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Abstract. The role of glutathione (GSH) in protecting
plants from chilling injury was analyzed in seedlings of a
chilling-tolerant maize (Zea mays L.) genotype using
buthionine sulfoximine (BSO), a specific inhibitor of
y-glutamylcysteine (yEC) synthetase, the first enzyme of
GSH synthesis. At 25°C, 1 mM BSO significantly
increased cysteine and reduced GSH content and GSH
reductase (GR: EC 1.6.4.2) activity, but interestingly
affected neither fresh weight nor dry weight nor relative
injury. Application of BSO up to 1 mM during chilling
at 5 °C reduced the fresh and dry weights of shoots and
roots and increased relative injury from 10 to almost
40%. Buthionine sulfoximine also induced a decrease in
GR activity of 90 and 40% in roots and shoots,
respectively. Addition of GSH or yEC together with
BSO to the nutrient solution protected the seedlings
from the BSO effect by increasing the levels of GSH and
GR activity in roots and shoots. During chilling, the level
of abscisic acid increased both in controls and BSO-
treated seedlings and decreased after chilling in roots and
shoots of the controls and in the roots of BSO-treated
seedlings, but increased in their shoots. Taken together,
our results show that BSO did not reduce chilling
tolerance of the maize genotype analyzed by inhibiting
abscisic acid accumulation but by establishing a low level
of GSH, which also induced a decrease in GR activity.
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Introduction

Glutathione (GSH) forms part of the ascorbate-GSH
pathway which is involved in decomposing and thus
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detoxifying the excess of hydrogen peroxide generated
during oxidative stress (Foyer and Halliwell 1976;
Rennenberg and Brunold 1994; Alscher et al. 1997;
May et al. 1998; Noctor and Foyer 1998; Noctor et al.
1998). If this pathway does not function sufficiently,
hydrogen peroxide may accumulate to damaging levels.
Such conditions, established by chilling temperature,
have been described (Prasad et al. 1994), and the
possible protective role of GSH at chilling temperatures
in various system has been discussed (Guy et al. 1984;
Vierheller and Smith 1990; Anderson et al. 1992;
Stuiver et al. 1992; Badiani et al. 1993; Walker and
McKersie 1993; Fadzillah et al. 1996; Kocsy et al.
1996, 1997, 1999; O’Kane et al. 1996; El-Saht 1998;
Zhao and Blumwald 1998). Results corroborating a
role for GSH in chilling tolerance were obtained using
a chilling-tolerant species of Lycopersicon (Walker and
McKersie 1993) and a series of maize genotypes with
different chilling tolerances (Kocsy et al. 1996, 1997).
More information about the role of GSH during
chilling resulted from genetic studies with wheat which
indicated a contribution of GSH to an improved low-
temperature tolerance (Kocsy et al. 1999). Transgenic
plants overexpressing enzymes of GSH synthesis pro-
vide additional evidence for the involvement of GSH in
protecting from oxidative stress, as shown in paraquat-
treated transgenic poplar overexpressing y-glutamylcy-
steine (YEC) synthetase (Noctor et al. 1998), an enzyme
with high flux control on GSH synthesis (Riiegsegger
and Brunold 1992). Interestingly, GSH also increased
in chilling-sensitive Glycine max (L.) Merr. (Vierheller
and Smith 1990), clearly indicating that GSH is not the
only parameter relevant for chilling tolerance. Indeed,
participation of fatty acid desaturation (Sommerville
and Browse 1991), protein metabolism (Guy 1990),
abscisic acid (ABA; Janowiak and Dorflling 1996),
xanthophyll cycle pigments (Verhoeven et al. 1999) and
osmotic adjustment together with antioxidants (Noctor
and Foyer 1998) were postulated as being involved in
chilling tolerance, making it difficult to estimate the
relative contribution of each of these protecting
mechanisms.
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During detoxification of hydrogen peroxide in the
ascorbate-GSH pathway, GSH is oxidized to GSSG
and subsequently regenerated to GSH by glutathione
reductase (GR; Foyer and Halliwell 1976; Foyer et al.
1997; Noctor et al. 1998). Correspondingly, GR activ-
ity increased after 3 d at 4 °C in Arabidopsis callus
(O’Kane et al. 1998) and after 4 weeks at 5 °C in roots
of jack pine (Zhao and Blumwald 1998). However,
cultivation for 3 weeks at 5 °C had no effect on GR
activity in leaves of soybean (Vierheller and Smith
1990), and GR activity even decreased in shoot cultures
of rice (Fadzillah et al. 1996). In tolerant genotypes of
maize and tomato, GR activity was higher than in
sensitive ones cultivated under normal temperatures
(Walker and McKersie 1993; Kocsy et al. 1997), and its
increase during chilling was greater in a tolerant
tomato species compared to a sensitive one (Brugge-
mann et al. 1999). Overexpression of GR in chlorop-
lasts increased low-temperature tolerance in poplar
(Foyer et al. 1997), but not in tomato (Bruggemann
et al. 1999).

In all, the available information about the role of
GSH and GR in protecting plants from chilling-
induced injury results in an equivocal picture. With
the aim of contributing to the clarification of this
situation, we applied buthionine sulfoximine (BSO) to
a chilling-tolerant maize variety grown on nutrient
solution. Buthionine sulfoximine is a specific inhibitor
of yEC synthesis (Griffith and Meister 1979), which
makes it possible to gradually decrease yEC and GSH
levels in maize (Farago and Brunold 1994). The
system has the additional benefit that the GSH level
reduced by BSO can be gradually increased by
simultaneous addition of yEC or GSH (Farago and
Brunold 1994).

Materials and methods

Plant material and growth conditions. Kernels of the highly chilling-
tolerant maize (Zea mays L.) inbred line Z 7 (Stamp et al. 1983;
Kocsy et al. 1996) were obtained from P. Stamp (IPW, ETH,
Ziirich, Switzerland). They were germinated between two layers of
damp paper in a photoperiod of 12 h at 25 °C for 3 d. Twelve
seedlings were placed into pots filled with 850 mL Henschel
nutrient solution (Henschel 1970) modified according to Nussbaum
et al. (1988), containing 10-fold iron. The plants were cultivated in
a photoperiod of 12 h at 300 pmol m™2 s™', 25 °C and 60% relative
humidity for 4 d. The experimental procedure routinely consisted
of a precultivation of 4 d at 25 °C, subsequent chilling at 5 °C for
7 d and a recovery phase at 25 °C for an additional 7 d. Buthionine
sulfoximine alone or BSO in combination with yEC or GSH was
added at the beginning of precultivation. The culture medium was
renewed at the beginning of the recovery phase. Controls were
cultivated at 25 °C during the whole experiment, with or without
additions.

Relative injury and relative protection. The relative injury of the
plants was routinely estimated according to the followings scale: 0,
no necrosis; 1, less than 25%: 2, 25-50%; 3, 50-75%; 4, 75-90%: 5,
90-100% necrosis of the shoot at the end of the recovery phase.
The mean values of these estimations were calculated as a
percentage of completely necrotic shoots. Relative protection was
calculated by subtracting relative injury from 100%.

Assay for GR. The plant material was homogenized in 0.1 M
Na-K-phosphate buffer, pH 7.5 (1:5, w/v), containing 0.2 mM
diethylenetriamine pentaacetic acid and 4% (w/v) polyvinylpoly-
pyrrolidone in an ice-cooled glass homogenizer and centrifuged at
30000 g for 10 min at 4 °C. The supernatant was used for
measuring GR activity. Activity of GR was measured according
to Smith et al. (1988). The assay mixture contained, in a total
volume of 1 mL, 100 mM Na-K-phosphate (pH 7.5), 0.2 mM
diethylenetriamine pentaacetic acid, 0.75 mM 5,5dithio-bis-
(2-nitrobenzoic acid), 0.1 mM NADPH, 10 mM dithioerythritol,
0.5 mM GSSG and 50 pL plant extract.

Protein determination. Proteins were determined according to
Bradford (1976) using BSA as standard. The reaction mixture
contained in a total volume of 1 mL 200 pL protein assay reagent
(Bio Rad) and 5 pL extract.

Determination of cysteine, yEC and GSH. The plant material was
extracted 1:10 (w/v) in 0.1 M HCI, containing I mM Na,EDTA, in
an ice-cooled glass homogenizer. The extracts were filtrated
through viscose fleece, centrifuged for 30 min at 30 000 g and
4 °C. Then 400 pL of supernatant was added to 600 pL of 0.2 M
Ches [2-(cyclohexylamino)ethane sulfonic acid; pH 9.3] and re-
duced with 100 pL of a freshly prepared 400 mM NaBH, solution.
The mixture was kept on ice for 20 min. For derivatization, 330 pL
of this mixture was added to 15 pL of 15 mM monobromobimane
and kept in the dark at room temperature for 15 min. The reaction
was stopped with 250 pL of 5% (v/v) acetic acid. The samples were
analyzed as described by Schupp and Rennenberg (1988), as
modified by Riiegsegger and Brunold (1992), by reverse-phase
HPLC and fluorescence detection.

A mixture of the three thiols in different concentrations (0, 1, 2,
3,4, 5 uM) was used for qualitative and quantitative identification,
as well as for recovery experiments. For determination of the
recovery, the individual thiols were measured in the plant sample
(Tp), in the internal standards (T,) and in a mixture of plant sample
and internal standards (T,. ). The percentage recovery was
calculated according to: 100(T,_s — T,) - T;!. The recovery of the
individual thiols varied between 88 and 96% in shoots and roots,
respectively. To check a possible effect of BSO on derivatization of
the thiols with monobromobimane, BSO at 0, 0.2, 2, 10, 20,
200 uM was added to the 2 uM standard mixture of the three
thiols, but no effect was detected.

Abscisic acid. Abscisic acid (ABA) was measured immunologically
according to Gergs et al. (1993) using a monoclonal antibody
obtained from E. Weiler (Ruhr University, Bochum, Germany).

Statistics. Data of six (growth parameters 12) measurements from
three independent experiments were compared using two-compo-
nent analysis of variance (Microsoft Excel 97). The significance of
differences was calculated with the #-test, and the mean differences
were compared pairwise with the Tukey test (Systat for Windows,
Version 5).

Chemicals. Monobromobimane was obtained from Calbiochem,
yEC from Nacalai Tesque (Kyoto, Japan) and BSO from Sigma.
All other chemicals were purchased from Fluka.

Results

Inhibition of GSH synthesis by BSO. At 25 °C, the
highest BSO concentration applied (1 mM) had no
significant effect on fresh and dry weights of shoots and
roots, or on relative injury. During the 7-d chilling
period there was no visible difference between the BSO-
treated and control plants; at the end of the recovery
phase, however, the fresh and dry weights of shoots and
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Fig. 1. Effect of different BSO concentrations on fresh weight (white
bars) and dry weight (black bars) of shoots and roots and relative
injury (hatched bars) of maize seedlings cultivated at 25 °C for 4 d,
then at 5 °C for 7 d, and at 25 °C for an additional 7 d. Controls were
cultivated with 0 or 1 mM BSO at 25°C during the whole
experimental period. Mean values of 12 measurements = SD from
3 independent experiments are presented. Values carrying different
letters are significantly different at P < 0.05

roots of BSO-treated seedlings were lower compared to
controls. This effect increased with increasing BSO
concentrations (Fig. 1). The chilling-induced relative
injury of the seedlings also increased, 1 mM BSO
resulting in a 4-fold increase in injury compared to
controls (Fig. 1).

At the end of the chilling phase, cysteine levels had
increased parallel to BSO concentrations added, whereas
yEC and GSH had gradually decreased (Fig. 2). Corre-
sponding effects on the thiol levels were detected in
control seedlings treated with 1 mM BSO at 25 °C, both
in roots and shoots (Fig. 2), with GSH decreasing to
very low levels. This decrease had no negative effect on
fresh and dry weights of the seedlings (Fig. 1), demon-
strating that low levels of GSH do not affect these
parameters during cultivation at 25 °C.

Time courses of the changes in thiol levels during the
routinely applied temperature changes are presented in
Fig. 3. In the control plants cultivated without BSO, the
level of all thiols measured increased during the chilling
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Fig. 2. Effect of different BSO concentrations on cysteine, YEC and
GSH contents of roots (black bars) and shoots (white bars) of maize
seedlings cultivated at 25 °C for 4 d, then at 5 °C for 7 d. Controls
were cultivated with 0 or 1 mM BSO at 25 °C during the whole
experimental period. Mean values of six measurements = SD from
three independent experiments are presented. Values carrying different
letters are significantly different at P < 0.05

phase both in roots and shoots. During the recovery
phase, the thiol levels decreased, reaching concentrations
comparable to those at the beginning of the chilling
period. Addition of 1 mM BSO to the culture medium
induced a much more pronounced increase in cysteine
than in the control cultures, both in shoots and roots.
Interestingly, yEC also increased in the shoots during
chilling with BSO, whereas in roots no significant change
could be detected. Addition of BSO reduced the amount
of GSH during cultivation at 25 °C to a very low level
which was maintained both during chilling and the
recovery phase (Fig. 3).

Treatment with BSO also affected GR activity, both
in roots and shoots at 25 °C and at 5 °C (Fig. 4). At
the end of the chilling period, the GR level in shoots
had decreased concomitant with increasing BSO con-
centrations. In roots, however, 0.25 mM BSO had
already reduced GR activity to a very low level which
was not further reduced by the higher BSO concentra-
tions (Fig. 4). The effect of 1 mM BSO on GR activity
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Fig. 3. Changes in cysteine, YEC and GSH contents in roots and
shoots of maize seedlings cultivated with 0 (@) or 1 (¥) mM BSO at
25 °C for 4 d, then at 5 °C for 7 d, and at 25 °C for an additional 7 d.
Mean values of six measurements = SD from three independent
experiments are presented. Values carrying different letters are
significantly different at P < 0.05

in roots and shoots during the routinely applied
temperature changes is shown in Fig. 5. In the controls,
this enzyme activity increased in shoots during the
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Fig. 4. Effect of different BSO concentrations on GR activity in roots
(black bars) and shoots (white bars) of maize seedlings cultivated at
25 °C for 4 d, then at 5 °C for 7 d. Controls were cultivated at 25 °C
during the whole experimental period. Mean values of six measure-
ments = SD from three independent experiments are presented.
Values carrying different letters are significantly different at P < 0.05
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Fig. 5. Changes in GR activity in roots and shoots of maize seedlings
cultivated with 0 (@) or 1 (W) mM BSO at 25 °C for 4 d, then at 5 °C
for 7d, and at 25 °C for an additional 7 d. Mean values of six
measurements + SD from three independent experiments are
presented. Values carrying different letters are significantly different
at P <0.05

chilling period, whereas in roots there was an initial
increase and a subsequent decrease (Fig. 5). After the
chilling period the enzyme level decreased to the initial
one in shoots, but remained at a high level in roots of
control plants. In the presence of BSO, GR activity
decreased during the chilling period, reaching levels
which were 30% and 25% of the controls in roots and
shoots, respectively (Fig. 5). In shoots there was an
additional decrease during the recovery phase, whereas
in roots the enzyme activity increased to the level of
control plants (Fig. 5), even though the GSH concen-
tration remained low.

Compensation of the inhibitory effect of BSO with
exogenous YEC and GSH. Simultaneous addition of
I mM BSO and concentrations of yEC up to 1 mM
increased fresh weight and dry weight of both roots
and shoots and reduced the relative injury compared
to controls which were treated with 1 mM BSO alone
(Fig. 6). Figure 7 demonstrates that the addition of
yEC together with 1 mM BSO reduced the levels of
cysteine both at 25 and 5 °C in shoots and roots but
had already increased yEC and GSH significantly at
the lowest yEC concentration applied (0.25 mM). The
highest GSH levels obtained by this treatment were
only half of those detected in shoots of seedlings
cultivated without BSO, but at comparable levels in
roots (Figs. 2, 7).

A protective effect during chilling could also be
obtained by adding 1 mM GSH to the culture medium
together with BSO, which reduced the relative injury by
50% (Table 1). The fresh and dry weight both of roots
and shoots was 50-100% higher than in controls
cultivated at 5 °C with BSO alone and was comparable
to the values measured at 25 °C, demonstrating a good
protection from chilling by GSH. Table 2 presents the
increased levels of thiols in the seedlings treated with a
combination of BSO and GSH instead of BSO alone.
The GSH content in shoots of seedlings treated with a
combination of BSO and GSH was comparable to that
of seedlings cultivated without BSO. The roots of these



532 G. Kocsy et al.: Inhibition of GSH synthesis reduces chilling tolerance in maize

25° C 5°C
5 0.5
shoot
4 a - 0.4
a ~
o 31 ¢ - 03 O
= a < a ac Cc ;
E 2 a a -0.2 N
b b
14 - 0.1
0 S - 0.0
a
root -
b
C
=
(@)

0.00 0.25 0.50 0.75 1.00 mMyEC

Fig. 6. Effect of different yEC concentrations on fresh weight (white
bars) and dry weight (black bars) of roots and shoots and relative
injury (hatched bars) of maize seedlings cultivated in the presence of
1 mM BSO at 25 °C for 4 d, then at 5 °C for 7 d, and at 25 °C for an
additional 7 d. Controls were cultivated with 0 or I mM yEC at 25 °C
during the whole experimental period. Mean values of six measure-
ments = SD from three independent experiments are presented.
Values carrying different letters are significantly different at P < 0.05

plants contained even higher GSH concentrations
than plants cultivated without BSO. Interestingly, the
combined treatment with BSO and GSH at 25 °C
reduced the GSH content to levels which were much

Table 1. Injury, and shoot and root fresh and dry weight of maize
seedlings cultivated with 1 mM BSO in the absence or presence of
1 mM GSH at 25 °C for 4 d, then at 5 °C for 7 d and at 25 °C for
an additional 7 d (=chilling treatment). Controls were cultivated
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Fig. 7. Effect of different yEC concentrations on cysteine, yEC, and
GSH contents of roots (black bars) and shoots (white bars) of maize
seedlings cultivated with 1 mM BSO at 25 °C for 4 d, then at 5 °C for
7 d. Controls were cultivated at 25 °C during the whole experimental
period. Mean values of six measurements + SD from three
independent experiments are presented. Values carrying different
letters are significantly different at P < 0.05

below those obtained at 5 °C (Table 2). Table 2 also
shows that the treatment with BSO and GSH at 5 °C
induced a 10-fold increase in GR in the shoots and a
doubling in roots. The enzyme activity obtained in the
shoots by this treatment was higher than that detected at
25 °C and that induced during chilling at 5 °C. Consis-
tent with these results, yEC also increased GR activity

at 25 °C during the whole experimental period. Mean values of 12
measurements + SD from three independent experiments are
presented. Values carrying different letters are significantly different
at P <0.05

Treatment Injury (%) Fresh weight (g) Dry weight (mg)
Shoot Root Shoot Root

Chilling treatment

BSO 39 + g° 1.09 + 0.09° 0.21 + 0.03° 16 + 2° 14 + 1°

BSO + GSH 18 + 7° 245 + 0.32% 0.34 + 0.04° 25 £ 4° 29 + 5%
Control

BSO 8 + 4° 2.11 £ 0.16* 0.51 £+ 0.09* 39 + 5 37 + 6%

BSO + GSH 7 + 3 1.90 + 0.31° 0.42 + 0.06* 31 £ 4%¢ 28 + 3¢
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Table 2. Cysteine, YEC, GSH contents and GR activity of maize
seedlings cultivated with 1 mM BSO in the absence or presence of
1 mM GSH at 25°C for 4d, then at 5 °C for 7 d (=chilling
treatment). Controls were cultivated at 25 °C during the whole

experimental period. Mean values of six measurements = SD from
three independent experiments are presented. Values carrying dif-
ferent letters are significantly different at P < 0.05

Treatment Cysteine [nmol (g FW)™']  yEC [nmol (g FW)™] GSH [nmol (g FW)™!] GR [pkat (g protein)™!]
Shoot Root Shoot Root Shoot Root Shoot Root
Chilling treatment
BSO 30.1 £ 5.2° 258 £ 3.5 34 +£04 1.6 £04° 125 £ 1.9 7.9 £ 1.1°  0.29 + 0.08° 0.47 + 0.08°
BSO+GSH 10.7 + 1.3* 189 + 1.2° 99 + 1.9 124 + 1.7¢ 1852 + 13.5¢ 221.7 + 16.5¢ 3.08 + 0.52° 0.79 + 0.12¢
Control
BSO 99 + 1.5* 554+ 12" 06 +0.1" 02+ 0.1° 7.4 £ 0.9° 42 £ 0.6* 0.74 £ 0.12* 1.65 £ 0.18"
BSO + GSH 157 + 1.5 17.1 + 1.2° 1.2+ 03" 46 + 03" 729 + 85" 296 + 34° 055 + 0.04* 3.42 + 055"
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both at 25 and 5 °C in roots and shoots (Fig. 8). At 4 . 1
5 °C, the level obtained in shoots with 0.75 and 1 mM days

yEC was higher than that obtained during chilling
without BSO (Fig. 4).

The involvement of rapidly increased and maintained
high levels of ABA was suggested to be an important
prerequisite for chilling tolerance. With the aim of
examining an effect of BSO via ABA, we analyzed the
ABA level both in shoots and roots (Fig. 9). Abscisic
acid increased during the chilling period both in roots
and shoots; there was no difference, however, between
BSO-treated and control plants. During the recovery
phase, the ABA level decreased correspondingly in
shoots and roots of controls and roots of BSO-treated
seedlings, but increased to even higher levels in shoots of
BSO-treated seedlings (Fig. 9).

Discussion

Even though a possible function of GSH in protecting
plants against chilling-induced oxidative stress has been
postulated in a series of publications (Badiani et al.
1993; Walker and McKersie 1993; Fadzillah et al. 1996;
Kocsy et al. 1996, 1997; Alscher et al. 1997; Foyer et al.

Fig. 9. Levels of ABA in roots and shoots of maize seedlings
cultivated with 0 (open bars) or 1 mM BSO (black bars) at 25 °C for
4d (4), at 5°C for additional 3 d (7), and at 25 °C for 3 d after
chilling for 7 d (14). Values from 6 measurements + SD from three
independent experiments are presented. Values carrying different
letters are significantly different at P < 0.05. The value carrying *** is
significantly different at P < 0.01

1997; Noctor and Foyer 1998), the present work
demonstrates unequivocally for the first time the relative
contribution of GSH to chilling protection of maize
(Fig. 10). This became possible because the GSH level
could be gradually decreased to very low levels using
various concentrations of BSO or increased to almost
normal levels by simultaneous addition of BSO and yEC
or GSH (Farago and Brunold 1994). Our results
demonstrate that the relative protection of the shoots
was gradually decreased by gradual reduction of the
GSH level (Fig. 10). Since GSH functions as a substrate
in enzyme-catalyzed detoxification reactions it does not
seem surprising that the relationship between GSH and
relative protection corresponds to Michaelis-Menten
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and Lineweaver-Burk plots (Fig. 10). Vice versa, in-
creasing additions of yEC to the nutrient solution in the
presence of BSO, gradually increased the GSH content
and decreased relative injury (Fig. 6). These results are
in agreement with our previous ones obtained with
various maize genotypes, which showed that GSH was
significantly increased in the chilling-tolerant genotypes
during growth at chilling temperatures (Kocsy et al.
1996). The present results are also consistent with those
obtained with transgenic poplars (Noctor et al. 1998)
overexpressing YEC synthetase since these transformants
contained increased levels of GSH and were better
protected from paraquat-induced oxidative stress. In
contrast, Creissen et al. (1999) very recently reported
that tobacco plants overexpressing a chloroplast targeted
yEC synthetase and containing increased foliar pools of
both GSH and yEC suffered from greatly enhanced
oxidative stress, which was manifested as light-intensity-
dependent chlorosis or necrosis. These authors did not
detect increased GR activity in these transformants
whereas it was clearly demonstrated here that the levels
of GR activity changed with GSH contents. This
indicates a signalling process present in maize as
reported here but missing in the transformed tobacco
plants.

It is interesting to note that cultivation at 25 °C for
18 d in the presence of 1 mM BSO, which reduced the
amount of GSH to very low levels neither affected the
increase in fresh and dry weight nor the phenotype of
the seedlings, indicating that in maize higher levels of
GSH are not necessary for sustaining normal growth at
25 °C. It should be pointed out, however, that exper-
iments with BSO-treated Arabidopsis revealed morpho-
logical changes (Sanchez-Fernandez et al. 1997). When
the plants were subjected to chilling at 5 °C, decreased
GSH levels correlated with decreased fresh and dry
weight and increased relative injury, clearly demon-
strating the putative protective function of GSH (Kocsy
et al. 1996, 1997; Foyer et al. 1997; Noctor and Foyer
1998).

Together with previously published results, the
present findings can be used for establishing a picture
of GSH functions during chilling stress. In the ascor-
bate-GSH pathway (Foyer and Halliwell 1976) GSH is
involved in H,O, detoxification, thus contributing to
the prevention of oxidative injury. In addition GSH can
be involved as a reductant in assimilatory sulfate
reduction (Suter et al. 2000). The key enzyme of this
pathway, adenosine 5’-phosphosulfate reductase reduces
adenosine 5’—phos123hosulfate using electrons from GSH
and forming SO3~, 5-AMP and GSSG. Sulfite is
subsequently reduced to sulfide, which is incorporated
into O-acetyl-L-serine, thus forming cysteine. This
amino acid can subsequently be used for GSH synthesis
(Brunold and Rennenberg 1997). Finally, GSH is
involved in the detoxification of toxic lipid peroxidation
products via GSH-S-transferases (Mullineaux et al.
1998). Before a comprehensive picture of GSH func-
tions during chilling stress can be presented, however, it
will be necessary to assay the redox state of GSH in all
conditions.

From the present study it becomes evident that GSH
is also involved in regulating the level of GR. The
involvement of GSH in stress signalling has been
described before (Wingate et al. 1989; Foyer et al.
1997). An induction of GR can contribute to the
beneficial effect of GSH, because GR will reduce GSSG
produced during detoxification of H,O, (Noctor and
Foyer 1998), during reduction of lipid peroxidation
products (Mullineaux et al. 1998) and during the
increased synthesis of cysteine in a situation of chilling
stress (Kocsy et al. 1996). It was postulated that
regulation of nuclear gene expression is influenced by
reactive oxygen species and the redox state of antioxi-
dant pools (Creissen et al. 1999). Indeed, our results
clearly show that oxidative stress alone does not induce
the formation of GR. This induction seems to be at least
partially dependent on a high GSH Ievel.

The plant hormone ABA is thought to play a crucial
role in plant responses to chilling stress (Janowiak and
Dorflling 1996). Consistent with results presented by
Ristic et al. (1998), however, our results indicate that the
protective effect of GSH during chilling stress of maize
seedlings is not dependent on ABA. This is consistent
with the model of Ishitani et al. (1997), in which ABA-
dependent and ABA-independent pathways converge in
cold-stress signalling.

Our results prompted us to analyze if a chemically
increased GSH level would increase chilling tolerance of
a chilling-sensitive maize genotype. Indeed, correspond-
ing experiments using safeners to increase GSH levels
(Farago and Brunold 1994) resulted in increased chilling
tolerance (data not shown), corroborating the findings
presented here.
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