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Abstract
Main conclusion  Serine/arginine-rich (SR) proteins participate in RNA processing by interacting with precursor 
mRNAs or other splicing factors to maintain plant growth and stress responses.

Abstract  Alternative splicing is an important mechanism involved in mRNA processing and regulation of gene expression 
at the posttranscriptional level, which is the main reason for the diversity of genes and proteins. The process of alternative 
splicing requires the participation of many specific splicing factors. The SR protein family is a splicing factor in eukaryotes. 
The vast majority of SR proteins’ existence is an essential survival factor. Through its RS domain and other unique domains, 
SR proteins can interact with specific sequences of precursor mRNA or other splicing factors and cooperate to complete the 
correct selection of splicing sites or promote the formation of spliceosomes. They play essential roles in the composition and 
alternative splicing of precursor mRNAs, providing pivotal functions to maintain growth and stress responses in animals and 
plants. Although SR proteins have been identified in plants for three decades, their evolutionary trajectory, molecular func-
tion, and regulatory network remain largely unknown compared to their animal counterparts. This article reviews the current 
understanding of this gene family in eukaryotes and proposes potential key research priorities for future functional studies.

Keywords  Pre-mRNA splicing · RNA binding · Splicing factor · Serine arginine-rich (SR) proteins · Molecular mechanism

SR protein in alternative splicing

Alternative splicing (AS) is a biological process by which 
an mRNA precursor can be spliced in different ways to 
generate multiple mRNA transcripts. As a fundamen-
tal mechanism to provide transcriptome and proteome 

diversity, different splicing combinations of exons and 
introns in precursor RNA lead to different mRNA iso-
forms (Chen et al. 2020). Many nuclear multiexonic genes 
undergo AS in a broad range of eukaryotic species. For 
example, in animal species, humans have been shown to 
have alternative splicing of more than 95% of intron-con-
taining genes (Pan et al. 2008). In model plants, more than 

Communicated by Gerhard Leubner.

Zi-Chang Jia and Debatosh Das contributed equally to this work.

 *	 Moxian Chen 
	 cmx2009920734@gmail.com

 *	 Jianhua Zhang 
	 jzhang@hkbu.edu.hk

1	 National Key Laboratory of Green Pesticide, Key Laboratory 
of Green Pesticide and Agricultural Bioengineering, 
Ministry of Education, Center for R&D of Fine Chemicals 
of Guizhou University, Guiyang 550025, China

2	 College of Agriculture, Food and Natural Resources 
(CAFNR), Division of Plant Sciences and Technology, 52 
Agricultural Building, University of Missouri, Columbia, 
MO 65201, USA

3	 Department of Biology, Hong Kong Baptist University, 
and State Key Laboratory of Agrobiotechnology, The 
Chinese University of Hong Kong, Shatin, Hong Kong

4	 Center of Plant System Biology and Biotechnology, 
4000 Plovdiv, Bulgaria

5	 Max-Planck-Institut Für Molekulare Pflanzenphysiologie, 
Am Mühlenberg 1, 14476 Potsdam‑Golm, Germany

6	 State Key Laboratory of Crop Biology, College of Life 
Science, Shandong Agricultural University, Taian, Shandong, 
China

7	 CAS Key Laboratory of Quantitative Engineering Biology, 
Shenzhen Institute of Synthetic Biology, Shenzhen Institutes 
of Advanced Technology, Chinese Academy of Sciences, 
Shenzhen 518055, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00425-023-04132-0&domain=pdf
http://orcid.org/0000-0003-4538-5533


	 Planta (2023) 257:109

1 3

109  Page 2 of 12

80% of genes in Arabidopsis thaliana can produce multiple 
transcripts (Zhu et al. 2017), more than 70% of endog-
enous genes in rice have different isoforms (Chen et al. 
2021), and more than 50% of genes in maize undergo vari-
able splicing (Chen et al. 2018). This sophisticated process 
is mediated by a dynamic mega RNA‒protein complex 
defined as the spliceosome, containing core splicing fac-
tors and regulatory splicing-related proteins (Califice et al. 
2012). In particular, some RNA-binding proteins have an 
impact on the assembly of the spliceosome and the selec-
tion of splice sites, which in turn affects variable splicing.

The serine/arginine-rich (SR) protein, an RNA-binding 
protein that plays an essential role in alternative splicing, 
was characterized in studies nearly three decades ago as 
a critical regulator of constitutive splicing and AS (Fu 
and Maniatis 1990). In addition, subsequent studies have 
shown that this conserved family of proteins has multiple 
roles in RNA metabolism (Gu et al. 2020). Furthermore, 
green plants contain more SR proteins than their animal 
counterparts. Thus, plant-specific phylogenetic clades for 
this family have also been proposed (Califice et al. 2012; 
Richardson et al. 2011), which may play an important 
role during plant development and stress responses. For 
example, the accumulation or reduction of SRs in vivo in 
tomatoes in high-temperature environments affects tem-
perature-sensitive alternative splicing (Rosenkranz et al. 
2021), and the serine/arginine splicing factor RS33 in 
rice can regulate pre-mRNA splicing during abiotic stress 
responses (Butt et al. 2022). In a genome-wide analysis 
of the serine/arginine protein family of wheat, a total 
of 92 cis-type elements associated with stress response, 
growth, and development, and hormones were detected in 
the promoter region of the TaSR protein genes, indicat-
ing that they have functions in development and response 
to environmental stresses (Chen et al. 2019b). However, 
despite this, except for a few related studies, most plant 
SR protein genes’ functions are unclear, and most of the 
functional information about this protein family has been 
obtained from animal studies. This review article provides 
an update on recent progress in studying SR proteins in 
eukaryotic organisms, with a particular focus on their evo-
lutionary trajectory and molecular functions. Both con-
served and specific molecular mechanisms of SR proteins 
in eukaryotes will be discussed to provide the outlook for 
future investigations on the plant SR protein family.

Nomeclature and evolution of plant SR 
proteins

The first SR protein (SRSF1/ASF/SF2) was identified in 
animals in the early 1980s in studies related to identifying 
RNA binding proteins with splicing activity (Krainer and 

Maniatis 1985). Subsequently, based on sequence homol-
ogy with mammalian counterparts, the first plant SR pro-
tein SR34/SR1 was identified in Arabidopsis thaliana (Lazar 
et al. 1995). Prototypical SR proteins are characterized by 
their minimal structure, including a first category contain-
ing a single RNA recognition motif (RRM) and a second 
category containing dual RRMs at the N-terminus for RNA 
binding. Both categories have conserved arginine/serine-
rich (RS) repeats enriched at the C-terminus to mediate pro-
tein–protein interactions (Fig. 1A) (Califice et al. 2012). In 
the third category of RRM containing ZnK-like SR proteins, 
one or two CCHC zinc-knuckle (ZnK) domains are present 
between the N-terminal RRM and C-terminal RS repeats 
(Fig. 1A). To further explore the evolutionary trajectory of 
the SR gene family in different species. Members of the SR 
protein family in different species were summarized based 
on the TimeTree web tool (http://​timet​ree.​org/). The number 
of the three SR proteins in different species is represented as 
a heatmap (Fig. 1B). The figure shows that the SR protein 
family is strongly conserved in plants, animals and micro-
organisms. The statistics of the three types of SR proteins 
in different species show that single RRM, dual RRMs are 
more common than RRM ZnK-Like types. These data sug-
gest that SR proteins have played an important role in the 
evolution of each species. Given that the RRM domain is 
the most common RNA binding domain among eukaryotic 
organisms and that over 350 RRM-containing proteins have 
been identified in humans (Califice et al. 2012), additional 
criteria were needed to define the SR protein family further. 
Therefore, in 2010, Manley et al. proposed a simple defini-
tion and uniform nomenclature of SR proteins based on the 
sequence characteristics of SR proteins (Manley and Krainer 
2010). In addition, plants have twice as many SR proteins as 
animals, and some subfamilies are plant-specific (Barta et al. 
2008). As mentioned earlier, SR proteins have three clas-
sifications: (a) single RRM, (b) dual RRMs, and (c) single 
RRM & Znk-like (Fig. 1A). Six subfamilies of SR proteins 
have been identified in plants, of which three subfamilies, 
SC (single RRM), RSZ (single RRM Znk-like), and SR (dual 
RRM), correspond to homologs in humans (Califice et al. 
2012). Moreover, there are three subfamilies of SCL (single 
RRM), RS2Z (single RRM & zkn -like), and RS (double 
RRM), which have the specific structural organization in 
plants (Barta et al. 2010; Morton et al. 2019b). Among them, 
RS repeats are limited to at least 20% RS or SR dipeptide 
(Barta et al. 2010) (Fig. 1C).

The RRM domain was the first to be identified in eukar-
yotes and is the most abundant RNA-binding structural 
domain in eukaryotic genomes (Dreyfuss et al. 1988). In 
prokaryotes, however, RRM proteins encode few or no RRM 
features in the genome and are only found to be prevalent in 
cyanobacteria, but their role remains incompletely elucidated 
(Maruyama et al. 1999). In addition, some genes encoding 

http://timetree.org/
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RRM proteins have been identified in viral genomes (Kenan 
et al. 1991). In plants, a growing number of RNA-binding 
proteins have been shown to mediate specific RNA process-
ing steps in chloroplasts (Ruwe et al. 2011).

All currently known RRM proteins are nuclear encoded 
and are imported into the chloroplast post-translationally. 
with characteristic structural domain organisation: an N-ter-
minal transit peptide essential for import into the chloro-
plast, an acidic structural domain at the N terminus of the 
mature protein and two consecutive RRMs at the C terminus 

(Ruwe et al. 2011). Chloroplast ribonucleoproteins (cpRNP) 
genome-wide identification of cpRNP genes in rice and 
mimosa was performed based on the predicted presence of 
two RRM structural domains and an N-terminal chloroplast-
targeting signal peptide in the proteins, identifying 10 the 
associated cpRNP proteins were shown to be involved in 
the control of splicing, editing and stability of chloroplast 
RNAs, and they can regulate plant development and toler-
ance to stress through their effects on plant photosynthesis 
and respiration(Wu et al. 2021). The fact that SR proteins 

Fig. 1   Overview of the classification and evolutionary timeline of 
the serine/arginine-rich (SR) gene family. A. Three classifications of 
SR proteins. B. The members of the SR protein family from various 
species are summarized. The main graph is made using the Time-
Tree web tool (http://​timet​ree.​org/). The approximate time points of 

the selected cluster are indicated, The number of three SR proteins in 
different species is presented as a heatmap. C. Six subfamilies of SR 
proteins have been identified in plants. Plant-specific gene families 
are highlighted in green color. RRM, RNA binding motif

http://timetree.org/
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are twice as abundant in plants as in animals, and that RRM 
proteins localised in chloroplasts are unique to plants, may 
also account for the fact that there are more RRM proteins in 
plants than in animals.Although the classification of SR pro-
teins in plants has been solved, the evolutionary trajectory 
of plant SR proteins is still unclear. Several research groups 
carried out independent phylogenetic analysis using publicly 
available genomic and proteomic datasets in the early 2000s 
(Califice et al. 2012; Richardson et al. 2011; Barta et al. 
2010b). The results of these studies suggested that plants or 
more complicated photosynthetic organisms generally pos-
sess relatively more diverse SR members among all eukary-
otic organisms, and the number of identified SR proteins is 
particularly enriched in angiosperms (Fig. 1). Furthermore, 
the expansion of the plant SR protein family has been pro-
posed to be related to genome duplication events across the 
plant lineage. However, several research questions remain to 
be elucidated in this field. First, the evolutionary relation-
ships between each subfamily member are unclear due to the 
lack of synteny or transposon analysis. The combinatorial 
usage of these analytical methods will help us accurately 
estimate the effect of whole genome duplication events on 
the SR family in planta, further confirming whether con-
vergence contributes to the evolution of this gene family 
(Califice et al. 2012). In addition to detecting any large-
scale duplication at the genomic level, local transpositions 
and duplication events also need to be evaluated. With the 
development of high-throughput sequencing technology, the 
need to define a clear evolutionary trajectory and duplication 
events along the plant lineage becomes even more apparent 
when considering how SR proteins have evolved from the 
ancient common ancestor. Second, the complexity of the 
AS network of a particular organism seems to be positively 
correlated with the number of SR proteins and the number 
of SR splice variants (Aravind et al. 2000; Busch and Hertel 
2012), suggesting a potential link between SR family size 
and splicing regulation across the green lineage. Thus, the 
selection mechanism of these confirmed AS events is worth 
investigating at the evolutionary level.

Structural and functional diversification

SR proteins form a conserved family of RNA-binding 
proteins with a unique domain structure, which is com-
posed of one or two RNA recognition motifs (RRMs) 
and a characteristic C-terminal arginine/serine (RS)-rich 
domain (Chen et al. 2019b). SR is highly conserved in ani-
mals and plants [reviewed in (Giannakouros et al. 2011)]. 
RRM domain-containing proteins are generally related to 
RNA processing in their molecular function. Similarly, 
SR proteins were originally isolated for their role in con-
stitutive and alternative splicing (Krainer and Maniatis 

1985). However, subsequent studies have demonstrated 
that the molecular function of this protein family extends 
to multiple aspects of RNA metabolism, suggesting that 
SR proteins are versatile regulators of RNA biology in 
eukaryotic cells (Jeong 2017). Among these SR proteins, 
animal SRSF2/SC35 and SRSF1/ASF/SF2 are the most 
studied members, with experimental data revealing their 
molecular functions.

For example, biochemical and genetic evidence has 
demonstrated that the depletion of SRSF2/SC35 results in 
a dramatic decrease in nascent RNA transcribed by RNA 
polymerase II (Pol II), implying its role in promoting tran-
scriptional elongation (Fig. 2) (Ji et al. 2013; Lin et al. 
2008; Fededa and Kornblihtt 2008). This finding further 
strengthens the coupling theory between Pol II activity and 
RNA processing. In addition, the SR protein Npl3 in yeast 
has been shown to play an important role in transcriptional 
elongation, splicing, etc. (Holmes et al. 2015). The second 
function of SR family members described here is their role 
in regulating mRNA stability (Aznarez et al. 2018; Zhang 
and Krainer 2004). For example, the stability of PKCI-
1-associated mRNA is controlled by the splicing factor 
ASF/SF2, which affects gene expression in vertebrate cells 
by regulating mRNA stability and splicing(Lemaire et al. 
2002). Disease-related studies have reported that SR pro-
teins can mediate tumourigenesis by affecting genomic 
stability (Wan et al. 2022). Furthermore. SRSF1/ASF/
SF2 can enhance the operation of the nonsense-mediated 
mRNA decay (NMD) pathway, a quality control mecha-
nism responsible for the degradation of premature termina-
tion codon (PTC)-containing mRNAs, by directly recruit-
ing the NMD factor UPF1 (Fig. 2) (Aznarez et al. 2018; 
Zhang and Krainer 2004). This observation demonstrated 
an untraditional NMD pathway in the eukaryotic system. 
Animal SR proteins have been found to maintain genome 
stability by preventing the formation of an RNA‒DNA 
hybrid in an R loop structure during transcription (Li and 
Manley 2005), and this ability seems to be functional in 
a cell-specific manner (Xiao et al. 2007). Third, plant SR 
proteins have been observed to maintain microRNA levels 
by selecting the correct strand for microRNA biogenesis 
in nuclear speckles (Chen et al. 2015). For example, SR 
proteins can enhance microprocessor activity by recruit-
ing DROSHA, and cleave pri-miRNA to promote miRNA 
maturation (Fig.  2) (Kim et  al. 2018). Human tumor-
related studies have also found that SRp20 is involved in 
the cleavage of primary microRNAs and is involved in 
the integrity and diversity of the genome (Wang and Jiang 
2021). Fourth, SR proteins have been found to mediate 
both cap-dependent and cap-independent translation. In 
particular, SRSF1/ASF/SF2 can promote translation of 
its target mRNA by interacting with cytoplasmic cap-
binding protein eIF4E (Fig. 2) (Michlewski et al. 2008), 
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whereas SRSF3/SRp20, orthologous to the plant RSZ 
subfamily, can utilize cap-independent translation at an 
internal ribosome entry site (IRES) to facilitate the trans-
lation of a poliovirus RNA (Bedard et al. 2007). Fifth, 
SR proteins play an important role in mRNA transport, 
and post-translational modifications of SR proteins are 
the basis for regulating their mRNA export activity (Botti 
et al. 2017). And related studies have demonstrated that 
dephosphorylation of SR proteins has a conserved role in 
regulating the interaction between SR proteins and mRNA 
export receptors(Reed and Cheng 2005). In addition, some 
SR family members can function as adaptors to facilitate 
mRNA transport by interacting with nuclear export factor 
1 (NXF1) in animals (Fig. 2) (Mullermcnicoll et al. 2016). 
The nucleocytoplasmic shuttling ability of SR proteins has 
also been observed in plants, where it is mediated by the 
CRM1/XPO1/exportin-1 receptor pathway and nuclear 
transporter MOS14 (Fig. 2) (Xu et al. 2011).

In addition to the five mechanisms mentioned above, most 
reports have focused on the role of the SR protein family 
in splicing regulation. Specifically, the detection of the SR 

protein in the cytoplasmic S100 extract in earlier studies did 
not find its presence, and it is precisely due to the lack of SR 
protein that the extract also lacks splicing ability (Krainer 
and Maniatis 1985). By utilizing this system, plant SR pro-
teins have been similarly subsequently characterized (Lopato 
et al. 1996), suggesting a conserved splicing function of SR 
proteins between animals and plants. However, some plant 
SR members, such as SR34 of the SR subfamily, failed to 
complement the S100 extract, implying potential functional 
diversification or alternative incompatibility of the plant 
SR family. Additionally, SR proteins have been observed to 
affect splice site choice during early spliceosome assembly 
in both animals and plants (Isshiki et al. 2006; Choi et al. 
2021). The established mechanism of this regulation is that 
SR proteins bind to their binding sequences, such as exonic 
splicing enhancers (ESEs), recruiting and bridging U1 and 
U2 auxiliary factors (U2AFs) to the corresponding 5′ and 
3′ splice sites, respectively (Cho et al. 2011; Graveley et al. 
2001). In plants, several SR proteins have been reported to 
interact with U1-70 K and U2AF proteins (Yan et al. 2017; 
Lorkovic et al. 2008; Golovkin and Reddy 1999), suggesting 

Fig. 2   Molecular mechanisms of SR proteins in RNA processing. 
Existing mechanisms of SR proteins in the nucleus and cytosol are 
illustrated here. Components shared by animals and plants are pre-
sent in orange color. Components reported only in animal studies 
are shown in grey color. Plant-specific components or pathways are 
labeled as green color. Pol II, polymerase II; U1, U2, U4, U5, U6, 

small nuclear RNA and binding protein complex (snRNP); U2AF, U2 
snRNP auxiliary factors; Drosha, a ribonuclease (RNase) III double-
stranded RNA-specific ribonuclease that is involved in microRNA 
biogenesis; NFX1, nuclear export protein; CRM1, Chromosomal 
Maintenance 1 / Exportin 1; MOS14, nuclear import receptor; UPF1, 
Up-frameshift suppressor 1; elF4E, translation elongation factor
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that the function of SR proteins in splice site selection is 
conserved between animals and plants.

Furthermore, different SR proteins have been demon-
strated to affect distinct splice sites, suggesting a specific 
role of each SR member in the plant SR family (Isshiki et al. 
2006). In particular, the characteristics of 12 animal SR pro-
tein-binding sequences have been summarized, suggesting 
a set of conserved degenerate purine-rich (AG) sequences 
(Anko 2014). Using cross-linking immunoprecipitation 
(CLIP) assays combined with high-throughput sequenc-
ing technologies, multiple studies have demonstrated that 
SR proteins can bind a variety of RNA transcripts, includ-
ing noncoding RNAs and intronless and intron-containing 
mRNAs. Consistent with previous findings, each SR protein 
has a nonoverlapping set of RNA targets, suggesting their 
unique role in regulating a subset of genes in animals (Anko 
et al. 2012; Sanford et al. 2008a, b; Brugiolo et al. 2017). 
Meanwhile, a few plant studies in some SR-like proteins 
have also revealed this finding using a similar RNA immuno-
precipitation (RIP) sequencing approach (Xing et al. 2015; 
Zhang et al. 2017).

Given that most functional studies have been carried out 
in animal systems, whether plant orthologues and plant-spe-
cific members have a similar molecular function remains 
to be investigated experimentally. In particular, a thorough 
analysis of subcellular localization, shuttling ability, binding 
activity, and molecular regulatory pathways is required to 
elucidate further the function of this ancient RNA-binding 
protein family in planta. Furthermore, the theoretical expla-
nation and biological function of why different SR proteins 
bind to distinct groups of RNA targets remain to be further 
studied in eukaryotic systems.

Cellular compartmentation and regulatory 
mechanisms

As versatile adaptors in RNA processing, SR proteins have 
a shuttling ability between the nucleus and cytoplasm and, 
therefore, need to be present in multiple cellular compart-
ments to execute their function (Caceres et al. 1997). Spe-
cifically, the C-terminal RS repeats are essential for SR 
proteins’ localization and shuttling ability (Caceres et al. 
1997; Ali and Reddy 2006). Furthermore, even for speckle 
accumulation in the nucleus, different SR category proteins 
may have different colocalization patterns in plants (Lorko-
vic et al. 2008). Given that SR proteins have a variety of 
molecular functions, endogenous SR proteins are tightly 
regulated by multiple mechanisms at different levels in both 
animals and plants (Sun et al. 2010; Morton et al. 2019a). 
Intriguingly, at the transcript level, SR genes are regulated 
by unproductive splicing (Fig. 3A), a regulatory mecha-
nism controlled by so-called ultraconserved DNA elements 

(Lareau et al. 2007; Ni et al. 2007). In particular, these DNA 
elements are alternatively spliced to form an in-frame PTC 
or an alternative 3′ untranslated region (3′-UTR), facilitat-
ing the RNA surveillance mechanism by NMD degradation.

Further investigations involving NMD inhibition have 
demonstrated that these NMD-regulated isoforms account 
for 40–70% of total transcripts in humans (Lareau et al. 
2007), suggesting that this could be a crucial internal feed-
back loop that controls the abundance of functional SR 
proteins. Remarkably, current results indicate that these 
elements may arise independently in different SR members 
(Palusa and Reddy 2010; Hartmann et al. 2018a). However, 
the origin of these ultraconserved elements remains unclear. 
Similarly, plant SR genes have been reported to be exten-
sively spliced to form PTC-containing isoforms, some of 
which can be subsequently degraded by the NMD pathway 
(Palusa and Reddy 2010; Kalyna et al. 2003; Hartmann et al. 
2018b). However, the conserved sequences do not extend 
from animals to plants. Although these ultraconserved 
sequences are considered to affect splice site selection dur-
ing spliceosome assembly, no regulators or binding proteins 
have been reported at the current stage. Thus, further inves-
tigation is needed to uncover the underlying mechanism of 
this autoregulatory feedback loop in the SR gene family. 
Furthermore, a group of RNA binding proteins, heteroge-
neous nuclear ribonucleoproteins (hnRNPs), can competi-
tively bind to sequence motifs similar to those bound by 
SR proteins, forming a competitive binding inhibition of SR 
proteins (Fig. 3B) (Anko 2014).

In addition to regulation at the transcript level, SR pro-
teins can recruit DROSHA to the basal junction in a CNNC-
dependent manner, thereby enhancing the activity of the 
microprocessor and cleaving pri-miRNA to promote miRNA 
maturation (Fig. 3C) (Kim et al. 2018). Moreover, SR pro-
teins can maintain their homeostasis at the translational 
level. Notably, animal SRSF1/ASF/SF2 can autoregulate 
its protein abundance through its 3′-UTR sequences by a set 
of microRNAs (Fig. 3C) (Sun et al. 2010; Meseguer et al. 
2011; Wu et al. 2010). However, no related reports have 
been found in plant research.

In addition, posttranslational regulation of SR proteins 
has been documented in both animals and plants. For exam-
ple, nucleocytoplasmic shuttling is mediated by transport-
ers such as nuclear import factors transportin-SR (TRN-SR) 
and MOS14 and export factors NXF1 and CRM1/XPO1/
exportin-1 in animals and plants, respectively. Depleting 
these transporter proteins results in the retention of corre-
sponding SR proteins in specific subcellular compartments 
(Maertens et al. 2014; Tillemans et al. 2006; Stankovic et al. 
2016). In addition, SR proteins are frequently modified by 
phosphorylation in their RS domain to modulate their pro-
tein activity, shuttling ability, and subcellular localization 
(Fig. 3D). In particular, several protein kinases, including SR 
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protein-specific kinases (SRPKs) and Clk/Sty kinases, have 
been identified to be responsible for this process in animals 
(Velazquezdones et al. 2005). However, proteins responsi-
ble for the dephosphorylation of SR proteins have seldom 
been reported (Ma et al. 2010). In plants, phosphoproteomic 

profiling experiments have identified several potential reg-
ulators, such as SR protein kinase AFC2 in Arabidopsis 
(Golovkin and Reddy 1999), plant hormone-inducible PK12 
(Savaldigoldstein et al. 2000), lammer domain-containing 
kinase (Savaldigoldstein et al. 2003), mitogen-activated 

Fig. 3   Regulatory mechanisms to control subcellular localization and 
function of SR proteins. Regulation and its corresponding compo-
nents are summarized at four levels, such as transcription and splicing 
(A), spliceosome assembly (B), translation (C), and post-translation 
(D). Components that have been reported in plant studies are labeled 
as green color. PTC, premature termination codon; NMD, nonsense-
mediated mRNA decay; U1, U2, U4, U5, U6, small nuclear RNA 
and binding protein complex (snRNP); U2AF, U2 snRNP auxiliary 
factors; hnRNP, heterogeneous nuclear ribonucleoprotein; Drosha, a 

ribonuclease (RNase) III double-stranded RNA-specific ribonucle-
ase that is involved in microRNA biogenesis; Dicer, Double-stranded 
RNA (dsRNA) endoribonuclease; AGO2, Argonaute2; CRM1, Chro-
mosomal Maintenance 1 / Exportin 1; NFX1, nuclear export pro-
tein; PP1, protein phosphatase 1; SRPK, SR protein kinase; Pol II, 
polymerase II; Clk/Sty, CDC-like kinase 1; PK12, protein kinase 12; 
LAMMER, LAMMER domain-containing kinase; MPK, mitogen-
activated protein kinase
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protein kinases MPK3 and MPK6 (Feilner et al. 2005), and 
stress-responsive kinase SnRK2 (Wang et al. 2013), for SR 
protein phosphorylation, suggesting their roles during plant 
development and in response to biotic and abiotic stresses. 
However, the biological significance of these phosphoryla-
tion events has yet to be clarified. Interestingly, SR proteins 
have been demonstrated to interact with each other in both 
animals and plants (Lorkovic et al. 2008; Wu and Maniatis 
1993). However, the biological function of this SR complex 
remains unclear.

Current working mode of plant SR protein

Based on the available literature, several working models 
for eliciting the biological function and potential regula-
tion of plant SR proteins are proposed here for considera-
tion (Fig. 4). We believe these models are worthy of further 
investigation in plants. First, AS is pervasive in eukaryotic 
cells, and whether the resulting transcript isoforms are func-
tional at the protein level is still under debate (Blencowe 
2017). The mainstream opinion suggests that most of this 
alternative or truncated isoforms are ultimately degraded by 
the RNA surveillance system, including the NMD pathway. 
As we have reviewed in the previous paragraphs, similar 
cases are found in the SR protein family. However, it has 
been demonstrated that some truncated isoforms can be 
translated (Jimenez et al. 2019). Reports suggest that trun-
cated SR proteins could competitively interact with protein 
partners that initially bind to the primary protein isoform, 
thus performing an antagonizing role to attenuate biological 
processes regulated by the primary SR proteins (Fig. 4A).

Furthermore, emerging evidence suggests a critical link 
between the SR family of plant proteins and the role of alter-
native splicing in plant stress responses (Duque 2011). Plant 
splice-related proteins can respond to abiotic stresses such 
as salt and cadmium and generate different splice variants 
for spliceosome assembly, providing a possible explanation 
for the differential mechanisms of alternative splice site 
selection (Fig. 4B) (Laloum et al. 2017; Zhu et al. 2017). 
Sequencing of the transcriptome suggests that PtSCL10 
affects cold stress by regulating the splicing of the cold 
stress-related genes ICE1, LYY, COR2A, but the mechanism 
of splicing is not yet clear (Zhao et al. 2021). Some serine/
arginine (SR) proteins in Lepidium meyenii can potentially 
regulate AS under cold conditions (Shi et al. 2019). Over-
expression of the RS domain in transgenic Arabidopsis also 
enhanced salt tolerance (Forment et al. 2002). Some stud-
ies have also shown that chemical molecules regulate SR 
proteins’ response. For example, in a survey of agricultural 
herbicides, GEX1A has weed control activity and can inhibit 
pre-mRNA splicing by affecting SR proteins (Chen et al. 
2019a). But is it possible for SR genes to generate several 

functional isoforms under abiotic stress to alter the splicing 
patterns of downstream target genes in response to various 
stimuli? The mechanism for sensing the changing environ-
ment and maintaining the balance of each functional isoform 
is unclear (Fig. 4C).

Moreover, in plants, some PTC-containing transcripts of 
SR genes accumulate substantially (Palusa et al. 2007), sug-
gesting that an underlying mechanism other than NMD may 
determine the fate of these splice variants. The SR proteins 
Gbp2 and Hrb1 in yeast play a role in the nonsense-mediated 
decay of mRNAs containing spliced premature termination 
codons (PTC)(Grosse et al. 2021).The classical NMD path-
way could also explain how the primary splice isoform could 
attenuate its transcript abundance by producing PTC-con-
taining nonfunctional alternative splice variants for NMD 
degradation. However, this system becomes more complex 
by introducing the second or third functional isoform pro-
duced under stress treatments that the NMD pathway can-
not degrade. The underlying mechanism that maintains the 
equilibrium of these functional isoforms urgently needs to 
be identified (Fig. 4). This raises the question of whether the 
equilibrium of these functional splice isoforms is regulated 
at the RNA level or by trans-acting components or both. 
How does this regulatory mechanism sense the changing 
environment and attenuate the composition of each func-
tional isoform? Last but not least, a recent study indicated 
that splicing factors could be recruited by transcription fac-
tors, further strengthening the notion that transcription and 
splicing are highly coordinated processes (Xiao et al. 2019). 
This finding also opens a new research area for plant SR 
proteins.

Concluding remarks and future perspectives

In the past thirty years, scientists have made substantial 
efforts to understand the function of SR gene family pro-
teins. From their evolutionary perspective to their molecular 
functions, this RNA binding protein family has been exten-
sively investigated and often regarded as a universal regula-
tor in RNA processing in multiple cellular compartments. 
However, several research questions have yet to be addressed 
in plants, including mapping their evolutionary trajectory 
across the green lineage, molecular functions during various 
processes of RNA metabolism, and regulatory mechanisms 
that lead to differential accumulation across different cellular 
compartments. Thus, modern cutting-edge technology and a 
proper experimental system must be combined in plant SR 
protein research by taking cues from studies investigating 
animal SR proteins. Establishing an in vitro splicing system 
can provide more detailed insights into the mechanism of 
spliceosome assembly and pre-mRNA splicing. However, 
the lack of an in vitro splicing system in plants has become 
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a significant limitation in the further study of plant splicing 
(Albaqami and Reddy 2018). In addition, mass spectrom-
etry analysis is also critical in the study of RNA-binding 
proteins (Hernandez et al. 2009). Therefore, constructing 
in vitro splicing systems in plants and applying mass spec-
trometry will facilitate the analysis of individual SR proteins 
and their corresponding splicing variants in well-controlled 
environments. Given the higher number of SR genes present 

in plants, multiple knockout mutants and single knockout 
mutants of a particular isoform using CRISPR‒Cas9 and 
CRISPR‒Cas13 systems (Morton et al. 2019b), respectively, 
would be required to counter this redundancy issue, allowing 
independent genetic analysis of each SR member and their 
splice variants. In addition, high-throughput profiling tech-
niques combined with biochemical analysis, such as affinity 
purification-linked quantitative proteomic identification and 

Fig. 4   Proposed working models of plant SR proteins in response to 
internal or external stimuli. Several research questions remain to be 
addressed. A Whether the resulting transcript isoforms are degraded 
or translated into a truncated isoform? B Plant splicing-associated 
proteins respond to abiotic stress and generate different splice vari-
ants for spliceosome assembly, providing a possible explanation for 

the differential mechanism of alternative splice site selection. C Is 
that possible to generate several functional isoforms to alter the splic-
ing patterns of downstream target genes under various stimuli? The 
mechanism to sense the changing environment and maintain the equi-
librium of each functional isoform remains unclear
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CLIP or RIP sequencing (Terzi and Simpson 2009), will 
accelerate the research progress to study the interactome and 
binding targets of these RNA-binding proteins, providing 
novel insights into plant SR members during plant develop-
mental processes or stress responses.
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