
Vol.:(0123456789)1 3

Planta (2023) 258:101 
https://doi.org/10.1007/s00425-023-04251-8

REVIEW

An emerging role of heterotrimeric G‑proteins in nodulation 
and nitrogen sensing

Suvriti Sharma1 · Jahanvi Ganotra1 · Jyotipriya Samantaray1 · Ranjan Kumar Sahoo3 · Deepak Bhardwaj1 · 
Narendra Tuteja2 

Received: 28 February 2023 / Accepted: 25 September 2023 / Published online: 17 October 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Main conclusion A comprehensive understanding of nitrogen signaling cascades involving heterotrimeric G-proteins 
and their putative receptors can assist in the production of nitrogen-efficient plants.

Abstract Plants are immobile in nature, so they must endure abiotic stresses including nutrient stress. Plant development and 
agricultural productivity are frequently constrained by the restricted availability of nitrogen in the soil. Non-legume plants 
acquire nitrogen from the soil through root membrane-bound transporters. In depleted soil nitrogen conditions, legumes are 
naturally conditioned to fix atmospheric nitrogen with the aid of nodulation elicited by nitrogen-fixing bacteria. Moreover, 
apart from the symbiotic nitrogen fixation process, nitrogen uptake from the soil can also be a significant secondary source 
to satisfy the nitrogen requirements of legumes. Heterotrimeric G-proteins function as molecular switches to help plant 
cells relay diverse stimuli emanating from external stress conditions. They are comprised of Gα, Gβ and Gγ subunits, which 
cooperate with several downstream effectors to regulate multiple plant signaling events. In the present review, we concen-
trate on signaling mechanisms that regulate plant nitrogen nutrition. Our review highlights the potential of heterotrimeric 
G-proteins, together with their putative receptors, to assist the legume root nodule symbiosis (RNS) cascade, particularly 
during calcium spiking and nodulation. Additionally, the functions of heterotrimeric G-proteins in nitrogen acquisition by 
plant roots as well as in improving nitrogen use efficiency (NUE) have also been discussed. Future research oriented towards 
heterotrimeric G-proteins through genome editing tools can be a game changer in the enhancement of the nitrogen fixation 
process. This will foster the precise manipulation and production of plants to ensure global food security in an era of climate 
change by enhancing crop productivity and minimizing reliance on external inputs.

Keywords Legumes · Root nodule symbiosis · Calcium spiking · Nitrogen fixation · G-proteins · Nitrogen sensing · 
Nitrogen use efficiency
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Introduction

G-proteins also referred to as guanine nucleotide-binding 
proteins, are grouped structurally into two distinct classes: 
monomeric G-proteins and heterotrimeric G-proteins (Pan-
dey 2020; Wang and Botella 2022; Ganotra et al. 2023). 
The heterotrimeric G-proteins (hereafter G-proteins) 
comprise three different types of subunits: Gα, Gβ and 
Gγ (Pandey 2019; Wang and Botella 2022). The number 
of G-protein subunits could vary from plant to plant. For 
instance, the model plant Arabidopsis thaliana with a sim-
pler genome harbor one canonical Gα (GPA1, At2g26300), 
three non-canonical extra-large Gα (XLG1, At2g23460; 
XLG2, At4g34390 and XLG3, At1g31930), one Gβ (AGB1, 
At4g34460), and three Gγ genes, including two canonical 
Gγ (AGG1, At3g63420 and AGG2, At3g22942) and one 
atypical Gγ (AGG3, At5g20635) (Stateczny et al. 2016; 
Maruta et al. 2021a; Cantos et al. 2023). Brassica napus 
contains 2 Gα, 6 Gβ and 13 Gγ genes, which contribute to 
a total of 21 G-protein family members (Xie et al. 2022). 
M. truncatula is a premier model legume for studies per-
taining to symbiotic interactions and nitrogen fixation. A 
study identified two Gα, three XLG, one Gβ and five Gγ 
genes in the M. truncatula genome (Mt4.0) (Tang et al. 
2014). Another study revealed the presence of two Gα, 
three XLG, one Gβ and six Gγ genes in the P. sativum 
genome (Pecrix et al. 2018; Bovin et al. 2022). Plants 
harboring complex genomes have enlarged networks of 
G-proteins, such as allotetraploid G. max, which has four 
Gα, four Gβ and ten Gγ proteins (Choudhury et al. 2011; 
Bisht et al. 2011).

G-proteins are molecular on–off switches, and in mam-
malian and yeast systems, the switch characteristic is 
encoded by nucleotides: a guanosine triphosphate (GTP)-
bound on-state and a guanosine diphosphate (GDP)-bound 
off-state (Ghusinga et al. 2022). The signal perception by 
serpentine transmembrane receptors, namely G-protein-
coupled receptors (GPCR), results in an alternation in its 
conformation, which subsequently functions as a guanine 
nucleotide exchange factor (GEF) to catalyze the GDP to 
GTP exchange on the Gα protein (McIntire 2009; Pandey 
and Vijayakumar 2018; Pandey 2019). The Gα component 
separates from the Gβγ subunits when it binds to GTP, 
allowing each of these to engage with diverse effectors to 
initiate downstream signaling (McIntire 2009). A signal is 
terminated when Gα-GTP is inactivated by GTP hydroly-
sis, resulting in GDP-bound Gα being released from its 
effector and reassociated with the Gβγ complex (McIntire 
2009). A protein known as a regulator of G-protein signal-
ing (RGS) with GTPase activating protein (GAP) activity 
speeds up the intrinsic GTP hydrolysis on the Gα subunit 
(Siderovski and Willard 2005). The G-protein signaling 

pathways in plants differ from the animal paradigm due 
to the existence of unique receptors and effectors, altered 
wiring of G-protein scenarios and disparate intrinsic char-
acteristics of specific G-protein components (Pandey and 
Vijayakumar 2018; Maruta et al. 2019; Ghusinga et al. 
2022). Notably, it has not been established that GPCRs 
can activate Gα by promoting GDP to GTP exchange in 
plants (Pandey 2020). The genetic and biochemical data 
imply that the exchange of nucleotides is less crucial for 
G-proteins to function in plants (Maruta et al. 2019). Fur-
thermore, numerous receptor-like kinases (RLKs) have 
been implicated in the phosphorylation and dephospho-
rylation of G-proteins to mediate their mechanistic regu-
lation (Jia et al. 2019; Pandey 2020). XLG subunit, inde-
pendent of GTP-binding, has been discovered to interact 
with the RGS, Gβγ dimer and defense-related RLKs with 
an affinity similar to that of canonical Gα subunits (Liang 
et al. 2016; Lou et al. 2020; Maruta et al. 2021a, b). The 
functional investigation of RGS in A. thaliana and G. max 
signifies its crucial activities in the control of important 
physiological processes (Chen and Jones 2004; Choudhury 
and Pandey 2015). According to Hackenberg et al. (2017), 
several plants do not possess an RGS protein homolog. 
Therefore, it is ambiguous whether RGS-mediated deacti-
vation is the primary mechanism controlling the G-protein 
cycle (Hackenberg et al. 2017).

G-proteins stimulate several intracellular signaling cas-
cades in response to various extracellular stimuli (Majumdar 
et al. 2023). Almost every aspect of plant growth and devel-
opment is influenced by the interaction of G-proteins with 
specific effectors (Roy Choudhury et al. 2019). These crucial 
physiological processes include regulating stomatal move-
ment, nodulation and phytohormone signaling (Chakravorty 
et al. 2011; Choudhury and Pandey 2013, 2015, 2022; Jose 
and Choudhury 2020; Bhardwaj et al. 2020; Bovin et al. 
2022). Interestingly, the knock-down of a particular G-pro-
tein subunit gene and its characterization displayed different 
root morphologies in both monocotyledons and dicotyledons 
(Table 1), thereby suggesting that G-proteins have a critical 
function in the development of plant roots in addition to 
their involvement in innate immunity and stress responses 
in plants (Trusov et al. 2007; Ding et al. 2008; Urano et al. 
2015; Subramaniam et al. 2016; Gao et al. 2019; Maruta 
et al. 2021a). In this review, we have discussed the signal-
ing mechanisms that involve G-proteins to regulate plant 
nitrogen nutrition.

Legumes can acquire nitrogen by atmospheric nitrogen 
fixation through endosymbiotic associations and the uptake 
of mineral nitrogen from soil (Murray et al. 2017; Roy et al. 
2020; Gu et al. 2022; Zhong et al. 2022). The process of 
symbiosis in legumes is tightly regulated depending on the 
nitrogen levels in the soil. Legumes presumably evolved 
in nutrient-poor circumstances where the capacity to fix 
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atmospheric nitrogen offers a significant growth benefit. The 
low soil nitrogen conditions encourage symbiotic associa-
tions of legumes with biological machines such as rhizobac-
teria (Murray et al. 2017; Roy et al. 2020). Gram-negative 
rhizobia (such as Rhizobium, Sinorhizobium, Azorhizobium, 
Bradyrhizobium, and Mesorhizobium), that associate with 
legume roots are diazotrophic bacteria engaged in endos-
ymbiotic relationships to develop nodules (Geurts and Bis-
seling 2002; Graham and Vance 2003; Desbrosses and Stou-
gaard 2011; Rutten and Poole 2019; Mahmud et al. 2020). 
Nuclear calcium oscillations are responsible for stimulating 
endosymbiotic programmes in response to rhizobial signals 
(Granqvist et al. 2012; Charpentier and Oldroyd 2013; Char-
pentier 2018). Moreover, calcium spiking represents one of 
the earliest events that can be detected and is a highly con-
served component of the mutualistic signaling mechanism 
(Granqvist et al. 2015). This review includes information 
regarding the involvement of G-proteins in calcium spiking 
during root nodule symbiosis (RNS).

The legumes develop root cortex-based nodules in sym-
biosis with rhizobia (Gauthier-Coles et al. 2019). In leg-
umes, there are two basic morphological variants of nodules, 
namely indeterminate and determinate. These two forms are 
distinguished by the existence or absence of a persistent nod-
ule meristem, which reliably coincides with the cortical cell 
layers that develop nodule primordia (Kohlen et al. 2018). 
For instance, Glycine max and Lotus japonicus develop 
round determinate nodules devoid of persistent meristem 
(Ferguson et al. 2010; Pan and Wang 2017). In contrast, 
Medicago truncatula and Pisum sativum produce indeter-
minate nodules with a cylindrical shape in which nodule 
primordia generate in the inner cortex, and mature nodules 
retain a persistent meristem (Pan and Wang 2017; Bovin 
et al. 2022). Among the repertoire of proteins present in 

plants, the G-proteins have significant roles to play in the 
emergence of leguminous root nodules in response to a sym-
biotic relationship with rhizobia (Choudhury and Pandey 
2013, 2015; Pandey 2020; Bovin et al. 2022), which have 
been highlighted in this review.

A major challenge for plant survival is nutrient acquisi-
tion from soil (Bhardwaj et al. 2015; Rahman et al. 2018). In 
plants, the detailed mechanism of nitrogen sensing pathways 
linked with G-proteins remains obscure. This review sum-
marizes the developments in the mechanistic intricacies of 
nitrogen signaling involving G-proteins in plants. G-proteins 
show the ability to influence inflorescence, root architecture, 
seed size, number, and germination capacity, which in turn 
modulates essential agronomic features such as grain yield 
and nitrogen use efficiency (NUE) (Zhang et al. 2015; Wu 
et al. 2018; Liang et al. 2018; Kaur et al. 2018; Sun et al. 
2018; Cui et al. 2020; Biswal et al. 2022). In this review, 
insights into the participation of G-proteins in regulating 
NUE in plants have also been discussed. This can assist in 
addressing the pressing issues of increasing crop growth and 
yield.

Possible role of G‑proteins in root nodule 
symbiosis

RNS is a molecular interaction between the host plant and 
the bacterial partner (Lazdunski et al. 2004; Mbengue et al. 
2020). The outcome of a highly specific and complex sig-
nal exchange between legumes and rhizobia is the selective 
rhizobial colonization of legume cells within root nodules, 
which develop upon activation of various genes, establish-
ing the symbiotic pathway (Desbrosses and Stougaard 2011; 
Das et al. 2019; Chen et al. 2021). The sensing of plant 

Table 1  List of root morphological changes conferred by mutations of G-protein subunits

G-protein subunit Plant species Observed root phenotype References

GPA1 (LOC_At2g26300) Arabidopsis thaliana Decrease in the root development Ullah et al. (2003)
XLG1 (LOC_At2g23460), XLG2 

(LOC_At4g34390), XLG3 (LOC_
At1g31930)

Arabidopsis thaliana Increase in the lateral root development Ding et al. (2008)

Gα (LOC_Os05g26890) Oryza sativa Decrease in the root development Izawa et al. (2010)
Gα (LOC_Zm00001d027886) Zea mays Decrease in the root development Urano et al. (2015)
GPA1 (LOC_Csa4G648550) Cucumis sativus Smaller cotyledons, shorter hypocotyls 

and fewer lateral roots
Yan et al. (2018)

AGB1 (LOC_At4g34460) Arabidopsis thaliana Increase in the lateral root development Ullah et al. (2003)
RGB1 (LOC_Os03g46650) Oryza sativa Suppressed embryonic shoot–root axis 

development. Exhibits compact root 
architecture

Gao et al. (2019), Urano et al. (2020)

AGG1 (LOC_At3g63420)
AGG2 (LOC_At3g22942)

Arabidopsis thaliana Increase in the number of lateral roots Trusov et al. (2007)

GGB1 (LOC_Solyc12g096270.1.1) Solanum lycopersicum Increase in the number of lateral roots Subramaniam et al. (2016)
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flavonoids by nitrogen-fixing rhizobia is one of the earli-
est steps in specificity between hosts and rhizobia (Fig. 1) 
(Hirsch and Fujishige 2012). Flavonoids are among the well-
studied group of low molecular weight secondary metabo-
lites (Hassan and Mathesius 2012; Dong and Song 2020) 
and are crucial for the sensitization of nitrogen-fixing bac-
teria (Liu and Murray 2016; Bag et al. 2022). Flavonoids are 
derived structurally from a 15-carbon skeleton composed of 
two benzene rings and are typically biosynthesized via the 
phenylpropanoid pathway (Liu and Murray 2016; Dong and 

Song 2020). Plants produce a range of flavonoids, with up to 
10,000 found across the plant kingdom (Mathesius 2018). 
The specific plant flavonoids that the rhizobia in the rhizo-
sphere interact with and recognize include isoflavonoids, 
daidzein, genistein, coumestrol, and naringenin, among oth-
ers (Liu and Murray 2016; Bosse et al. 2021). According 
to Sugiyama et al. (2008), the exudates from soybean roots 
contain genistein and daidzein, which serve as signal mol-
ecules in the chemical communication between soybean and 
Bradyrhizobium japonicum. The roots of Phaseolus vulgaris 

Fig. 1  Proposed model showing the role of Gα subunit in flavonoid 
biosynthesis and immune responses during G. max-Rhizobium sym-
biosis. The signal exchange between legume and rhizobia is com-
menced by the secretion of flavonoids from the roots of leguminous 
hosts. The figure depicts that Gα subunit is involved in the induction 
of flavonoids-responsive genes. The host flavonoids trigger the rhizo-
bial Nod-cassette. The NodD protein, which is formed by rhizobia as 
a result of flavonoid perception, binds to the nod box in the promoter 
region of nod genes. This triggers the expression of the nod genes, 
which produces lipo-chitooligosaccharides (LCO), also referred to as 
Nod factors (NFs). These NFs have β-1,4-linked N-acetyl-d-glucosa-
mine framework with four or five reducing and non-reducing terminal 
glucosamine residues (Geurts and Bisseling 2002). NFs are species-

specific and undergo a range of substitutions at different positions of 
its non-reducing (-R1, -R2, -R3, -R4) and reducing ends (-R5, -R6) 
(Wang et  al. 2018). Rhizobium releases NFs for symbiosis develop-
ment. The intruding Rhizobium is initially perceived by the legume 
host as a potential pathogen, resulting in a transient defense reaction. 
Symbiosis receptor-like kinase (SymRK) associates directly with and 
suppresses the kinase activity of a positive regulator of plant immune 
responses, namely Brassinosteroid insensitive 1-associated receptor 
kinase 1 (BAK1). Further, SymRK phosphorylation of Gα prevents it 
from interacting with Gβγ dimer. Consequently, Gα is unable to influ-
ence host immune responses by ineffective interaction with BAK1 
receptor
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when inoculated with Rhizobium leguminosarum shows the 
formation of nodules in the presence of genistein, daidzein, 
and coumestrol (Abd-Alla 2011). The flavonoid medicarpin, 
which is generated by both Trifolium and Medicago sp., has 
been shown to inhibit the growth of incompatible bacterial 
strains (Maxwell et al. 1989). Therefore, these studies imply 
that the ability of Rhizobium sp. to successfully form a sym-
biotic association is strongly influenced by the combination 
of host flavonoids present in the root exudate of legume spe-
cies (Dong and Song 2020). Interestingly, in A. thaliana, 
G-protein signaling has been attributed to regulate flavonoid 
biosynthesis. The study revealed variations in the expression 
levels of several genes associated with the flavonoid biosyn-
thesis in a knock-out mutant of the A. thaliana G-protein α 
subunit (gpa1-5) (Chakraborty et al. 2015). In future studies, 
the function of the G-protein complex signaling cascade can 
be determined in the legume flavonoid biosynthesis pathway 
using the G-protein subunit mutant studies. Consequently, 
establishing the involvement of the G-protein complex in the 
legume flavonoid synthesis cascade might pave avenues for 
enhancing nitrogen fixation by regulating the production of 
specific flavonoids using gene editing techniques.

Despite their diversity, all rhizobia contain conserved 
nodABC genes for the formation of the N-acylated oligo-
saccharide core of the lipo-chitooligosaccharides (LCO), 
also called Nod factors (NFs), implying that these genes are 
monophyletic (Debellé et al. 2001). The flavonoid percep-
tion by rhizobia results in changes in the conformation of 
the NodD protein, enabling it to attach to the nod box in the 
promoter region of nod genes. This triggers the nod gene 
expression of rhizobia, which eventually culminates in the 
synthesis of NFs to activate various host responses (Geurts 
and Bisseling 2002; Hassan and Mathesius 2012; Hirsch 
and Fujishige 2012; Ghantasala and Roy Choudhury 2022). 
The legumes possess specialized lysin-motif (LysM) and 
leucine-rich repeat (LRR)-containing RLKs for perceiving 
the rhizobial NFs (Singh and Verma 2023). These com-
plex multicomponent receptors are localized in the plasma 
membrane of the root epidermal cells (Ferguson et al. 2010; 
Roy et al. 2020). Interestingly, the interplay between the 
symbiotic and defense signaling mechanisms is observed in 
legumes during nodulation (Cao et al. 2017; Ivanova et al. 
2022). It is widely accepted that rhizobia actively inhibit the 
host's immune response to facilitate infection and symbi-
otic development (Cao et al. 2017). A study in L. japonicus 
reported that a key symbiotic component termed as Sym-
biosis receptor-like kinase (SymRK) aids in the rhizobial 
inhibition of plant innate immunity. SymRK interacts with 
Brassinosteroid insensitive 1-associated receptor kinase 1 
(BAK1), a positive regulator of plant innate immunity, to 
repress BAK1 kinase activity during rhizobial infection 
(Feng et al. 2021). Conversely, treatment with flagellin 22 
(flg22), a conserved peptide motif in the flagellar protein 

of several bacteria, triggers defense responses that impede 
rhizobial infection and result in the delay of nodule organo-
genesis. This has been revealed by the adverse effect of flg22 
on the spontaneous nodule production in the L. japonicus 
mutant, spontaneous-nodule-formation 1 (snf1). Moreover, 
after the symbiotic partner colonizes the host legume, the 
symbiotic pathway takes precedence over the defensive 
response (Lopez-Gomez et al. 2012). Previous studies exam-
ined the control of G-protein signaling by SymRK through 
protein–protein interactions and receptor-mediated in vitro 
phosphorylation during G. max nodulation (Choudhury 
and Pandey 2013, 2022). The studies reveal that SymRK 
phosphorylates Gα to prevent the negative regulation of 
nodulation (Choudhury and Pandey 2015; Pandey 2020). 
Therefore, it suggests that Gα might modulate host immu-
nological responses by interacting with the SymRK-BAK1 
complex, thereby affecting RNS. During RNS, the activity of 
G-protein subunits in the defense responses of legumes has 
not yet been investigated. Therefore, dissecting the specif-
ics of all the molecular actors engaged in the RNS signaling 
cascade represents an exciting frontier of research. However, 
numerous studies illustrate the significance of G-proteins in 
other RNS stages, including calcium spiking and the control 
of nodule development in legumes (Choudhury and Pandey 
2015; Mbengue et al. 2020; Pandey 2020; Bovin et al. 2022).

Involvement of G‑proteins in calcium spiking

Various responses of NF signaling in the host plant include 
depolarization of the root hair plasma membrane, ion flux 
across the membrane, calcium spiking, changes in the 
cytoskeleton architecture, root hair curling, IT develop-
ment and the production of nodule primordia (Heidstra 
and Bisseling 1996; Cárdenas et al. 2000; Tsyganova et al. 
2018; Roy et al. 2020; Yang et al. 2022). In L. japonicus 
and M. truncatula, the membrane-bound Nod factor recep-
tors (NFRs) such as LjNFR1/MtLYK3 and LjNFR5/MtNFP 
perceive diffusible NF released by rhizobia (Fig. 2) (Smit 
et al. 2007; Singh and Verma 2023). Also, LjSymRK/M. 
truncatula does not make infections 2 (MtDMI2) acts as a 
co-receptor with NFRs (Madsen et al. 2003; Antolín-Llovera 
et al. 2014; Singh and Verma 2023), which induces calcium 
spiking (or calcium oscillations) in and around the nucleus 
of root hair cells of host plants (Granqvist et al. 2015; Genre 
and Russo 2016).

Recently, a study in P. sativum reveals that calcium 
influx activation, which is followed by root hair deforma-
tion, involves the G-protein complex (Table 2) (Bovin et al. 
2022). The interaction between LysM-RLK K1 and the 
PsGα2 (Psat5g034360) was demonstrated in P. sativum with 
the aid of a Co-immunoprecipitation (Co-IP) assay (Bovin 
et al. 2022). According to a study, SYM10 has an apparently 
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inactive kinase activity and associates with LysM-RLK 
К1 containing a YAQ motif in its kinase domain, making 
it functional in regulating symbiosis initiation (Nakagawa 
et al. 2011; Kirienko et al. 2018). This indicates the partici-
pation of G-proteins in calcium response followed by NF 
sensing in legumes during the initial developmental stages 
of symbiosis (Bovin et al. 2022). To positively control nodu-
lation and expression of early nodulation genes in G. max, 
NFR1 phosphorylates RGS proteins. The phosphorylated 
RGS helps to initiate the signaling which results in calcium 

spikes while retaining the negative regulator of nodulation 
(Gα) in its inactive state (Choudhury and Pandey 2013, 
2015; Mbengue et al. 2020). Also, in the absence of rhizo-
bia, mastoparan 7, a G-protein agonist, mimics NF-induced 
early nodulin 11 (ENOD11) and ENOD12 gene expression 
in root hair cells of M. truncatula during symbiosis and root 
hair deformation in Vigna unguiculata, which is prevented 
by the G-protein antagonist pertussis toxin (Pingret et al. 
1998; Kelly and Irving 2003; Sun et al. 2007). Mastoparan 7 
has also been proven to result in calcium spiking in the roots 

Fig. 2  Nod factor signaling cascade of events involving G-proteins 
occurring during legume-Rhizobium symbiosis. MtNFP/LjNFR5 
and MtLYK3/LjNFR1 are receptor-like kinases (RLKs) involved in 
Nod factor (NF) sensing. M. truncatula Does not make infections 2 
(MtDMI2)/LjSymRK functions as a co-receptor, causing intracellu-
lar signaling pathways to be activated in the legume root hair cells. 
The figure depicts the role of Gα in mediating early symbiotic stages, 
including calcium  (Ca2+) influx by regulating an unknown  Ca2+ chan-
nel present in the plasma membrane. Consequently, cytosolic  Ca2+ 
spiking occurs which further generates nuclear  Ca2+ spikes, where 
nuclear pore complexes like nucleoporin 133 (NUP133) and NUP85 
play a significant role (Kanamori et  al. 2006). G-protein subunits 
interact with G-protein-coupled receptor 1 (GCR1) and Receptor of 
G-protein signaling (RGS) to effect nodulation. It is hypothesized 

that G-protein complexes that bind with and are phosphorylated by 
LjNFR1 activate the release of an unidentified secondary messen-
ger, which would promote  Ca2+ spiking. The MtDMI1/LjPOLLUX 
and LjCASTOR cation channels get activated by this unknown sec-
ondary messenger. MtDMI1/LjPOLLUX and CNGC15s influence 
nodule organogenesis by regulating  Ca2+ or potassium  (K+) ions 
(Venkateshwaran et  al. 2012). MtDMI3/LjCCaMK phosphorylates 
CYCLOPS/IPD3, which further engages with transcription factors 
such as DELLA, nodulation signaling pathway 1 (NSP1) and NSP2 
to enhance nodule inception (NIN) expression (Cerri et  al. 2017; 
Diédhiou and Diouf 2018; Mbengue et al. 2020). This triggers nod-
ule organogenesis or rhizobial infection involving NIN, NF-Ys, Ets2 
repressor factors required for nodulation 1 (ERN1) and early nodulin 
11 (ENOD11) (Laporte et al. 2014; Laloum et al. 2014)
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of M. truncatula, which are not reliant on NFP and DMI2 
(Sun et al. 2007). Furthermore, an inhibitor of a downstream 
signaling component of G-protein namely, phospholipase D 
(PLD), ceases the calcium oscillations (Charron et al. 2004). 
According to these findings, mastoparan 7 either directly or 
indirectly activates PLD signaling by acting downstream of 
NFP and the DMI2. Accordingly, a hypothesis suggested 
that G-protein signaling downstream of the RLK could acti-
vate the production of an unidentified secondary messenger, 
which in turn causes nuclear calcium oscillations (Mbengue 
et al. 2020). The MtDMI1/LjPOLLUX and LjCASTOR cat-
ion channels, which show the interaction with three Cyclic 
Nucleotide-Gated Channels, namely CNGC15a, CNGC15b 
and CNGC15c, get activated by an unknown secondary 
messenger (Charpentier et al. 2016; Mbengue et al. 2020). 
Overall, G-protein subunits act as downstream elements of 
the NF perception pathway and trigger calcium spiking, 
which further activates a signal cascade involving various 
transcription factors including CYCLOPS/IPD3, DELLA, 
nodulation signaling pathway 1 (NSP1), NSP2 to enhance 
nodule inception (NIN) expression for the development of 
symbiotic nodules (Lévy et al. 2004; Tirichine et al. 2006; 
Singh et al. 2014; Laporte et al. 2014; Laloum et al. 2014; 
Mbengue et al. 2020; Yuan et al. 2022; Bovin et al. 2022).

Molecular basis of root nodulation involving 
G‑proteins, their putative receptors, 
and associated proteins

Indications for the participation of G-proteins in the regula-
tion of nodule development in various leguminous species 
have been found in several pharmacological and biochemical 
tests. The development of nodules is regulated by certain 
G-proteins subunits (Choudhury and Pandey 2013). Over-
expression of G-protein components and RNAi suppression 
leads to a higher and lower number of nodules, respectively, 
confirming their functions as positive regulators of nodule 
development (Choudhury and Pandey 2013). One finding is 
direct evidence for the significance of MtGβ1 and PsGβ1 in 
symbiosis development regulation in M. truncatula and P. 
sativum, respectively, wherein the number of indeterminate 
nodules generated were considerably reduced by RNAi-
based inhibition of MtGβ1 (Medtr3g116500) and PsGβ1 
(Psat5g006200) (Bovin et al. 2022).

A variety of membrane-bound receptors, including 
GPCR, RGS and RLKs, can be coupled with G-proteins in 
plants (Pandey 2019; Chakraborty and Raghuram 2022). In 
accordance with a study, the downregulation of GCR1 in L. 
japonicus results in a significant impact on LjNIN, a down-
stream component of the G-protein signaling network, which 
encodes for transcriptional factors crucial for nodulation 
(Rogato et al. 2016). According to Choudhury and Pandey 

(2015), a RLK protein complex i.e., NFR1–NFR5–SymRK 
interacts and phosphorylates G-protein subunits. Enhanced 
GAP activity toward the Gα subunit is demonstrated by 
phosphorylated RGS, implying that RLK-mediated phos-
phorylation of RGS enables the G-protein cycle to cease 
more rapidly (Choudhury and Pandey 2016). Therefore, 
NFR1 phosphorylation of RGS keeps Gα in an inactive state, 
whereas SymRK phosphorylation of Gα prevents it from 
interacting with Gβγ. In this scenario, the negative regula-
tor Gα would be inactivated, and the positive regulators, 
i.e., Gβγ, would lead to effective nodulation (Choudhury 
and Pandey 2015; Pandey 2020). A recent study demon-
strated that SymRK phosphorylates Gα in vitro at numerous 
sites, including two in the active site to prevent GTP binding 
(Choudhury and Pandey 2022). The two amino acids that are 
phosphorylated in the active region of conventional Gα are 
conserved in the GTP-binding pocket of XLG proteins, sug-
gesting that XLG may also be phosphorylated and influenced 
by SymRK (Pandey 2020). Similar to the Gα subunit, the 
XLG subunit is also involved in interactions with Gβγ and 
RGS protein (Pandey 2020; Lou et al. 2020; Maruta et al. 
2021a, b). Although XLG proteins are important regulators 
of defense signaling that operate in parallel with the clas-
sical Gα proteins in A. thaliana, their role in the regulation 
of nodulation has not been fully investigated (Maruta et al. 
2015; Liang et al. 2016; Pandey 2020). This emphasizes 
the need for elucidating the potential role of XLG proteins 
in nodule formation that can be gleaned from insights into 
the molecular mechanism of XLG signaling transduction 
cascades.

Various well-known G-protein signaling downstream 
components, including PLC, PLD, diacylglycerol pyroph-
osphate, phosphatidic acid, and G-protein-related phospho-
inositide 3-kinase, have been associated with the regulation 
of nodulation (Misra et al. 2007; Peleg-Grossman et al. 
2007; Santos-Briones et al. 2009). The Co-IP experiments 
have confirmed the association of G-protein subunits with 
PLC, implying crosstalk between G-protein and PLC-medi-
ated symbiotic signaling pathways in both M. truncatula 
and P. sativum (Bovin et al. 2022). In plants, Phospholi-
pase Dα1 (PLDα1) is a crucial regulatory element of the 
G-protein signaling complex (Li et al. 2009; Lu et al. 2013) 
and it also interacts with Gα as well as Gβ proteins (Zhao 
and Wang 2004; Gookin and Assmann 2014). According to 
Roy Choudhury and Pandey (2016), PLDα1 and RGS1 are 
found in proximity to the G-protein complex, or perhaps 
PLDα1 and G-proteins form a macromolecular complex. 
This model positions PLDα1 and Gα downstream of RGS1, 
which serves as PLDα1 inhibitor rather than GAP and attrib-
utes the role of GAP to PLDα1 (Roy Choudhury and Pandey 
2016). Also, pharmacological and molecular methods have 
been employed to uncover the role of PLDα1 in signaling 
during nodulation in soybean (Zhang et al. 2021). Taken 
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together, these observations led to the suggestion of a sim-
plified mechanism for the roles of the RGS, PLDα1, and 
G-proteins in RNS (Pacheco and Quinto 2022). Accord-
ing to this model, when NFs are perceived, the cytosolic 
kinase domain of NFR1 phosphorylates RGS and as a result, 
PLDα1 is released from its inactivated state. The G-protein 
complex is then rendered inactive by the active PLDα1 that 
act as a GAP. Consequently, the Gα subunit cannot inhibit 
the growth of nodules, and free Gβγ dimers serve as posi-
tive regulators of nodule development (Pacheco and Quinto 
2022). Moreover, future research can also determine the role 
of any member of the PLD family other than PLDα1 in con-
trolling the G-protein cycle (Pacheco and Quinto 2022). This 
indicates the necessity of further research to shed light on 
the molecular mechanisms underlying potential G-protein 
and PLD signaling during the root nodule development in 
legumes.

Soil nitrogen sensing in conjunction 
with G‑proteins

In soils, numerous microbial communities engage in nitro-
gen transformations into plant-usable forms to regulate 
nitrogen mobilisation and fixation capacity (Robertson and 
Groffman 2007). In aerobic soils, most plants have nitrate 
as their principal source of nitrogen (Liu et al. 2015). The 
nitrate transporters, or channels, are grouped into five fami-
lies in higher plants, namely, the nitrate transporter 1/peptide 

transporter family (NPF or NRT1/PTR), nitrate transporter 2 
(NRT2), aluminium-activated malate transporter (ALMT), 
slow anion channel-associated 1 homolog 3 (SLAC1/
SLAH3) and chloride channel (CLC) (Krapp et al. 2014; 
Léran et al. 2015; Pellizzaro et al. 2017). The first iden-
tified nitrate transporter implicated in the primary nitrate 
response (PNR) in A. thaliana was the moonlighting protein 
AtNPF6.3 (AtNRT1.1 or CHL1) (Fichtner et al. 2021; Gu 
et al. 2022). Members of the NPF and NRT2 families have 
been shown to associate with nitrate acquisition in roots (Gu 
et al. 2022). Moreover, plants have developed two nitrate 
uptake systems: a high-affinity transport system (HATS) and 
a low-affinity transport system (LATS) (Wang et al. 2012). 
In comparison with low-affinity transporters, high-affinity 
transporters function better at lower concentrations of nitrate 
while becoming saturated at greater nitrate concentrations 
(Muratore et al. 2021). More importantly, except for NPF6.3 
(NRT1.1 or CHL1), all members of the NRT2 family are 
HATS, while the majority of the NPF/NRT1 family mem-
bers are LATS (Ho et al. 2009; Wang et al. 2012). NPF6.3 
is considered as a dual-affinity nitrate sensor and transporter 
in A. thaliana (Ho et al. 2009; Gu et al. 2022).

Several findings reveal the importance of G-proteins in 
regulating nitrate uptake and metabolism encoding genes 
in plants (Fig. 3) (Chakraborty et al. 2015, 2019; Liu et al. 
2018; Pathak et al. 2021). Researchers are increasingly 
aware that GPCR is found in a multitude of cells, tissues, 
and organs in animals, plants, and microbes and that it shows 
involvement in the detection of a variety of nutrients (Moran 

Fig. 3  A simplified represen-
tation of the involvement of 
G-protein subunits in nitrate 
signaling in A. thaliana. NPF6.3 
(NRT1.1 or CHL1) functions as 
a transporter as well as a sensor 
of nitrate. Depending on the 
nitrate levels, regulation of the 
expression of NRT1.1 shows 
probable involvement of GCR1-
GPA1 coupling followed by an 
interaction with the Arabidopsis 
nitrate regulated 1 (ANR1) 
transcription factor. This 
signaling subsequently regulates 
the nitrogen (N) responsive 
genes, which include nitrogen 
starvation/assimilation genes 
such as the nitrate transporter 
NRT2.1, isocitrate dehydroge-
nase (ICDH) and asparagine 
synthase 1 (ASN1)
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et al. 2021; El-Defrawy and Hesham 2020; Chakraborty 
and Raghuram 2022). Previous findings in A. thaliana have 
shown genetic evidence of the GCR1-GPA1 linkage control-
ling the nitrate response (Chakraborty et al. 2015, 2019). In 
a report, gpa1-5, gcr1-5, and gpa1-5gcr1-5 mutants were 
studied to investigate the role of three mutants in regulat-
ing nitrate uptake and metabolism encoding genes. NRT1 
was shown to be highly expressed in all three mutants as 
compared to the WT at low nitrate levels, but NRT1 expres-
sion was low at high nitrate levels (Chakraborty et al. 2019). 
By considering NRT1 as a low-affinity nitrate transporter, 
the low nitrate condition may have been insufficient due 
to mutations in GCR1 and/or GPA1, resulting in increased 
expression of NRT1, which was not observed at a high nitrate 
level (Chakraborty et al. 2019). Henceforth, according to the 
aforementioned study, the gcr1-5 mutant exhibits an altered 
dose-dependent differential nitrogen response for NRT1 gene 
expression. Additionally, a study has revealed the in vitro 
interactions of GPCR with all three subunits of G-proteins 
in P. sativum (Misra et al. 2007). Therefore, it develops an 
interest in exploring whether coupling of G-proteins with 
GPCR in P. sativum also effectuates significant expres-
sion level alterations of nitrate transporters. The canonical 
GPCRs are often implicated in agronomically significant 
processes in plants (Chakraborty and Raghuram 2022), but 
the level of association of GPCR with the Gα subunit has 
remained mostly unidentified (Chakraborty et al. 2019). The 
findings of future investigations can provide compelling 
scientific evidence to reassess the involvement of GPCR in 
plant G-protein-mediated signaling pathways.

Arabidopsis nitrate regulated 1 (ANR1), a MADS inter-
vening keratin-like and C-terminal (MIKC)-type MADS-box 
transcription factor, was the first to be discovered in nitrate 
signaling pathways (Zhang and Forde 1998). In nitrate-
rich localized areas, lateral root elongation is hindered 
in ANR1 loss-of-function mutants, which affects the root 
system's plasticity (Zhang and Forde 1998). Later research 
revealed that NRT1.1 regulates ANR1 at the transcriptional 
level (Remans et al. 2006). According to Chakraborty et al. 
(2015), NRT1.1 interacts with AtGPA1, which controls the 
transcription of nitrate-responsive genes through ANR1. 
This study employed gpa1-5, a novel GPA1 knock-out 
mutant, to reveal that numerous nitrogen starvation/assimila-
tion genes, such as the nitrate transporter NRT2.1, isocitrate 
dehydrogenase (ICDH), and asparagine synthase (ASN1), 
were up-regulated in gpa1-5 (Chakraborty et al. 2015). It 
has been demonstrated that a Triticum aestivum Gβ gene, 
TaNBP1 (AK332651), regulates transcription of the nitrate 
transporter gene (NRT2.2) in transgenic Nicotiana bentha-
miana, thereby indicating a role in nitrogen uptake (Liu et al. 
2018). Additionally, the role of RGA1 in nitrogen-responsive 
transcriptional regulation has been established by a study in 
Oryza sativa (Pathak et al. 2021). The genes encoding the 

ammonium and nitrate transporters were shown to be down-
regulated in the rga1 mutant, demonstrating the relevance of 
RGA1 function in nitrogen uptake. Moreover, the transcrip-
tion factor network analysis of the rga1 mutant revealed the 
importance of RGA1 in regulating the nitrogen signaling 
cascade with several differentially expressed genes (DEGs), 
including Nin-like and OsCIPK23, among others (Pathak 
et al. 2021). Notably, the G-protein subunit mutant studies 
can be beneficial for translating key research findings from 
commercially significant crop species to legumes for deci-
phering the possible participation of G-proteins in nitrogen 
uptake.

According to Fan et al. (2017), there are reports on nitrate 
transporter being used for improving crop productivity. For 
instance, the increased expression of OsNRT1.1B, a low-
affinity nitrate transporter, in japonica rice may aid in 
the improved sensing of varied nitrate concentrations and 
increasing the capacity for nitrogen accumulation inside the 
grain (Hu et al. 2015). In addition, rice with overexpressed 
OsNRT2.3b has a better ability to absorb other nutrients, 
which reduces photorespiration and promotes growth and 
grain yield (Fan et al. 2016). Furthermore, numerous studies 
demonstrate that Gα subunits regulate the expression level 
of plant nitrate transporters (Chakraborty et al. 2015, 2019; 
Pathak et al. 2021). This indicates that optimizing nitrate 
uptake and utilization via G-protein subunits might contrib-
ute to increasing crop yield.

G‑proteins and regulation of nitrogen use 
efficiency

NUE is a multigenic quantitative trait, including numer-
ous nitrogen-responsive genes and mechanisms that require 
thorough characterization (Mandal et al. 2022). G-proteins 
are implicated in critical agronomic traits such as NUE, 
thereby directly impacting yield (Xu et al. 2016b; Stateczny 
et al. 2016). There are findings on the significance of the 
Gγ subunit in governing nitrogen assimilation and NUE. 
For instance, in rice, the DEP1 (Os09g0441900) gene is 
a plant-specific Gγ subunit that directs branching, density, 
and erectness of panicles and was also discovered to be a 
significant quantitative trait locus (QTL) for NUE (Huang 
et al. 2009; Sun et al. 2014, 2018; Xu et al. 2016a; Li et al. 
2023). Both RGA1 and RGB1 subunits have been confirmed 
to interact with the DEP1 protein in vivo (Sun et al. 2014). 
The G protein γ-like (GGL) domain of DEP1 interacts 
with the rice RGB1 subunit on the plasma membrane and 
within the nucleus. Additionally, DEP1 binds with RGA1, 
and the von Willebrand factor type C (vWFC) domain at 
the C-terminus of DEP1 may be involved in this interaction 
(Sun et al. 2014). According to the study, nitrogen-mediated 
growth responses are likewise inhibited by reduced RGA1 or 
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increased RGB1 activity (Sun et al. 2014). Also, plants con-
taining the dep1-32 loss-of-function allele are unaffected by 
nitrogen availability, whereas plants with the dep1-1 gain-
of-function allele demonstrate higher nitrogen uptake even 
when nitrogen is scarce, suggesting that manipulating G-pro-
tein activity could be a novel strategy for regulating NUE 
(Sun et al. 2014). DEP1 affects genes related to ammonium 
absorption and assimilation (such as OsAMT1;1, OsGS1;2 
and OsNADH-GOGAT1), thereby regulating nitrogen uptake 
and metabolism (Huang et al. 2009). These genes showed 
an up-regulation in dep1 allelic plants when nitrogen levels 
were low. Despite the low nitrogen availability, the dep1 
allelic plants exhibit higher glutamine synthase activity and 
accumulate more internal nitrogen than the DEP1 allelic 
plants (Sun et al. 2014). According to a recent study in 
rice, the increased stomatal conductance conferred by dep1 
results in a higher photosynthetic capability under minimal 
nitrogen circumstances (Li et al. 2023). This research aids to 
comprehend the photosynthetic efficiency of the dep1 vari-
ety in low nitrogen environments by analyzing photosynthe-
sis, stomatal function, and nitrogen uptake and assimilation 
(Li et al. 2023).

Furthermore, nitrogen heterogeneity in the soil is a key 
factor in determining root development (Araya et al. 2016). 
While nitrogen deficiency stops root growth, a moderate 
amount of nitrogen in the soil encourages the extension of 
lateral roots that would otherwise be stunted in high nitrogen 
environments (Linkohr et al. 2002; Liu et al. 2017). Alter-
ing the root system architecture is an adaptive strategy to 
improve NUE (Awasthi and Laxmi 2021). According to a 
study, the rice G-protein mutants vary from the WT in lat-
eral root number and high nitrogen inhibition growth (Liang 
et al. 2018). The high nitrogen-induced suppression of root 
growth was abolished in the A. thaliana agb1-2 mutant. This 
indicates that G-protein modulates the root architecture in 
response to nitrogen availability (Liang et al. 2018). In T. 
aestivum, the nitrogen starvation response is reportedly 
regulated by TaNBP1 (Liu et al. 2018). In line with its func-
tion in promoting nitrogen accumulation, TaNBP1 overex-
pression in N. benthamiana results in enhanced phenotypic, 
expanded root system architecture and increased biomass for 
transgenic plants under nitrogen deficiency in comparison to 
the WT (Liu et al. 2018). Furthermore, a class C Gγ subunit 
of A. thaliana termed as AGG3 may also be involved in 
the NUE. During the early seedling stage of development, 
the model monocot Setaria virdis overexpressing AtAGG3 
(At5g20635) showed improved root growth, enabling greater 
plant survival under limited nitrogen circumstances (Kaur 
et al. 2018). A study in B. napus revealed that under nitrogen 
deprivation, Gα (BnGA1) and five C-type Gγ genes (BnGG9, 
BnGG10, BnGG11, BnGG12 and BnGG13) were initially 
upregulated in roots, while Gα was initially downregulated 
and five C-type Gγ genes were substantially expressed at 

various times in leaves (Xie et al. 2022). These findings shed 
light on the biological processes that G-protein genes per-
form in response to an inadequate supply of nitrogen (Xie 
et al. 2022). Through genetically abrogating each of the three 
rice XLGs separately and synergistically using CRISPR/
Cas9 genome editing in rice, a study uncovered a role for 
XLGs in agronomic traits. The research results reflect that 
non-canonical XLGs are crucial regulators of rice plant 
growth, grain filling and panicle phenotype (Biswal et al. 
2022). Henceforth, deciphering the XLG signaling in agro-
nomic performance can assist in establishing its association 
with NUE for crop improvement strategies.

Conclusions

The increasing use of nitrogen fertilizers contributes to an 
enormous growth in agricultural production. However, at 
the same time, soil quality has significantly deteriorated. 
Decreased soil fertility and unsustainable long-term crop 
yields are potential consequences of synthetic chemicals 
which very often suppress the symbiotic nitrogen fixation 
process (Akter et al. 2018; Reinprecht et al. 2020; Móring 
et al. 2021). With steady population growth and climate 
change, it has become challenging to increase crop pro-
ductivity without exacerbating environmental degradation. 
The development of plants that could flourish indepen-
dently of expensive nitrogen fertilizers would be a signifi-
cant achievement in research related to nitrogen fixation. 
G-proteins and their potential receptors are emerging as key 
players in understanding root development and nodulation 
process. Hence, a deeper knowledge of G-protein signal-
ing can provide insights into the control of symbiosis and 
root development, thereby laying the foundation for a mul-
titude of studies in the future. Moreover, persistent efforts 
to incorporate the nitrogen-fixing trait into non-legume 
crops, particularly cereals, which constitute a significant 
section of the food basket, can lessen our reliance on inor-
ganic nitrogen fertilizers. Also, uncovering the function of 
G-proteins in the nitrate sensing pathway and their transla-
tion into growth-enhancing reactions is crucial for enhancing 
NUE, crop productivity and reducing pollution caused by 
chemical fertilizers. The emerging research on regulating 
nutrient stress is supplemented by the multiple functions of 
G-proteins in plant root development and nitrogen signal-
ing. Therefore, besides alleviating plant abiotic and biotic 
stress, G-proteins may also aid in plant adaptation to nutrient 
stress. This will assist in engineering more efficient crops 
with improved NUE by genome modifications to maximize 
crop yield and limit excess nitrogen being added to the envi-
ronment, thereby promoting a sustainable future for modern 
agriculture.
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