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Abstract
Main conclusion  This review is an effort to provide in-depth knowledge of microbe’s interaction and its role in crop 
microbiome using combination of advanced molecular and OMICS technology to translate this information for the 
sustenance of agriculture.

Abstract  Increasing population, climate change and exhaustive agricultural practices either influenced nutrient inputs of soil 
or generating biological and physico-chemical deterioration of the soils and affecting the agricultural productivity and agro-
ecosystems. Alarming concerns toward food security and crop production claim for renewed attention in microbe-based farm-
ing practices. Microbes are omnipresent (soil, water, and air) and their close association with plants would help to accomplish 
sustainable agriculture goals. In the last few decades, the search for beneficial microbes in crop production, soil fertilization, 
disease management, and plant growth promotion is the thirst for eco-friendly agriculture. The crop microbiome opens new 
paths to utilize beneficial microbes and manage pathogenic microbes through integrated advanced biotechnology. The crop 
microbiome helps plants acquire nutrients, growth, resilience against phytopathogens, and tolerance to abiotic stresses, such 
as heat, drought, and salinity. Despite the emergent functionality of the crop microbiome as a complicated constituent of the 
plant fitness, our understanding of how the functionality of microbiome influenced by numerous factors including genotype 
of host, climatic conditions, mobilization of minerals, soil composition, nutrient availability, interaction between nexus of 
microbes, and interactions with other external microbiomes is partially understood. However, the structure, composition, 
dynamics, and functional contribution of such cultured and uncultured crop microbiome are least explored. The advanced 
biotechnological approaches are efficient tools for acquiring the information required to investigate the microbiome and 
extract data to develop high yield producing and resistant variety crops. This knowledge fills the fundamental gap between the 
theoretical concepts and the operational use of these advanced tools in crop microbiome studies. Here, we review (1) structure 
and composition of crop microbiome, (2) microbiome-mediated role associated with crops fitness, (3) Molecular and -omics 
techniques for exploration of crop microbiome, and (4) current approaches and future prospectives of crop microbiome and 
its exploitation for sustainable agriculture. Recent -omic approaches are influential tool for mapping, monitoring, modeling, 
and management of crops microbiome. Identification of crop microbiome, using system biology and rhizho-engineering, 
can help to develop future bioformulations for disease management, reclamation of stressed agro-ecosystems, and improved 
productivity of crops. Nano-system approaches combined with triggering molecules of crop microbiome can help in design-
ing of nano-biofertilizers and nano-biopesticides. This combination has numerous merits over the traditional bioinoculants. 
They stimulate various defense mechanisms in plants facing stress conditions; provide bioavailability of nutrients in the soil, 
helps mitigate stress conditions; and enhance chances of crops establishment.
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Introduction

The microbial community associated with the crop is 
referred as crop microbiome. A wide variety of micro-
organisms are present in the different parts of crops, such 
as the rhizosphere, phyllosphere, and endosphere. These 
naturally occurring microbes are the integral part of the 
crop microbiome, and their functions impact plant growth 
and productivity (Bargaz et  al. 2018; Zope et  al. 2019; 
Sagar et al. 2020a, b, 2022a, b; Khan et al. 2021). The 
multifaceted network of microbiome is related to various 
organs of crops, which provides hidden information about 
functional interaction of plant–microbe. These information 
help to select potential beneficial microbes for mitigation 
of stressed agricultural ecosystems and improve crop 
productivity. However, till date, exhaustive agricultural 
practices show the dodges in microbial/biotechnology and 
there is necessity of recent -omics approaches to unfold 
the complete information of mechanisms of microbiome 
(Brader et al. 2017; Lemanceau et al. 2017; Khan et al. 2019; 
Sukmawati et al. 2021).

To achieve the target of increased food demand of 
growing world population, sustainable improvements are 
needed in soil quality and fertility, plant growth promotion, 
biocontrol, stress tolerance, and high yield crop production. 
The application of plant growth-promoting potential of crop 
microbiome has been used as the best substitute to synthetic 
agro-chemicals (Mitter et al. 2016; Basu et al. 2021; Hamid 
et al. 2021). In these consequences, recent and advanced 
molecular techniques are applied to reveal information about 
crop microbiome concerning abiotic and biotic stimulus, 
plant genetic makeup, and environment. This helps to search 
for suitable strains or inoculation in stressed conditions 
(Mitter et al. 2016; Ahmed et al. 2021; Sagar et al. 2020a).

Advances in microbiome practices and molecular 
and analytical tools, such as microscopic and tagged-
imaging techniques, bioinformatics tools, next-generation 
sequencing, and 'OMICS’ technologies, provide deeper 
insights into the crop-specific microbiome (Nilsson 
et al. 2018; Rai et al. 2020; Santos and Olivares 2021). 
These advances also provide insight into the potential of 
rhizospheric microbes to inhibit soil-borne plant pathogens, 
information of induced functional genes, functional 
ecosystem, and their events that contain communication 
between plants and microbes (Berg et al. 2016; Jansson and 
Hofmockel 2018). The recent revolutionary application of 
next-generation sequencing methods, combined with novel 
microscopic techniques, gives new insight into the accurate 
microbiome associated with crops in the agricultural land. 
It also provides unparalleled prospects for transforming 
microbiomes information into practical applications (Lee 
et al. 2019).

The crop-microbiome is known to exert various 
effects on crop growth and yield, disease suppression, 
and induction of resistance; however, very few crops 
microbiome are fully explored (Pagano et  al. 2017; 
Zakaria et al. 2019; Rai et al. 2019a). A vast research is 
devoted toward the investigation and usage of beneficial 
crop microbes for sustainable plant growth promotion 
and yield improvements (Si et  al. 2018; Sagar et  al. 
2020a, b; Khan et  al. 2020; Ilyas et  al. 2020). In this 
regard, research should emphasize toward deciphering 
all the aspects of interactions between crops and related 
microbiota, which includes different parts of crops (soil/
rhizosphere, anthosphere, phyllosphere, spermosphere, 
and troposphere) (Kalam et al. 2020) and their complex 
signaling (Busby et al. 2017; Lemanceau et al. 2017; Khan 
et al. 2021).

Studies on crop microbiomes ensure continued food 
quality and safety regarding the growing population and 
challenges that adversely affect crop yield due to influencing 
constraints, like environmental condition, soil and water 
quality, available soil nutrients, and disease incidences 
(Shi et al. 2019; Abiraami et al. 2020). The present review 
highlights the importance and functionalities of the 
crops microbiome and discusses challenges and concepts 
regarding applying biotechnological approaches to explore, 
characterize, and identify crop microbiome.

Structure and composition of crop microbiome

Microbiome profiling of whole crops, different crop organs, 
and root-associated soils has revealed a diverse and highly 
dynamic microbial community which is influenced by 
several environmental factors such as soil type, nutrient 
and water availability, climate, season, as well as species 
of crop, different crops’ compartment, and developmental 
stage (Copeland et al. 2015; Robinson et al. 2016). The 
actual dynamics and functionality define the structure and 
composition of the crop microbiome. Species-specific 
crops draw a robust selective gradient regarding microbial 
species richness that gradually decreases in bulk soil, 
followed by rhizosphere soil/rhizoplane, and is lowest in the 
endophytic compartment (Gao et al. 2019). The complex 
microbial communities’ network associated with crops 
usually comprises archaea, bacteria, fungi, and protists, 
which benefited crops and performed different ecological 
balancing functions (Singh et al. 2020). The other parts of 
crops like the bulk soil or rhizospheric soil, phyllosphere, 
anthosphere, spermosphere, and troposphere provide habitat 
for microbiome establishment (Hardoim et al. 2015), and 
each part associated microbes perform different functions 
in respect of plant fitness.
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Rhizosphere‑associated microbial communities

Rhizosphere comprises the soil around the plant roots. 
Crop roots/rhizoplane/rhizospheric soil provides exclusive 
ecological niches for the soil microbial community, which 
competitively colonizes the crop roots and performs plant 
growth-promoting microbial activity in complex ecosystems 
(Dubey et al. 2020). The rhizosphere serves as a hot spot 
for microbial activity and provides opportunities to colonize 
plant roots. Its uniqueness increased by secreting species-
specific crops root exudates that contain amino acids, organic 
acids, fatty acids, sugars, nucleotides, phytohormones, 
putrescine, terpenoids, sterols, and vitamins, which 
communicate signals in the microbiome for active 
colonization, uptake of transportable nutrients, and water 
(Kawasaki et al. 2016; Hu et al. 2018). The diversity and 
composition of the crop microbiome are affected by plant 
health, plant growth and development, and the magnitude 
of root exudation (Hartman et al. 2017; Anal et al. 2020). 
The microbiome participates significantly in soil biological 
practices, soil carbon sequestration, nutrient cycling through 
decomposed matter channelization in natural systems, 
plant growth promotion, pathogen inhibition through the 
secretory molecule, and plant immunization (Ehrmann and 
Ritz 2014; Rai et al. 2020). The microbiome of different 
crops generally comprises various dominant bacterial 
communities: Acidobacteria, Actinobacteria, Bacteroidetes, 
Burkholderiales, Copiotrophs Oligotrophs, Planctomycetes, 
Proteobacteria, Pseudomonads, Sphingobacteriales, 
Verrucomicrobia, and Xanthomonadales (Donn et al. 2015; 
Fierer 2017).

Fungi are an indispensable component of the agro-
systems microbiome. the associated group of fungi, such as 
filamentous fungi, like Trichoderma sp. (Li et al. 2015; Rai 
et al. 2016), Penicillium sp. (Babu et al. 2015), endophytic 
fungi like Aspergillus sp., Trichoderma sp., Colletotrichum 
sp., Fusarium sp., Cladosporium sp., Epicoccum sp., and 
Dendrobium moniliforme (Chadha et al. 2015; Shah et al. 
2019) and mycorrhizal fungi (Turrini et al. 2018) exert 
beneficial effects on the plant. Some of the dominating 
fungi negatively influence crop yield by causing disease, 
for example, Alternaria sp., Colletotrichum sp., Fusarium 
sp, Rhizoctonia sp., Verticillium sp., and Macrophomina sp. 
(Tetali et al. 2015; Kashyap et al. 2015).

Phyllosphere‑associated microbial communities

The phyllosphere is the region of crop that includes foliar, 
leaves, and floral parts, offering distinctive epiphytic 
microbiome habitats. The phyllosphere microbiome 
comprises various microbes (Rai et al. 2020). The presence 
of the microbiome in the phyllosphere is regulated 
by environmental factors (Wallace et  al. 2018). The 

composition, structure, and dynamics of the phyllosphere 
microbiome are administrated by immigration, survival, 
development of the microbial colony from the environment, 
and physico-chemical properties of the leaf, which affects 
the health, the quality, and yield of crop plants (Gomes 
et al. 2018a, b; Yao et al. 2019). Bacterial communities 
are the most leading and copious microbes in the 
phyllosphere (Wallace et  al. 2018), while pathogenic 
fungi are comparatively abundant (Kumar et  al. 2013a, 
b; Kashyap et  al. 2016). Several researchers reported 
Acinetobacter, Citrobacter, Bacillus, Curtobacterium, 
Frigoribacterium, Enterobacter, Methylobacteriumas, 
Erwinia, Pantoea, Pseudomonas, and Sphingomonas, etc. in 
the phyllosphere or troposphere of grapevine (Zarraonaindia 
et  al. 2015; Kecskeméti et  al. 2016). The diversity of 
cultured yeasts genera Sporobolomyces, Cryptococcus, 
Dioszegia, prototypes, leucosporidium, Rhodotorula, and 
Cystofilobasidium usually present in the phyllosphere 
region of various crops (Kucharska et  al. 2020). The 
Sphingomonads and Methylobacteria were reported as 
the most dominant genera over the maize leaf microbiome 
(Wallace et al. 2018).

The phyllosphere microbiome is established by the 
environment such as soil, water, seed, and air and acclimates 
to plant tissue, which shapes the community composition. 
The functional relationship between the different crops and 
their phyllosphere microbial community is still required to 
understand different molecular approaches.

Endosphere‑associated microbial communities

Endosphere is the internal region of the plant tissues, 
such as root, shoot, leaves, flowers, and fruits. Endophytic 
microbes are chief constituents of crop microbiomes that 
reside within different plant tissues without triggering 
disease symptoms. Endophytes live symbiotically within 
the plant tissue or interact with different microbes within 
the plant tissues, including epiphytes, mycorrhizal fungi, 
symbionts, pathogens, saprotrophs, etc. (Rai et al. 2020). 
The entrance of endophytic microbial community inside 
root tissues frequently happens through either passive 
mechanism (root cuts or beginning points of lateral roots) 
or active mechanisms which further spread via xylem 
vessel to different sections of the crop, such as stem, 
root, leaves, flower, and fruits (Compant et  al. 2010). 
Crop roots are colonized by a broad range of bacterial 
endophytes, such as Actinobacteria, Bacteroidetes, 
Firmicutes, Proteobacteria, Verrucomicrobia, etc. (Burns 
et al. 2015; Faist et al. 2016). Edwards et al. (2015) found 
Rhizobiaceae, Streptomycetaceae, Comamonadaceae, and 
Bradyrhizobiaceae as the dominant families in rice roots. 
The significance of endophytes comprises a vast and unseen 
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element of fungal biodiversity, and they accomplish different 
roles in plant development, stimulation of disease resistance 
responses in the plant, as well as alleviation to biotic or 
abiotic stresses through the production of antagonistic, 
antimicrobial, and signaling molecules (Atugala and 
Deshappriya 2015; Durán et al. 2018; Kapadia et al. 2021). 
Endophytes affect plant health, growth, and yield by 
regulating the synthesis of enzymes, phytohormone (Khan 
et al. 2015), and antimicrobial compounds (Aramsirirujiwet 
et al. 2016; Tian et al. 2017).

Multifaceted function of microbes in crop 
microbiome

Microbes are found to be closely connected with soil and 
plant functions like soil biogenesis, organic matter degrada-
tion, nutrient mobilization, and enhancement in plant yield 
(Santos and Olivares 2021). The wide varieties of different 
microbes and healthy plants coexist naturally and develop 
a complex microbial network that directly influences plant 

growth and productivity. Microbes associated with the crop 
microbiome have an either neutral or beneficial effect on the 
plants’ health that includes augmented nutrient availability/
acquisition (van der Heijden and Hartmann 2016; Kannepalli 
et al. 2021), disease suppression (Hong et al. 2020), high tol-
erance to abiotic stresses (Agler et al. 2016a, b; Meena et al. 
2017; Kour and Sayyed 2019; Nasab and Sayyed 2019), 
induction of systemic resistance (Reshma et al. 2018), and 
adaptation to climatic changes and enhanced of the root col-
onization (Haney et al. 2015; Fallah et al. 2021) (Fig. 1). The 
rhizospheric and endophytic microbial communities actively 
participate in different beneficial activities (Cai et al. 2016; 
Zhu et al. 2016a, b; Sagar et al. 2020a). Several researchers 
have explored various crops microbiome organization and 
function in natural and agricultural environments, such as 
Arabidopsis thaliana (Schlaeppi et al. 2014), barley (Bulgar-
elli et al. 2015), soybean (Rascovan et al. 2016; Jabborova 
et al. 2020), corn (Lupatini et al. 2017; Kusale et al. 2021), 
wheat (Chen et al. 2018; Rossmann et al. 2020; Najafi et al. 
2021; Kusale et al. 2021), and rice (He et al. 2019; Suriani 
et al. 2020). Recently developed biotechnological techniques 

Fig. 1   Crop microbiome and role of associated microbes in the 
reshaping of micrbiome through different functional responses. 
Mechanism employed by microbes of microbiome to enhance plant 

growth, abiotic/biotic stress resistance and improving yield by nutri-
ent uptake under changing climatic
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can explore the diversity and functions of crop microbiomes 
(Table 1).

Nutrient mobilization

The major biogeochemical cycles (nitrogen, carbon, sulfur, 
and phosphorus) are vital constituents of an ecosystem. 
They are interlinked to geological, chemical, and 
biological processes, such as N2 fixation, photosynthesis, 
soil fertility, and organic matter decomposition that 
establish a sustainable environment (Finzi et al. 2011). The 
microbial community of different crops plays a dynamic 
role in managing soil nutrient cycling through enhanced 
mobilization and uptake of nutrients to plants. In another 
report, fungal communities are dominant in biodegradation 
that helps in plant nutrition improvement in plant biomass 
(Khan et al. 2016; Sarkar et al. 2021). Several researchers 
reported nutrient mobilization and solubilization of 
insoluble minerals via fortification of a single or group 
of microbes, i.e., Arbuscular Mycorrhizal Fungi (AMF) 
solubilize phosphate and improve the bioavailability of P 
to the plants (Sharma et al. 2016; Giovannini et al. 2020; 
Bastami et  al. 2021). Inoculation of a mixture of AM 
fungi, Penicillium spp., and native microbial community 
encouraged positive effects on nutrition and development 
in legumes and cereals, rhizobia with AMF (Wang et al. 
2011), or even with the tripartite inoculation (three different 
organisms) with AMF-Rhizobium-P-solubilizing fungus 
(Meng et al. 2015; Zhu et al. 2016a, b). Researchers have 
focused on isolation, characterization, and development 
of multifunctional microbial consortia that include free-
living nitrogen-fixing (NF) with higher capabilities to 
enhance efficient nitrogen (N) uptake and thus plant growth 
and yield (Vassilev et al. 2015; Morella et al. 2020). For 
instance, coinoculation with Pseudomonas aeruginosa 
GRC2 and Sinorhizobium meliloti RMP with chemical 
fertilizers, including urea and phosphate fertilizers, caused 
nutrient mobilization, growth improvement, and productivity 
in Brassica juncea (Maheshwari et al. 2010). Likewise, 
the interest in developing microbial consortia quenches 
the thirst for nutrient cycling and sustainable agriculture 
by exploring the different microbiome. The inoculation 
with NF bacteria and native microbial community of 
Azospirilum spp., Azotobacter spp., Sinorhizobium spp., 
and Burkholderia spp. significantly enhanced yields in 
various essential agriculture crops (Shoghi-Kalkhoran 
et al. 2013). Exopolysaccharide (EPS) producing microbes 
recover soil structure and aggregation (in stress conditions), 
as result of that the process of entrapping and mobilization 
of nutrients increased as well as enhanced water retention 
capacity observed (Rashid et al. 2016; Acosta-Motos et al. 
2020). Exploring crop microbiome and associated microbial 
community involved in multifunctional plant growth 

mechanisms and their motivated research help develop 
microbial consortia (Rai et al. 2020).

Plant growth promotion

The participants of the crop microbiome exert positive, 
neutral, and negative effects on plant growth and 
development through direct or indirect mechanisms. The 
direct mechanisms of plant growth promotion by PGPR 
are mediated through the production of phytohormone, 
nitrogen fixation, and mineral solubilization (Rai et al. 
2019a; Manasa et al. 2021; Nithapriya et al. 2021). Several 
researchers reported colonization of diverse bacterial 
communities associated with soybean and wheat that 
displayed growth-promoting properties of plants were 
Arthrobacter sp., Bacillus sp., Erwinia sp., Pseudomonas 
sp., Paraburkholderia sp., and Pantoea sp. (Rascovan et al. 
2016; Sagar et al. 2018). Several researchers described the 
role of Trichoderma sp. in releasing different bioactive 
compounds like antioxidants, phytohormones, enzymes, 
and plant elicitors like phytoalexins and phenols. They 
found that these elicitors help improve tolerance to abiotic 
stress and root proliferation (López-Bucio et al. 2015; Rai 
et al. 2020). Mycorrhizal fungi are the other best example 
of microbiome-associated microbes that stimulate plant 
growth and support through diverse mechanisms (Zhu 
et al. 2016a, b).

Disease management

The plant mycobiome serves as a defensive shield to 
counter plant pathogens (Agler et al. 2016a, b) through 
direct encounter or indirect interactions via different 
mechanisms, such as parasitism, competition for space/
nutrients, and initiation of systemic resistance in response 
to biotic and abiotic stresses (Santos and Olivares 2021). 
The severity of disease incidence in the crops is influenced 
by various elements, such as crop susceptibility, the 
population size of the pathogen, environmental condition, 
and biotic factors of crop microbiome that determine the 
outcome of the interaction between crop and pathogen 
(Brader et  al. 2017). Some plant pathogens produce 
phytotoxic compounds and phytohormones that affect 
host plant growth (de Vrieze et al. 2018). The beneficial 
microbial community of the crop microbiome suppresses 
activities of pathogens and disease management (Hopkins 
et al. 2017; Berg and Koskella 2018) through different 
mechanisms like the production of antibiotics, cell 
wall-degrading enzymes, pathogen-related proteins, 
siderophores, volatile compounds, modulating plant 
hormones level, and stimulating systemic resistance of 
plant (Santhanam et al. 2015; Durán et al. 2018; Rai et al. 
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2020). In particular, some bacterial genera like Bacillus, 
Burkholderia, Enterobacter, Pseudomonas, Streptomyces, 
Paraburkholderia, Pantoea, and Paenibacillus have 
been recounted for suppression of pathogen (Gómez-
Expósito et al. 2017; Schlatter et al. 2017; Sagar et al. 
2020a). Trivedi et al. (2017) recognized three bacterial 
taxa belonging to Acidobacteria, Firmicutes, and 
Actinobacteria that controlled the invasion of Fusarium 
wilt and inhibited phytopathogen. Durán et  al. (2018) 
recounted the role of the endosphere bacterial community 
against Gaeumannomyces graminis by producing a 
wide range of secondary metabolites. Several studies 
(Contreras-Cornejo et  al. 2016; Zeilinger et  al. 2016) 
revealed that filamentous fungi mitigate biotic stress 
while improving plant life growth and health in various 
agriculture crops.

Stress tolerance

Abiotic stresses are the major restrains for sustainable 
agricultural and crop yield. Changing climatic conditions 
pose drought, salinity, acidity, low/high temperature, the 
addition of heavy metals, and deprivation of nutrients 
(Meena et  al. 2017). Plants frequently cope with these 
adverse environmental situations by changing or 
re-programming metabolic mechanisms (Santos and 
Olivares 2021). A microbial's inherent metabolic and genetic 
capability makes them suitable for abiotic stress and induces 
local and systemic responses (Yuan et al. 2019; Rai et al. 
2020). In this order, the crop microbiome is more explored 
to combat these ecological stresses (Shahzad et al. 2017).

Salt tolerance

Soil salinity adversely affected the growth parameters 
of crops and reduced productivity. Though, the negative 
effect of high salt concentration in the soil can be reduced 
through several mechanisms, such as the production 
of phytohormones, antioxidants, ACC deaminase, and 
osmoprotectant by microbiome-associated microbes 
and induces plant resistance (Shahzad et al. 2017). Yuan 
et  al. (2019), the rhizospheric microbiome facilitates 
stress-tolerant capability and promotes germination and 
development/growth of Hibiscus hamabo in salinity 
conditions. Tian et al. (2017) reported a diverse group of 
bacteria from the endophytic microbiome of tomato root 
that promoted plant growth by producing phytohormone 
(IAA and cytokinin). Rascovan et al. (2016) documented 
that the rhizospheric microbiome of wheat and soybeans 
are proficient in producing ACC deaminase and IAA. Mark 
Ibekwe et al. (2017) observed the influencing impact of 
salinity on the soil and rhizospheric microbiome of spinach 
that altered the diversity of the microbial community. 

During the summer season, spinach displayed a high 
relative richness of Flavobacteriaceae, while the rainy 
season revealed the dominance of the Halomonadaceae 
family. Recently, Sagar et al. (2020a) documented the role 
of antioxidant enzymes and ACC deaminase producing 
Enterobacter sp. PR14 in alleviating salinity stress and 
enhancing the growth of rice and millets in saline soils. 
Kusale et al. (2021) found that Klebsiella variicola isolated 
from the wheat rhizosphere produced organic acid, phytase, 
siderophore, ACC deaminase, and antioxidant enzymes 
like superoxide dismutase, catalase, and glutathione 
oxidase under salinity stress conditions. In another study, 
EPS producing microbes have gained significant attention 
because of their stress tolerance potential and showed 
enhanced productivity of crops. The exact mechanism 
employed by EPS producing microbes to form a biofilm 
sheath around the roots of plants and ameliorate salinity 
induced oxidative stress (Saha et al. 2020). Sultana et al. 
(2020) concluded that significant increase in productivity 
of rice under salinity stress was observed by EPS producing 
microbes, namely Bacillus aryabhattai, Achromobacter 
denitrificans and Ochrobactrum intermedium. They 
efficiently solubilize phosphates and fix nitrogen, thus 
facilitating nutrients to salinity stressed plant and protect 
from oxidative stress.

Drought tolerance

Drought is another foremost limiting factor that adversely 
affects crop microbiome and productivity. Fitzpatrick et al. 
(2018) demonstrated that drought influences and trans-
formed the composition and diversity of rhizospheric 
microbiomes in Actinobacteria. Besides osmotic stress, the 
movement of nutrients and the presence of oxygen in the 
soil are restricted, hindering plant growth (De Vries et al. 
2020). Production of natural EPS during drought conditions 
is a well-known characteristic of microbes. EPS are found 
to be beneficial in soil humification and aggregate forma-
tion, enhanced water holding capacity, quorum sensing, and 
establishing microbial diversity in crop microbiome (Arora 
et al. 2020; Ilyas et al. 2020). Santos-Medellín et al. (2017) 
established that rice crop restructured their rhizospheric 
microbiome during drought stress and observed an abun-
dance of Actinobacteria and Chloroflexi phyla and reduc-
tion in the Acidobacteria and Deltaproteobacteria phyla 
under drought stress. Niu et al. (2018) observed significant 
increase in colonization of bacteria in root hairs and growth 
of foxtail millet under drought stress, due to EPS produc-
ing Pseudomonas fluorescens (D11, DR7) and Enterobac-
ter hormaechei (DR16). Ilyas et al. (2020) and Khan et al. 
(2020) found Bacillus subtilis and Azospirillum brasilense 
produce osmolytes (proline and sugar) and stress-induced 
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phytohormones (IAA, GA, and cytokinin) help in increased 
the growth parameters of wheat.

Tolerance to toxic metals

Metal contamination harmfully affects the agro-ecological 
environment and human health (Thakare et  al. 2021). 
Several recent studies revealed the effect of toxic metal ion 
stress, its tolerance and signaling mechanism on the plant 
microbiome, and a novel phytomicrobial strategy for metal 
stress mitigation (Tiwari and Lata 2018; Sagar et al. 2020a). 
It has been demonstrated that metal contamination limited 
the quality of water, soil, microbial community, and crops 
(Ayangbenro and Babalola 2017). The bioaccumulation of 
metals in plants causes retardation in growth, physiological 
processes, and metabolism (Dusengemungu et al. 2021). 
Patel et al. (2016a, b) demonstrated the role of PGPR in 
improving plant growth in wheat under heavy metal stress. 
Sayyed et al. (2019) demonstrated the role of siderophore 
producing Achromobacter sp. in grwth promotion in 
groundnut and reported it tolerance wide variety of heavy 
metal ion. Akhtar et al. (2021) demonstrate Bacillus cereus 
heavy metal (Cr+3) tolerance potential that can be used for 
plant growth as well as phytostabilisations of Brassica nigra 
in chromium contaminated soils. Similarly, Hassan et al. 
(2017) observed that plant growth-promoting rhizobacteria 
(Bacillus cereus and Psuedomonas moraviensis) could 
alleviate toxicity of metals (Cu, Cr, Co, Cd, Ni, Mn, Pb) 
and promote the growth of wheat under saline condition. 
Tripathi et  al. (2015) suggested that Trichoderma-
inoculated chickpea could alleviate As stress through the 
As-methylation process.

Approaches and application of microbiome

However, due to inadequate knowledge of plant-associated 
microbiome composition, diversity, and functionality, 
recently developed approaches need to explore up to depth. 
The modern molecular approaches, such as -omics/meta-
omics approaches (genomics, epigenomics, transcriptomics, 
metatranscriptomics, proteomics, and metabolomics), 
system biology, nano-biology, and rhizho-engineering, are 
exploited to identify the functional microbial communities 
with plant and soil as well as exploited different ability 
of microbes for different purposes (Aguiar-Pulido et al. 
2016; Foo et al. 2017; Castle et al. 2018). In this order, 
Ahmed et al. (2018) demonstrated metagenomic profiling 
of saline soil microbiome to explore community structure 
and novel genetic elements of uncultivable microbes, can 
provide information about osmoadaptation mechanisms. 
The literature shows numerous success stories of the use 
of metabolomics technique to explore metabolic functions 
of plant/microbe in soil (Hu et  al. 2018; Zhao et  al. 

2019; Bertola et  al. 2021). Bernardo et  al. (2019) used 
metabolomics and showed mycorrhizal fungi inoculated 
wheat plant is able to tolerate water stress through 
modulation of oxidative stress and increased production 
of phytohormone. Hence, metabolomics approach helps 
in re-programming of metabolites in crop microbiome 
to mitigate stress, and explore physiology and metabolic 
pathways of plant that became functional during stressed 
environment. Similarly, Starke et  al. (2019) revealed 
complete protein profile of soil using metaproteomic 
profiling and showed functional genomics approach 
to explore the metabolic active microbes in soil/crop 
microbiome. This information could be a valuable indicator 
for understanding the involvement of specific dominant 
group of microbes involved in crop improvement and stress 
tolerance (Abiraami et al. 2020). The microbial biodiversity 
of soil microbiome, using metagenomic high-throughput 
screening, has identified genes that play their role in stress 
resistance and bioremediation (Chandran et  al. 2020). 
Bonini et al. (2020) explored phytohormone and secondary 
metabolites profiling using metabolomics, when sweet 
pepper plants have been inoculated with biostimulants. The 
authors reported enhanced plant and fruit yields, elevated 
production of phytohormone, and secondary metabolites. 
In another study, proteomics sequencing has been carried 
out to study the enzymatic activity and metaproteome of 
the rhizosphere when biostimulants applied to maize seeds 
(Mattarozzi et al. 2020). This approach is used to understand 
crop effects and help to designing of future bioformulations 
for stressed mitigation in plant and crop productivity. Nan 
et al. (2022) investigate microbial diversity of saline-alkali 
soil, using high-throughput sequencing technique for better 
understanding of the mechanisms and micro-ecology of 
soil/plant microbiome. Thus, the implication of evolving 
approaches involved in search of novel micro-organisms 
having enhanced nutrition availability, plant’s growth 
promotion, biocontrol, and disease resistance ability that 
is currently acknowledged as bioformulations in crop 
microbiomes (Pascale et al. 2020).

Recent modern approaches and its application 
overcome the conventional constraints and explore host/
microbe-derived molecules responsible for the network 
communication, keystone species, analyze metabolic 
mechanisms of plant–microbe nutrient exchange, and 
enhanced crop yield and fitness in different ecological 
conditions (Song et al. 2020; Trivedi et al. 2020). Several 
applications of microbiome studies were applied, viz., 
next-generation sequencing and multilocus barcode 
approaches for investigation of microbial diversity in crop 
microbiome, search of novel species with multifarious 
function, development of bioformulation, nano-formulations 
from host/microbe-derived molecules, and synthetic 
administration of microbes with beneficial function in crop 
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microbiome with the help of rhizho-engineering (Santos and 
Olivares 2021; Glick and Gamalero 2021).

Constraints/limiting factors

Crop microbiome comprises wide group of micro-organisms 
that execute selection of the communities to reshape the 
structure, maintain composition of microbiome, and perform 
different functions. A number of factors are contributed to 
maintain the composition of crop microbiome, like plant 
density, genotype of host, climatic conditions, mobilization 
of minerals, soil composition and type, agricultural 
practices, nutrient availability, interaction between nexus of 
microbes, and interactions with other external microbiomes 
(e.g., soil fungi and bacteria), (Nilsson et al. 2018). These 
complex microbiome micro-organisms are strongly 
influenced by factors like host, interaction of microbes in 
microbiome, and environmental conditions (Dastogeer et al. 
2020). Host factor effect the crop microbiome, comprises 
crop species, host genotype, developmental stage and age 
of host, host secreted exudates and metabolites, and host 
immune system (Wagner et al. 2016; Agler et al. 2016a, 
b; Cai et al. 2017). Microbial factor that shaping the crop 
microbiome structure and modulate microbiome functioning 
includes microbe-derived compounds, intra- and inter-
species interaction, and keystone species (Banerjee et al. 
2018; Schlechter et al. 2019). Another most driving factor 
of crop microbiome is environmental elements, such as, soil 
composition, type, and pH, farming practices, and climatic 
factors (Agler et al. 2016a, b; Estendorfer et al. 2017). The 
dynamics and function of microbiome has stimulated to 
explore these constrains, their effect on microbiome, and 
how recent approaches overcome these problems.

Molecular and omic techniques in the exploration 
of crop microbiome

The crop microbiome is a complex nexus of plant–microbe 
interaction, which comprises almost 99% non-cultivated, 
uncharacterized microbes that are still unrevealed. A broad 
range of molecular approaches has been applied to quan-
tify, identify, detect, and reveal the mechanism of pathogenic 
microbes associated with the rhizosphere, phyllosphere, and 
endosphere. The traditional approaches were centered on 
cultivated microbes and morphological identification-based 
techniques used to explore the plant mycobiome. However, 
the limitation of traditional methods is time-consuming, 
lengthy, pure culture-dependent, and requires extensive 
knowledge of classical taxonomy. These factors make them 
unable to enumerate pathogen population and inability to 
accurately quantify the disease-causing mechanism of the 
pathogen, which forces to search some alternative techniques 
(Rai et al. 2020; Santos and Olivares 2021). The detection, 

diagnosis, and identification of the hidden role of crop 
microbiome need sensitive, rapid, and précised methods 
(Rai et al. 2020). These limitations and innovative findings 
of microbiome research have led to the development of new 
molecular and omics techniques combined with novel micro-
scopic methods for improved, accurate, and reliable insights 
into crop microbiome (Nilsson et al. 2018) (Table 2, Fig. 2).

The advanced molecular techniques, metagenomics, 
transcriptomics, proteomics, metabolomics, imaging 
techniques with analytical tools, and high-throughput 
sequencing studies explored the root colonization by 
microbes that provide evidence about the fluctuations in 
expression of up-regulated plant genes to stress conditions 
(Rai et  al. 2020). Further studies have concentrated on 
rhizospheric microbes, though very little information 
is gathered about the interaction between phyllosphere 
and endophytic microbes. The phyllosphere microbe is 
commonly explored through culture-dependent approaches. 
Similarly, most endophytes are not culturable, but their 
function directly affects plant fitness through different 
mechanisms. That is why, molecular techniques have 
been essential for identification (Kumar et al. 2013a, b) 
and confirmed that many endophytes coexist with other 
functional groups in the microbiome. In this consequence, 
endophytes' ecological and functional roles in maintaining 
microbiome structure, richness, organization, and diversity 
are vital for plant development and existence (Rai et al. 
2020; Santos and Olivares 2021). Rapid progress in 
oligonucleotides sequencing technologies and comparative 
"OMICs" approaches, such as genomics, proteomics, 
transcriptomics, and metabolomics, now assists us to 
explore the mycorrhizal association with crops, reconnecting 
taxonomic and phylogenetic profiles and their exclusive 
functions in respect of plant growth (Meena et al. 2017).

The culture-dependent technique comprises the 
sequential process, the first isolation of organisms into the 
pure culture, characterization based on morphology and 
biochemical utilization, and then taxonomic identification 
through gene-based or whole-genome sequencing, but most 
culture-independent microbes are ignored due to their not or 
sluggish growth appearances in culture (Nesme et al. 2016; 
Rai et al. 2020; Santos and Olivares 2021).

Numerous advanced molecular techniques have been 
upgraded; this includes direct amplification of oligonu-
cleotide from the bulk soil/rhizhospheric soil, characteri-
zation of microbial genus and species, multilocus barcode 
approaches, live function analysis of microbes inside plant 
tissues through GFP tagged confocal imagining, endo-
phytic microbiome visualization by fluorescence in situ 
hybridization and microscopy (Hardoim et al. 2015), and 
next-generation sequencing (Berg et al. 2016; Nesme et al. 
2016; Rai et al. 2020). To fingerprint the leading microbial 
species at diverse taxonomic levels, functional single-strand 
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conformation polymorphism (SSCP), or denaturing gradi-
ent gel electrophoresis (DGGE). Quantification of micro-
bial biomass from different plant tissues can be attained by 
real-time PCR techniques that are significantly influenced 
by the cell number, size, and type and a group of fungus 
and necessitate wide-ranging calibration for pure cultures 
of each species (Tellenbach et al. 2010).

The innovation of evolving molecular technologies helps 
gather knowledge about the culture-independent microbial 
species, but those microbes' ecological associations and 
nutritional modes are still thought-provoking for scientists 
(Tedersoo and Nilsson 2016). Oligonucleotide sequencing 
methods evolved from sequencing single specimens to 
parallel. Sanger sequencing helped explore the unseen 
mycobiota and its richness, structure, functioning, and 
significance. NGS technologies continue to progress, and 
the third-generation sequencing more precisely and provides 
more extraordinary read lengths than earlier generations 
(Song et al. 2015; Rhoads and Au 2015; Nilsson et al. 2018). 
This review concisely discusses the application of recently 
developed molecular techniques that interpret the study of 
the microbial community associated with different crops 
regarding taxonomic profiling and their role in exploring 

microbiome structure, component, function, signaling 
mechanism, and ecosystem functioning.

Approaches of crop microbiome and sustainable 
agriculture

A major challenge for sustainable agriculture is to 
fulfill global food demand with increasing population; 
simultaneously, the farmers face unpredictable climatic 
changes, nutritionally depleted and contaminated soils, 
poor agricultural practices, reducing pesticides and 
chemical fertilizers, and water scarcity. The explored 
crop microbiomes are the best alternative for sustainable 
agriculture in this scenario. The crop microbiome provides 
niches and nutrients, while the beneficial microbes 
promote plant growth, nutrition, and abiotic and biotic 
stresses mitigation. In this order, several researchers have 
been investigating the structure, function, and influencing 
factors of the crop microbiome; as a result, they explored 
the complex relation of plant–microbe interactions, 
signaling molecules, and biotic and abiotic constraints 
approaches that reshape microbiome through recent 
advanced techniques. The advanced biotechnological 

Fig. 2   Illustration of different molecular techniques to explore the 
crops microbiomes and representing diversity, functionality, abun-
dance and shifts according to changing seasons. New metagenomic 

and transcriptomic approaches helps to identify uncultivable micro-
bial genes that expressed in plants during biotic and abiotic stress tol-
erance
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approaches such as DNA and RNA sequencing, 
comparative genomics, transcriptomics, proteomics, 
and metabolomics gathered information about the crop 
microbiome that modulate the structure, functioning, 
influencing factors, signaling molecules, and mechanisms 
of microbiomes; further, this knowledge will be applied to 
reshape the microbiome for sustainable agriculture.

The key findings of microbiome studies demonstrate the 
role of beneficial microbes, biotic and abiotic elements that 
regulate the structure, richness, and biodiversity of crop 
microbiomes through biotechnological approaches. These 
approaches amalgamate culture-dependent/independent 
techniques to characterize microbiome-associated commu-
nity to single isolate, pathogenic to beneficial and validated 
the effects of beneficial microbes either single or in combi-
nation as bioinoculants in different plant species (Fig. 3).

The plant microbiome can be explored by 
biotechnological approaches, isolates by cultivation-
dependent techniques, and culture-independent isolates by 
sequencing of oligonucleotides, which suggests the profile 
of the complete associated microbes of the microbiome. If 
showing a beneficial effect on plants, these microbes are 
further used as bioformulations/bioinoculants, either single 
or in a combination of isolates. These two methodologies 
must be joined together to recognize, isolate, and 
characterize the chief participants of the microbiome, who 

will have their practical skills tested in greenhouse and field 
experiments.

Crop microbiome combined with nano-particles can 
be used as nano-biofertilizers and nano-biopesticides. 
Nano-biofertilizers and nano-biopesticides are now getting 
attention in the agricultural sector of developing countries. 
Nano-particles stimulate various defense mechanism in 
plants facing stress conditions. The use of nano-particles 
has numerous merits due to their high surface area, high 
solubility, and low molecular weight. Nano-biofertilizer is 
produced through the combination of nano-particles and 
biofertilizers. It is the technique in which biofertilizers are 
encapsulated within a suitable nanomaterial. They release 
the nutrients in the soil in a controlled manner and reduce 
the side effects of environmental stresses. They decrease 
the use of chemical fertilizer, improve the availability and 
uptake of the nutrients, are eco-safe, and are cost-effective 
(Eliaspour et al. 2020; Pudake et al. 2019). It was observed 
that nano-particles have a direct and indirect effect on 
plant–microbe interaction; direct mode includes the 
availability of nutrients in the rhizosphere, while indirect 
mode way includes the stimulating effects on bacterial 
strains (Timmusk et al. 2018). It was reported that the use 
of only 75 ppm CeO2-nanocomposite significantly enhanced 
the length of Trigonella foenum-graecum. Therefore, the 
use of very little amount gave pronounced results (Mary 

Fig. 3   Application of different biotechnological approaches that implement knowledge of microbiomes into useful biological products
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et al. 2022). Nano-biofertilizer has the dual properties of 
bioinoculants and nano-particles that enhance the chances of 
crops establishment. They maintain the delivery of nutrients 
at the target destination (Elnahal et al. 2022;) and help in 
combating metal phytotoxicity (Fatima et al. 2020).

Conclusion and future prospects

The adverse effect of rapid climate change, soil degradation, 
and ecosystem imbalance has affected agricultural yield and 
posed a global threat to food security. Crop microbiomes are 
the best alternative for sustainable agriculture and ecosystem 
management in this scenario. The crop microbiome is highly 
diverse, complex, and shaped by multiple factors responsible for 
community assembly, microbial interactions, and functioning. 
The restless research in the last few decades drags new focus 
on investigating and exploring crop microbiome. This review 
examined the nexus of crop microbiome, their management, 
and advanced technologies to overcome the constraints in their 
functioning. The diversity, complexity, functionality, and precise 
mechanism of the signal exchange process, root exudation, 
microbial colonization, and secretion for disease suppressive 
metabolites are revealed at an advanced level with the help of 
combined approaches, such as biochemical, molecular, imaging, 
and "omics" approaches. In this order, the search for potential 
microbes to increase plant growth, fitness, stress resilience, 
soil fertility, and the development of microbial formulations/
inoculants is on-demand. Despite the various functions of 
bioformulations, several constraints, including shelf-life, specific 
function in reshaping the microbiome, and survival of inoculated 
strain(s), are still a question for its application in the real 
farming system. Therefore, multi-omics approaches may lead 
to a search of potential microbes to develop effective microbial 
consortia that reshape and regulate the function/growth of 
other members of the crop microbiome. The emerging models' 
development (SynComs-Synthetic microbial communities 
and “Culturomics”-Culture-based methods) that perform 
successfully in the field favor sustainable agricultural practices 
and plant breeding approaches (Saad et al. 2020; Mitter et al. 
2021). The development of advanced multi-omics approaches 
driving the understanding of plant-associated functional genes. It 
describes how these essential microbial genes and pathways that 
mediate pathogenic, beneficial, and commensal host interactions 
are relevant information for developing potential formulations 
and delivery approaches in the field. Microbiome engineers 
implement this information to design and establish long-lasting 
inoculants in the microbiome to support bioformulations 
developing agencies and sustainable agriculture.
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