarchical organization of internal
models (Wolpert, Doya, & Kawato, 2003) can increase the
inference accuracy of intentions and beliefs despite these
diYculties.

The contribution of the cerebellum to language has been
suggested by activation in the lateral cerebellar cortex dur-
ing a verbal response selection task (saying an appropriate
verb for a visually presented noun) (Raichle et al., 1994).
Our fMRI study (see above) revealed functional connectiv-
ity between the lateral cerebellum and PMv regions, parts
of which are known as Broca’s area (Tamada et al., 1999).
Recently, Higuchi and colleagues found an overlap of brain
activity for language and tool use in Broca’s area (Higuchi,
Imamizu, Chaminade, & Kawato, 2004). Their tool-use
task required subjects to perform hierarchical manipulation
of objects and tools, e.g. moving an object while holding it
with chopsticks. The overlap was found in the dorsal parts
of area 44 (a part of Broca’s area). It has been suggested
that area 44 is involved in the syntactic aspects of language
(Sakai, 2005) and speciWcally complex hierarchical pro-
cessing (e.g. understanding of embedded sentences)
(Friederici, Bahlmann, Heim, Schubotz, & Anwander,
2006). The location of this overlap suggests that language
and tool use may share computational principles for processing
hierarchical structures common to these two distinct abili-
ties. In combination with a study indicating involvement of
the PMv regions in monkeys during tool use (Obayashi
et al., 2001), this study suggests that neural processes for
computation of hierarchical structures exist in primates and
evolved secondarily to support human grammatical ability.

Beyond syntactic aspects, internal models are thought to
contribute to the semantic aspects of words related to
actions and manipulation. It is known that semantic mem-
ory is represented by distributed brain networks of sensory
and motor regions. Recent functional brain imaging studies
have intensively investigated semantic memory of tools
(for review, see Martin & Chao, 2001) and found that the
medial fusiform gyrus stores the form of tools, the left
posterior middle gyrus represents the visual motion related to
tool use, and the PMv regions represent the tool-use-associ-
ated action. Input–output properties are important semantic
aspects of tools, and thus internal models representing these
properties are key parts of the distributed network used for
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the semantic memory of tools. Our studies on the existence
of internal models in the cerebellum (e.g. Higuchi et al.,
2007; Imamizu, Kuroda, Miyauchi, Yoshioka, & Kawato,
2003; Imamizu et al., 2000) suggest that the cerebellum
also contributes to the semantic representation of words
related to actions and manipulation, such as words for tools.

Hurley proposed a “Shared Circuit Model” in which
cognitive functions such as mirror systems, imitation,
mental simulation of social interactions, and mind reading
(theory of minds) use internal simulation loops for sensori-
motor control and additional systems that inhibit motor out-
puts and generate virtual sensory inputs during the
simulation (Hurley, 2008). In our understanding, the inter-
nal simulation loops correspond to combinations of forward
and inverse internal models. Therefore, the studies
reviewed in this section are consistent with the Shared
Circuit Model in that internal models contribute to mirror
system, social interactions, communication, and language
processing using the same computational principles
involved in sensorimotor control.

Discussion

Humans acquire internal models of the environment and
external objects for eVective realization of goal-directed
behaviors. Neural substrates of internal models had been
investigated by neurophysiological studies on other ani-
mals. However, recent advances in non-invasive functional
neuroimaging methods such as PET and fMRI have
enabled us to investigate how internal models are acquired
and organized in the human brain. This review article Wrst
presented neuroimaging studies indicating how internal
models are acquired in the brain network, including the
cerebellum. Environments and objects with which humans
interact often change in a discrete manner. Behavioral and
imaging studies have indicated that the CNS acquires mul-
tiple internal models in a modular fashion and Xexibly
copes with such discrete changes by reducing interference
and combining acquired internal models. A switching
mechanism of internal models is also important for Xexible
adaptation under rapid and frequent environmental
changes. Our studies suggested that neural mechanisms in
the parietal regions (the SPL and IPL) and prefrontal
regions contribute to the selection of appropriate internal
models.

We then presented studies indicating the contribution of
internal models to higher-order cognitive functions. Many
studies have suggested that internal models are involved in
optimization of goal-directed behaviors such as maximiz-
ing long-term rewards in collaboration with neural mecha-
nisms for reinforcement learning. Our analysis of
functional connectivity between the lateral cerebellum and

the PMv suggests the contribution of internal models to
mirror systems and faculties of language. Theoretical and
simulation studies supported such a contribution to the
mirror systems. Our recent imaging study demonstrated
that regions probably receiving output signals from internal
models for tool use are closely related to neural mecha-
nisms for language processing and speech production
(Broca’s area). Finally, theoretical and empirical studies
have suggested that internal models are involved in the
theory of mind during social interactions by predicting
others’ behaviors in response to one’s own behaviors.

Figure 9 shows schematic diagrams of functional path-
ways between the cerebral regions and the cerebellum
based on the principal studies in this review article. In our
study investigating predictive and postdictive mechanisms
for switching of internal models (Imamizu & Kawato,
2008), we conducted analysis of functional connectivity
using a method called dynamical causal modeling (Friston,
Harrison, & Penny, 2003). Consequently, we identiWed a
signiWcant increase in the inXuence of the SPL on the
lateral cerebellum during predictive switching based on
contextual information and an increased inXuence of the
IPL on the lateral cerebellum during postdictive switching
based on error in the prediction of sensorimotor feedback
(Fig. 9a). We hypothesized that the increased inXuence of
the cerebellum on the IPL corresponded to the prediction of
sensorimotor feedback, which is computed by forward
models and necessary for calculation of prediction error.
Although our connectivity analysis could not Wnd a statisti-
cally signiWcant increase, an anatomical study on monkeys
indicated that a region in the IPL (area 7b in monkeys) is
the target of output from the cerebellum (Clower, West,
Lynch, & Strick, 2001). These diagrams can be mapped
onto the MOSAIC model (Fig. 7b), as indicated by circled
numbers in the Wgures.

Furthermore, regarding postdictive switching, we found
increased inXuence of the IPL on the SPL. This increase in
inXuence suggests that the error of prediction for sensori-
motor feedback was used as contextual information in the
next trial because it is important information on changes in
the environment. This information Xow may be analogous
to those underlying behavioral adjustment after conXict or
error in cognitive control tasks such as the Stroop color-
naming task. Kerns and colleagues (Kerns et al., 2004)
found that an increase in activity in the anterior cingulate
cortex (ACC) in an error trial leads to an increase in activity
in the PFC (areas 8 and 9) in the subsequent trial, and they
suggested that the ACC monitors the conXict and that the
PFC produces behavioral adjustments based on detection of
the conXict. It can be postulated that the IPL is involved in
the monitoring of error and that the SPL contributes to sub-
sequent behavioral adjustment by predictive switching of
internal models. We also found an increase in bidirectional
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inXuences between the IPL and the DLPFC around area 46,
suggesting that the DLPFC contributes to behavioral
adjustment through interaction with the IPL in the switch-
ing of internal models.

In addition to the above analysis of functional connectiv-
ity, we found that activity increased in the lateral occipito-
temporal cortices (LOTC), the SMA, the PMd region, and
the M1 cortex as subjects’ performances improved after
alteration of the environment (direction of visuomotor rota-
tion). According to previous studies described below, these
cerebral regions are closely related to internal models, and

they are assumed to receive output signals from internal
models (Fig. 9b). The LOTC is related to biological-motion
perception (Bonda, Petrides, Ostry, & Evans, 1996), imita-
tion (Iacoboni et al., 2001), trajectory learning (Maquet,
Schwartz, Passingham, & Frith, 2003) and smooth pursuit
eye movements (Schmid, Rees, Frith, & Barnes, 2001).
Using fMRI and computational modeling, Kawawaki et al.
(Kawawaki, Shibata, Goda, Doya, & Kawato, 2006) indi-
cated the contribution of the LOTC to prediction of target
motion during visual pursuit. Output signals from forward
internal models have been suggested to play an important
role in prediction and observation of movements of objects
and other persons (Blakemore & Decety, 2001; Frith,
Blakemore, & Wolpert, 2000). Consistent with these stud-
ies, Haruno and Kawato found that the STS region, which
is adjacent to the LOTC, is related to internal forward mod-
els of others’ behaviors during human-human interaction
(Haruno & Kawato, in press).

The SMA, PMd and M1 are involved in motor control
and likely receive output signals from internal inverse mod-
els. This is consistent with a study Wnding activity in these
regions related to preparatory loading of information stored
in internal models for compensation of a novel dynamics
(Bursztyn et al., 2006). In addition to these regions, output
signals from inverse models are probably sent to the PMv
regions (and Broca’s area). This was suggested by our
study Wnding an increase in functional connectivity after
acquisition of internal models (Tamada et al., 1999).

The studies we reviewed in the earlier sections mainly
investigated internal models for rapid and smooth control
of our bodies and tools to realize relatively immediate
goals. However, some characteristics of internal models
revealed by these studies are postulated to play key roles in
supporting higher-order cognitive functions.

Modular organization of internal models is essential
for eVective organization of behavior in complex envi-
ronments. If internal models were modularly organized,
many novel situations that we encounter could be dealt
with as combinations of previously experienced con-
texts. By modulating the contribution of the output sig-
nals from individual internal models to the Wnal output
signal, an enormous repertoire of behaviors could be
generated (MOSAIC; Wolpert & Kawato, 1998). Our
fMRI study has demonstrated fundamental neural mech-
anisms supporting such an ability in a relatively simple
task, that is, use of three types of computer mouse with
diVerent input–output properties (Imamizu, Higuchi
et al., 2007). A modular decomposition strategy is eVec-
tive for tackling a complex task by dividing it into
simple subtasks. It has been suggested that internal
models can contribute not only to learning subtasks but also to
dividing a complex task into simple subtasks, each of
which can be learned by model-free or model-based

Fig. 9 Schematic diagrams of functional pathways between the cere-
bral regions and the cerebellum based on representative studies in this
review article. a Pathways related to predictive or postdictive switch-
ing of internal models based on our functional connectivity analysis
(Imamizu & Kawato, 2008). DLPFC dorsolateral prefrontal cortex,
IPL inferior parietal lobule, SPL superior parietal lobule. b Output
pathways from cerebellar forward and inverse internal models. SMA
supplementary motor area, PMd dorsal premotor region, PMv ventral
premotor region, BA Broca’s area, M1 primary motor cortex, STS supe-
rior temporal sulcus, LOTC lateral occipito-temporal cortices. Circled
numbers indicate correspondences of the pathways to information
Xows in the MOSAIC model (Fig. 7b)
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reinforcement-learning modules (Kawato & Samejima,
2007). Furthermore, realization of distal goals in time
under complex environments often needs multiple steps
of actions that should be organized in a hierarchical
fashion. Increasing the accuracy of hierarchical plans of
actions requires precise internal models for individual
actions and hierarchical organization of these internal
models. Modularity of internal models is essential for
such organization of action plans. Because realization of
distal goals in time often needs step-by-step actions and
a long time to accomplish them, environments often
change during this process. For Xexible reorganization
of action plans depending on changes in the environ-
ment, it is important that internal models be modularly
and hierarchically organized and that they can be Xexi-
bly switched depending on available contextual informa-
tion. Modularity and hierarchy are also thought to be
essential for language processing.

Bidirectional and recursive information processing is
also important for higher-order cognitive functions. As
we reviewed, many studies have suggested the existence
of forward and inverse internal models in the CNS.
Using these two forms of internal models, closed-loop
circuits can be constructed in the CNS without relying
on feedback loops in the external world (Hurley, 2008).
These internal circuits support “mental simulations” of
interactions between one’s own actions and the resultant
changes in the environment, and they can increase accu-
racy based on recursive computation in planning and
selection of behaviors toward distal goals. It has been
suggested that internal circuits including forward and
inverse models are essential for the inference of others’
mental states in computer simulations related to mirror
systems (Oztop et al., 2005).

Functional connectivity between the cerebellum and
various cerebral regions, as illustrated in Fig. 9, indi-
cates that the cerebellar internal models contribute to
not only motor control but also various cognitive func-
tions. In particular, STS, LOTC and PMv have been sug-
gested to be involved in prediction of movements of
external objects and actions of others, making inferences
about intentions and goals of others, and language pro-
cessing. Neurophysiological and anatomical studies
have shown functional connections between the lateral
cerebellum and both prefrontal and parietal regions (e.g.
Clower et al., 2001; Middleton & Strick, 2001; Sasaki,
Oka, Kawaguchi, Jinnai, & Yasuda, 1977). However,
previous studies, including ours, are mainly based on
temporal correlations in activities between the regions
or anatomical connectivity revealed by virus-based trac-
ers, and thus little is known about the exact information
exchanged between the cerebellum and the cerebral corti-
ces. We can make inferences about types of information

based on our knowledge of the functions of particular
cerebral regions; however, it would be necessary to
reconstruct or decode what information is presented in
these cerebellar and the cerebral regions in the human
brain to exactly understand the roles of the cerebellum
and internal models in higher-order cognitive functions.

As opposed to the theoretical studies and computer
simulations reviewed above, a small number of experi-
mental studies have directly investigated the contributions
of internal models to cognitive functions. Here, we pro-
pose several possible experimental and robotic studies.
First, sensorimotor tasks could be used to investigate the
hierarchical organization of internal models, where sub-
jects would learn to hierarchically combine several types
of tools or sensorimotor transformations. This work
would extend a study by Higuchi and colleagues (Higuchi
et al., 2007), and the results could be compared to those
for activity related the hierarchical aspects of language,
such as understanding of embedded sentences. To study
social interactions, two fMRI-compatible manipulandums
and fMRI scanners could be used to scan the brain activi-
ties of two subjects while they play interactive force-
exerting games. Here, it would be possible to investigate
how activity changes when the subject must learn diVer-
ent properties of the opponent, i.e., these properties
change from motor dynamics such as force levels to
higher-order cognitive properties such as strategies and
personalities. Such a study would help us to understand
the continuity or discontinuity of internal models between
sensorimotor control and cognitive functions. Regarding
robotic experiments, some robots have already been made
for interacting with people (e.g. our institute’s Robovie:
http://www.irc.atr.jp/productRobovie/robovie-r2-e.html).
Using these robots as a starting point, we could build
new robots that possess the internal models of several
types of people and as well as the ability to autono-
mously reWne these internal models based on the feed-
back obtained from people who have actually interacted
with the robots in experiments. This would allow us to
examine how their abilities, Xexibility, and impressions
they give of their intelligence improve in comparison to
previous robots that react to people simply based on a
database such as a lookup table of questions and
answers.

A series of our fMRI studies was motivated by the
need to investigate sensorimotor learning mechanisms
under novel environments. However, our results
revealed some essential characteristics of internal mod-
els that can be generalized to understanding higher-order
cognitive functions such as optimization of behaviors
toward long-term goals, social interactions based on
prediction of others’ actions and mental states, and
language processing.
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