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Abstract
Main conclusion Coffea karyotype organization and evolution has been uncovered by classical cytogenetics and 
cytogenomics. We revisit these discoveries and present new karyotype data.

Abstract Coffea possesses ~ 124 species, including C. arabica and C. canephora responsible for commercial coffee produc-
tion. We reviewed the Coffea cytogenetics, from the first chromosome counting, encompassing the karyotype characteri-
zation, chromosome DNA content, and mapping of chromosome portions and DNA sequences, until the integration with 
genomics. We also showed new data about Coffea karyotype. The 2n chromosome number evidenced the diploidy of almost 
all Coffea, and the C. arabica tetraploidy, as well as the polyploidy of other hybrids. Since then, other genomic similarities 
and divergences among the Coffea have been shown by karyotype morphology, nuclear and chromosomal C-value, AT and 
GC rich chromosome portions, and repetitive sequence and gene mapping. These cytogenomic data allowed us to know and 
understand the phylogenetic relations in Coffea, as well as their ploidy level and genomic origin, highlighting the relatively 
recent allopolyploidy. In addition to the euploidy, the role of the mobile elements in Coffea diversification is increasingly 
more evident, and the comparative analysis of their structure and distribution on the genome of different species is in the spot-
light for future research. An integrative look at all these data is fundamental for a deeper understanding of Coffea karyotype 
evolution, including the key role of polyploidy in C. arabica origin. The ‘Híbrido de Timor’, a recent natural allotriploid, 
is also in the spotlight for its potential as a source of resistance genes and model for plant polyploidy research. Considering 
this, we also present some unprecedented results about the exciting evolutionary history of these polyploid Coffea.

Keywords Classical cytogenetics · Coffee · Cytogenomics · DNA content · Molecular cytogenetics · Plant breeding · 
Polyploidy

Introduction

Coffee is one of the most important beverages worldwide, 
with more than 2.25 billion cups consumed daily (Denoeud 
et al. 2014). More than 75% of traded coffee is produced 
by Coffea arabica L. and 35% by Coffea canephora Pierre 
ex A. Froehner. Coffea L. (Rubiaceae) genus has a recent 
origin (7.87 Mya, Tosh et al. 2013) and includes more than 
124 species native to Africa, Australasia, Comoros, India, 
Madagascar, Mascarenes and Papua New Guinea. Almost 
all diploid (2n = 2x = 22) species are self-incompatible, with 
few exceptions, such as C. anthonyi Stoff. & F. Anthony. C. 
arabica is the only polyploid in the genus, with 2n = 4x = 44 
chromosomes, and is self-compatible (Hamon et al. 2017).
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Cytogenetics concerns genomic and epigenomic aspects 
of the chromosomes, including the number, structure, 
organization, function, evolution, and behavior during the 
cell cycle and meiosis (Singh 2016; Deakin et al. 2019). 
Coffea cytogenetics was initiated in the early twentieth cen-
tury with the work of von Faber (1912). As in other plant 
species, limitations have hampered the cytogenetic inves-
tigations in Coffea. The main problem has been to obtain 
mitotic and/or meiotic chromosomes, i.e., the biological 
material to conduct cytogenetic studies. Even today, one of 
the main challenges is to seek alternatives to obtain Coffea 
chromosomes, mainly to cytogenomic experiments involv-
ing in situ hybridization applications. In addition, the small 
size of the chromosomes and low metaphasic index from 
root meristems also hampered Coffea cytogenetics. The 
further advance of protocols allowed the progress in Cof-
fea chromosome complement research, such as the analysis 
of pachytene chromosomes (Pinto-Maglio and Cruz 1987), 
improved methods for mitotic chromosome preparation and 
the replacement of root meristems by cell aggregate sus-
pensions (CAS, Clarindo and Carvalho 2006). From this, 
karyotype has been expanded and refined, contributing to 
a better understanding of the Coffea genome. So, Coffea 
cytogenetics is important for taxonomic and evolutionary 
studies, DNA sequence mapping, functional genome anno-
tation (Hamon et al. 2009; Yuyama et al. 2012) and coffee 
breeding programs (Clarindo and Carvalho 2009). In this 
review, we revisited all cytogenetic Coffea studies to report 
the advances and contributions in this genomic era, as well 
as the main challenges and perspectives for further studies. 
In addition, we report new data about the 2n karyotype of 
the diploid C. eugenioides and the polyploid “Híbrido de 
Timor '' (HT), expanding the genomic data about Coffea and 
its diversification and evolution.

Initial steps—chromosome number determination

The first chromosome counting in a Coffea from micro- 
and megasporogenesis evidenced that C. arabica shows 
2n = 16 chromosomes (von Faber 1912). Twenty years 
later, Homeyer (1932) counted 2n = 22 chromosomes for 
the same species. Based on chromosome numbers of other 
Rubiaceae genera, such as Sherardia L., Crucianella L., 
Asperula L. and Galium L., Homeyer suggested the basic 
chromosome number of x = 11 for Coffea. Most striking 
breakthroughs in Coffea cytogenetics were achieved in the 
1930s, mainly at the Instituto Agronômico de Campinas, 
Brazil, and by French and Belgian researchers. Krug (1934) 
reported 2n = 44 chromosomes for five C. arabica varie-
ties (‘Nacional’, ‘Bourbon’, ‘Laurina’, ‘Maragogipe’ and 
‘Amarelo de Botucatu’) and 2n = 22 for C. canephora, Cof-
fea liberica Hiern and Coffea congensis A. Froehner, con-
firming the basic chromosome number of x = 11. Therefore, 

from the 2n chromosome number, C. arabica was noticed 
as a tetraploid species of Coffea (Krug 1934) and started to 
stand out not only for its economic relevance but also for the 
genomic events involved in its karyotype evolution. Despite 
being a tetraploid, C. arabica demonstrates a diploid mei-
otic behavior, forming only bivalents from prophase I until 
metaphase I. Although Krug did not carry out a detailed 
morphological analysis, he described the Coffea chromo-
somes as small (approximately 1–2 µm) and homomorphic. 
Due to these karyotype features, some cytogenetic applica-
tions have been applied to characterize the chromosomes 
and to understand the evolution of the Coffea genome. In 
the following years, the chromosome number of many other 
species, varieties and hybrids of Coffea was determined as 
2n = 22 or 2n = 44 (Krug 1937; Mendes 1938; Bouharmont 
1959, 1963; Sybenga 1960; Conagin and Mendes 1961).

Karyotype morphology and the first karyograms

Coffea chromosomes have been considered a hindrance for 
karyogram assembly due to their small size and high similar 
morphology. Mendes (1938) was the first to report a mor-
phological characterization of Coffea chromosomes, describ-
ing solely those of Coffea liberica ‘Dewevrei’ (De Wild. & 
T. Durand) Lebrun (syn. Coffea excelsa Chev.). Although 
C. liberica ‘Dewevrei’ chromosomes were larger compared 
to those of other Coffea species, they were also considered 
small and morphologically, ranging from 3.5 (chromosome 
1) to 1.5 µm (chromosome 11). Only three classes of chro-
mosomes were distinguishable based on their total length, 
being designated as A, B and C. Class A was composed of 
three chromosome pairs with 2–3.5 µm, class B of four pairs 
with around 2 µm, and class C of four pairs with 1–2 µm 
(Mendes 1938). Bouharmont (1959, 1963) determined the 
number and length of the mitotic chromosomes of sixteen 
Coffea species, characterizing them as small and homomor-
phic and highlighting the hypothesis that the Coffea basic 
chromosome number is x = 11. Owing to the high intra- and 
interspecific similarity among chromosomes, the author was 
only able to distinguish five (1, 2, 3, 4 and 11) of the eleven 
chromosomes.

Pachytene chromosomes allowed to overcome the hin-
drance associated with the small size of mitotic metaphase 
chromosomes. Pachytene chromosome characterization 
bearing the NOR provided insights on the C. arabica poly-
ploid origin, by comparing the bivalent morphology with 
those of diploid species. One C. arabica NOR bivalent was 
similar to the Coffea eugenioides S. Moore and C. liberica 
‘Dewevrei’ with regard to total and arm lengths. The other 
C. arabica NOR bivalent showed a simpler chromomeric 
pattern, most similar to the bivalents II of Coffea salvatrix 
Swynn. & Philipson and Coffea racemosa Lour (Pinto-
Maglio and Cruz 1987).
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C. arabica 22 pachytene chromosomes were after char-
acterized, being four metacentric (1, 8, 11 and 18), fourteen 
submetacentric (2, 3, 4, 5, 6, 7, 9, 10, 12, 15, 16, 17, 19 and 
20) and four acrocentric (13, 14, 21 and 22) chromosomes. 
Three bivalents presented the NOR (14, 20 and 21). In gen-
eral, the chromomeres were located near the centromere, and 
similarities concerning the chromomeric pattern were shown 
among 54% of the 22 bivalents of C. arabica, evidencing 
some level of homoeology between them. Based on these 
cytogenetic markers and by gathering information from the 
bibliography, the authors suggested that such similarities 
among C. arabica bivalents are consistent with a segmental 
allopolyploid origin (Pinto-Maglio and Cruz 1998). So, the 
mitotic cytogenetics showed the ploidy level of the Coffea 
species, mainly the tetraploidy of C. arabica, and the meiotic 
cytogenetics indicated the genomic origin of this species. 
Unfortunately, new data has not been published about the 
Coffea meiotic chromosome.

Besides the small size and homogeneous morphology of 
Coffea chromosomes, the low seed germination rate and low 
metaphase index have also been pointed out as hindrances 
for cytogenetics (Conagin and Mendes 1961; Iacia and 
Pinto-Maglio 2013). To overcome this barrier, our research 
group (Clarindo and Carvalho 2006, 2008, 2009; Clarindo 
et al. 2012) replaced the root meristems by in vitro CAS as 
material source (Box 1, Fig. 1). Thereby, high metaphase 
indexes for C. canephora, C. congensis, C. eugenioides and 
C. arabica have been achieved, allowing to obtain chromo-
somes with total lengths of up to 5 µm (5.30 µm for chromo-
some 1 of C. arabica, for instance, Clarindo and Carvalho 
2008). Such chromosomes were suitable for the assembly of 
the first karyograms at distinct levels of chromatin conden-
sation, as well as the application of banding procedures. C. 
canephora and C. congensis possess 2n = 2x = 22 chromo-
somes, with two metacentric (4 and 9) and nine submeta-
centric pairs (1, 2, 3, 5, 6, 7, 8, 10 and 11). The submetacen-
tric chromosome pair 6 of both species shows a secondary 
constriction (SC) in the short arm, which was confirmed 
for C. canephora by Ag-NOR and Hsc-FA. C. arabica has 
2n = 4x = 44 chromosomes, being 5 pairs classified as meta-
centric (7, 8, 13, 14 and 20), 16 as submetacentric (1–6, 
9–12, 15–19 and 21) and one pair as acrocentric (22).

“Híbrido de Timor '' (HT), a natural hybrid between C. 
canephora and C. arabica, had its karyotype character-
ized and karyogram assembled by our adapted protocol. 
The semi-fertile HT ‘CIFC 4106’, a vegetatively propa-
gated accession derived from the original HT plant, shows 
2n = 3x = 33 chromosomes. Therefore, it was considered an 
allotriploid (Clarindo et al. 2013). We classified the chro-
mosomes, assembled the HT ‘CIFC 4106’ karyogram and 
showed it for the first time now. Due to its anorthoploid 
condition (odd number of chromosome complements), the 
karyotype exhibits not only chromosome pairs, but also 

individual ones and groups of three or four chromosomes 
(Fig. 2). Some chromosomes appear to be more similar to 
those of C. canephora or C. arabica, providing new cytoge-
netic information regarding the allopolyploid origin of HT. 
Such evolutionary aspects of the Coffea genome and inter-
specific hybridizations throughout the history of the genus 
will be discussed in the following topics.

Box 1: A breakthrough—using plant tissue 
culture material as source of mitotic cells 
in Coffea

Plant cytogenetics is performed mainly from root meris-
tems as the source of metaphase cells. However, the low 
germination and low metaphase index observed in Coffea 
species (Conagin and Mendes 1961) are common bot-
tlenecks, which might be circumvented using plant tissue 
culture techniques. CAS have been used as an alternative 
source of mitotic cells for different Coffea species, such 
as C. canephora, C. congensis, C. arabica (Clarindo and 
Carvalho 2006, 2009), C. eugenioides (Sanglard et al. 
2019) and HT ‘CIFC 4106’ (Clarindo et al. 2013). CAS 
maintained in liquid medium display a high frequency of 
cell division, providing a suitable index of prometaphases 
and metaphases (Fowler 1984; Clarindo and Carvalho 
2006). The high rate of cell division is triggered by the 
in vitro conditions, mainly the use of the synthetic auxin 
2,4-dichlorophenoxyacetic acid (2,4-D). This growth 
regulator increases the level of endogenous auxins, pro-
moting dedifferentiation, activation of cell division and 
proliferation (Fehér et al. 2003).

Figure 1 illustrates a workflow to establish Coffea CAS 
cultures for obtaining prometaphasic/metaphasic chromo-
somes for morphometric analysis, image cytometry and 
FISH, as well as nuclei suspensions for flow cytometry. 
The procedures represented in this workflow were based 
on van Boxtel and Berthouly (1996), Praça-Fontes et al. 
(2011), Clarindo and Carvalho (2008, 2009), Clarindo 
et al. (2012) and Sanglard et al. (2019). For induction 
of the indirect somatic embryogenesis pathway, leaf 
fragments (~ 1  cm2) of a given Coffea species are inocu-
lated in Petri dishes containing semisolid callus induc-
tion medium, with the abaxial surface facing upwards 
(Fig. 1a). This medium is usually supplemented with a 
combination of 2,4-D and 6-benzylaminopurine. Calli 
with a friable aspect and pale-yellow color are visible 
within ~ 3 months (Fig. 1b). The CAS are obtained by 
transferring these friable calli to Erlenmeyer flasks con-
taining liquid callus induction medium (Fig. 1c). These 
cultures should remain in an orbital shaker at 100 rpm 
in the dark (Fig.  12c1). After around 2 months, the CAS 
can be sub cultivated and then exposed to antitubulin 
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agents (Fig. 1c2) and enzymatic maceration of the cell 
wall (Fig. 0.1c3) to obtain metaphase spreads.

For somatic embryos recovery, the friable embryo-
genic calli are transferred to conversion/maturation 
medium lacking the auxin 2,4-D. About 180 days later 
(with monthly subcultures), the calli exhibit somatic 

embryos in different developmental stages (Fig. 1d). The 
mature cotyledonary somatic embryos are transferred to 
germination medium for seedlings recovery (Fig. 1e). 
Leaf fragments from the regenerated plantlets might be 
used for nuclei isolation to produce suspensions needed 
for flow cytometry (Fig. 1f–g). These same plantlets also 

Fig. 1  Schematic representation of a workflow to establish Coffea CAS cultures for obtaining prometaphasic/metaphasic chromosomes suitable 
multiple cytogenomic analysis. More details are presented in the text from Box 1
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produce roots, which can be submitted to cytogenetic 
treatments (Fig. 1h–h2). From the CAS (c–c3) or root 
meristems (h–h2), slides are prepared by the cellular dis-
sociation and air-drying techniques (Fig. 1i), providing 
prometaphasic and/or metaphasic chromosomes suitable 
for chromosome number determination, morphometric 
characterization, image cytometry (Fig. 1j) and FISH 
(Fig. 1k).

Chromosome banding and the onset of Coffea 
cytogenomics

C- and NOR-banding were initially applied in Coffea, 
mapping the constitutive heterochromatin and NOR, 
respectively. C-bands in Coffea occur preferentially at 
pericentromeric/centromeric regions. Corroborating to 
karyotype characterization, C-banding shows the karyo-
type asymmetry of the genus, varying from 62.3% (C. 
eugenioides) and 64.32% (C. liberica), with the prevalence 
of submetacentric chromosomes. On the other hand, the 
number of active NOR sites vary, with C. kapakata, C. 
congensis, C. eugenioides, C. liberica, C. canephora and 
C. liberica var. dewevrei displaying one pair with a posi-
tive NOR band (presumably number 3), and C. racemosa, 
C. salvatrix and C. stenophylla with two positive bands in 
chromosomes 1 and 3 (Pierozzi et al. 1999, 2012; Pierozzi 
2013).

4′-6-diamidino-2-phenylindole  (DAPI+) and Chromo-
mycin  A3  (CMA3

+) differential staining have been car-
ried out in Coffea species to map the AT- and GC-rich 
regions, respectively, contributing to identify specific kar-
yotype signals in several species, even those with genetic 
or botanical status still under debate.  DAPI+ bands were 
only found in C. stenophylla among 12 analyzed Coffea 
species (Pinto-Maglio et al. 2000, 2001; Barbosa et al. 
2001; Lombello and Pinto-Maglio 2004a, b, c). After 
DNA denaturation/renaturation in a fluorescent in situ 
hybridization (FISH), specific interstitial  DAPI+ bands in 
nine Coffea species were detected.  CMA3

+ bands were 
found in all Coffea species studied so far. In general, the 

strongest  CMA3
+ fluorescence signals are associated with 

the SC and co-localized with the ribosomal DNA (rDNA) 
loci detected by FISH. Additional,  CMA3

+ bands may also 
occur adjacent to, or interspersed with, the interstitial 5S 
rDNA (Hamon et al. 2009).

Karyotype knowledge obtained from classical cytoge-
netics has been the basis for queries, which have been 
investigated mainly by cytogenomics, allowing a more 
refined Coffea genome characterization. Cytogenom-
ics made possible to: (1) discover the diploid progeni-
tors of C. arabica (Raina et al. 1998; Lashermes et al. 
1999): (2) obtain information for application in breeding 
programs (Herrera et al. 2007); and (3) obtain a larger 
amount of details on the organization and evolution of 
Coffea genomes (Hamon et al. 2009). The identity of C. 
arabica diploid progenitors has been in the spotlight of 
Coffea research since the discovery of its tetraploid condi-
tion by Krug (1934). Currently, wild C. arabica popula-
tions are found mainly in the Afromontane rainforests of 
southwest Ethiopia and the Boma Plateau of Sudan (Bawin 
et al. 2020). Although the geographic range of C. arabica 
does not overlap with that of any other Coffea species, the 
closeness with wild populations of C. eugenioides and of 
the Canephoroid species C. canephora, C. congensis and 
C. brevipes (Benth.) H.S. Irwin & Barneby, made these 
the most likely diploid progenitors. The first phylogenetic 
inferences based on chloroplast genes and rDNA con-
firmed the high genetic proximity among these species 
(Lashermes et al. 1995).

From genomic DNA probes (genomic in situ hybridiza-
tion—GISH) of four diploid Coffea species, 22 C. arabica 
chromosomes hybridized preferentially with C. eugenioides 
probes, while the other 22 chromosomes hybridized more 
strongly with the C. congensis probes (Raina et al. 1998). 
Also using GISH, Lashermes et al. (1999) suggested that C. 
canephora and C. eugenioides, or their related ecotypes, are 
most likely the two diploid progenitors of the tetraploid C. 
arabica. In a phylogenomic approach using genotyping-by-
sequencing, the genetic distances were estimated between 
C. arabica and 23 other species, including all those known 

Fig. 2  HT ‘CIFC karyogram 
4106’ evidencing individual 
and grouped chromosomes, 
which were defined according 
to the total length and classifica-
tion. 19 chromosomes (1, 4–9, 
12–14, 19, 22–24, 27, 30–33) 
showed at least one particular 
cytogenetic feature. The paired 
chromosomes were 2–3, 10–11, 
20–21, 25–26, and 28–29; and 
the chromosomes grouped in 
four were 15–18. Bar = 5 μm



 Planta (2022) 255:112

1 3

112 Page 6 of 16

as the most closely related to C. arabica, as C. eugenioides, 
C. canephora, C. congensis and C. brevipes. C. eugenioides 
and C. canephora were confirmed as the putative female 
and male progenitor species, respectively, that hybridized 
between 1.08 million and 543 thousand years ago (Bawin 
et al. 2020).

Integrating the  DAPI+,  CMA3
+ and rDNA sites mapping, 

two to five chromosome pairs were discriminated from the 
karyotypes of 16 Coffea species, including the allotetraploid 
C. arabica. However, the results were not suitable to dis-
criminate between C. canephora and C. congensis as puta-
tive progenitors. Differences of the number of 18S and 5S 
rDNA loci were revealed and related to the biogeographical 
region of the 16 analyzed species. Most of the East African 
species, as C. eugenioides, C. salvatrix and C. racemosa, 
possessed two chromosome pairs with the 18S rDNA locus 
and one pair with the 5S rDNA, while the majority of the 
West and Central African species exhibited one chromo-
some pair with the 18S and two with the 5S rDNA (Hamon 
et al. 2009).

Alien chromatin in interspecific hybrids between C. 
arabica and C. canephora, as well as in an introgressed 
line derived from C. arabica and C. liberica crossing, was 
identified from GISH and BAC-FISH (fluorescence in situ 
hybridization using bacterial artificial chromosomes). GISH 
results from the interspecific hybrids revealed close affinity 
between C. arabica and C. canephora genomes, evidenc-
ing that a low rate of structural modifications has occurred 
in both genomes since C. arabica speciation (Bawin et al. 
2020). In addition, GISH/BAC-FISH in the introgressed line 
karyotype detected and physically located the C. liberica-
introgressed DNA sequences carrying the  SH3 factor for 
resistance against Hemileia vastatrix Berk. & Broome (Her-
rera et al. 2007).

Coffea genomics and its integration 
with cytogenetics

During the 1990’s, the availability of DNA based molecular 
markers allowed a rapid progress in coffee genomics. As for 
other crops, early genomic studies in Coffea were mainly 
focused on assessing the genetic diversity and phyloge-
netic relationships, constructing genetic maps and identify-
ing quantitative trait loci (QTLs) (reviewed by Lashermes 
et al. 2008; de Kochko et al. 2010). Genetic diversity was 
investigated from several molecular markers in wild Cof-
fea species and, with a larger effort, in C. arabica and C. 
canephora. The considerably narrow genetic basis of both 
wild and cultivated C. arabica populations was the most 
relevant feature noticed by these studies (Vossen 1985; 
Lashermes et al. 1996; Scalabrin et al. 2020). This bot-
tleneck is mainly explained by the autogamous reproduc-
tion system, with a rate of outcrossing around 10%, and the 

founder effect resulted from the small number of individuals 
introduced to America in the first commercial plantations 
(Carvalho and Krug 1949; Setotaw et al. 2013). In addition, 
C. arabica origin from a single allopolyploidization event 
also contributed to the low genetic diversity observed for 
the species (Lashermes et al. 2014). Such low genetic vari-
ability is a challenge for the identification and selection of 
superior genotypes. For this, molecular markers have played 
a fundamental role as to discriminate between genotypes 
(Sousa et al. 2017). Due to low genetic variability, breeding 
programs devoted efforts on the introgression of interest-
ing genes from different species and hybrids, including C. 
canephora (Lashermes et al. 2011), C. liberica (Prakash 
et al. 2004) and HT (Setotaw et al. 2020). As the genomes 
of Coffea species exhibit considerable similarities, interspe-
cific crossing (hybridization) is possible and often used for 
gene introgression (Charrier and Berthaud 1985; Anthony 
et al. 2011).

For C. canephora, the first genetic maps were constructed 
as soon as molecular markers became available for Coffea 
(reviewed by de Kochko et al. 2010). In 2014, the most com-
plete genome sequence of C. canephora (accession num-
ber: PRJEB4211) was published along with a high-density 
genetic map constructed using several molecular markers 
and 3,230 loci distributed on 11 linkage groups, the same 
basic chromosome number of this species (x = 11). C. 
canephora genetic map was integrated with the sequenced 
genome, which covered 80% of the 710 Mbp total genome. 
There was a considerable variation in the physical:genetic 
map distances, with crossing overs occurring with higher 
frequencies in regions with lower density of repeats 
(Denoeud et al. 2014). The complexity of the C. arabica 
allotetraploid genome and its low genetic diversity were the 
main challenges to construct a high-density linkage map. 
Notwithstanding, a high-density linkage map was published 
for this species showing 22 linkage groups with 848 mark-
ers. This genetic map was also successfully used to identify 
QTLs associated with coffee yield, plant height, and bean 
size (Moncada et al. 2016).

As for the construction of genetic maps, the sequencing 
of a polyploid genome is also challenging, since the pres-
ence of homoeologous chromosomes hampers the assem-
bly of each haploid complement. C. arabica draft genome 
(public accession number: PRJNA554647) was released in 
2020, with the two component subgenomes independently 
assembled. In accordance with previous studies reported 
here, a low genetic diversity was confirmed, which was 
likely caused by a severe bottleneck resulting from a single 
event of polyploidization at the origin of the species C. ara-
bica (Scalabrin et al. 2020). Moreover, two other genomic 
sequences have also been reported for C. arabica (NCBI: 
GCA_003713225.1 and Phytozome: genome ID 453). In 
addition to C. canephora and C. acabica, the C. eugenioides 
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(accession number: PRJNA497891) and Coffea humbloti-
ana Baill. (accession number: PRJNA665152, Raharimalala 
et al. 2021) genomes are also publicly available. The species 
C. humblotiana is the sole species from the Coffea genus 
endemic to the Comoros archipelago and that was probably 
cultivated and consumed in the past. The most noteworthy 
feature of C. humblotiana is the complete absence of caf-
feine in seeds and leaves, which is explained by the loss of 
one of the Caffeine Synthase (DXMT) genes, which con-
verts theobromine into caffeine, most likely through ille-
gitimate recombination (Raharimalala et al. 2021). Despite 
the significant difference in genome size, there is a high 
degree of synteny between the genomes of C. humblotiana 
(2C = 0.97 pg, Razafinarivo et al. 2012) and C. canephora 
(2C = 1.43 pg, Clarindo et  al. 2012) with 32.16% more 
nuclear DNA content.

Recent advances in next-generation sequencing technol-
ogies and bioinformatic tools provided a growing amount 
of available genomic data, laying the background for the 
integration with cytogenetics and giving rise to the cytog-
enomics era (Talukdar and Sinjushin 2015). The integra-
tion of the linkage and cytogenetic maps and sequencing 
data is fundamental to define genome regions that are not 
yet well characterized (Kim et al. 2005). Because linkage 
map distances are based on recombination rates and not sim-
ply related to physical distances, physical mapping is also 
needed to confirm the locations of DNA sequences (Koo 
et al. 2008). Physical mapping might be obtained through 
genome sequencing or in situ localization using cytogenom-
ics. The major challenge related to sequencing is the reso-
lution of complex repetitive sequences. As the DNA must 
be fragmented into small contigs, usually around 100 bp, 
repeats create computational ambiguities during alignment 
and assembly, which might produce biases and errors when 
interpreting results (Schatz et al. 2012; Treangen and Salz-
berg 2012). Cytogenomics, on the other hand, is efficient to 
map repetitive sequences, revealing the physical localization 
in situ on the mitotic or meiotic chromosomes (Larracuente 
and Ferree 2015). Therefore, the linkage and cytogenetic 
maps and the sequencing are complementary, and integrat-
ing these data is fundamental for a more detailed and accu-
rate Coffea genome knowdelege.

Completely Coffea sequenced genome released in 2014 
for C. canephora showed that mobile elements represent 
more than 50% of its genome, among which ~ 85% belong 
to the LTR-retrotransposon class (Denoeud et al. 2014). Due 
to their high frequency (~ 15% to > 70%) and pivotal roles in 
plant genome organization, function and evolution, the anal-
ysis of mobile elements sequence (for example, the genes 
and repetitive sequences) and distribution along the genome 
has been performed in several plant species (Civáň et al. 
2011; Wicker et al. 2018). Mobile elements comprise DNA 
sequences with the ability to insert themselves (transposons) 

or new copies of themselves (retrotransposons, RTEs) into 
new locations within a genome (Civáň et al. 2011). For the 
Coffea sequenced genomes analyzed so far, the proportions 
of LTR-retrotransposons, for instance, varied from 32% for 
C. humblotiana (1C = 0.49 pg, Razafinarivo et al. 2012) to 
53% for Coffea heterocalyx Stoff. (1C = 0.87 pg, Noirot et al. 
2003). The variation in the abundance and types of differ-
ent mobile elements can reflect the divergence of botani-
cal groups and also the evolution of species within these 
botanical groups (Guyot et al. 2016). From the genomic data 
provided by sequencing technologies, DNA sequence probes 
have been constructed for cytogenetic mapping of mobile 
elements. From this, the comparative cytogenomic analysis 
of the distribution patterns among different species can be 
performed. Therefore, this integration between genomics 
and cytogenetics provides valuable information to under-
stand the karyotype evolution in Coffea.

Some mobile elements have been mapped in Coffea spe-
cies, including DNA transposons (Lopes et al. 2013), Long 
Terminal Repeat (LTR) retrotransposons (Yuyama et al. 
2012; Herrera et al. 2013; Lopes et al. 2013) and centro-
meric retrotransposons (Nunes et al. 2018). Nonetheless, the 
low longitudinal resolution of chromosomes did not allow 
the precise mapping, but an overview of distribution patterns 
along the genomes. DNA transposons MuDR and Tip100, for 
instance, exhibit a preferential clustering in terminal posi-
tions of C. canephora and C. eugenioides chromosomes, 
while C. arabica showed larger numbers of interstitial sig-
nals. This distribution indicates an increased transposition 
activity in the allotetraploid (Lopes et al. 2013), which is 
consistent with the well-known hypothesis that polyploidiza-
tion can induce a burst in mobile element activity (Vicient 
and Casacuberta 2017).

The detailed analysis of the centromeric mobile elements 
composition of C. arabica, C. canephora and C. eugenioides 
revealed a considerable diversity in centromeric retrotrans-
posons of Coffea (CRC) from the Ty3/Gypsy superfamily, 
which were divided in ten groups according to the sequence 
and similarity of the Reverse Transcriptase domain. General-
ist probes for these CRCs exhibited a variable fluorescence 
signal pattern among species and among chromosomes of 
the same species. While in C. eugenioides the signals were 
identified only to centromeric regions, in C. canephora and 
C. arabica the signals appeared slightly scattered along 
interstitial regions and less specific to centromeres. In addi-
tion, C. arabica presented two pairs without bright signals, 
which might be homologous to those chromosomes with-
out signals from the parental diploids C. canephora and C. 
eugenioides (one pair each) (Nunes et al. 2018).
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Allopolyploidy in Coffea

Coffea genus has a recent monophyletic origin around 
5–25 Mya, and none event of whole genome duplication 
(WGD) occurred immediately prior to or after the irradia-
tion of the Rubiaceae family (Orozco-Castillo et al. 1996; 
Wu et al. 2006; Mahé et al. 2007; Cenci et al. 2010). There-
fore, the common ancestral shared by all Coffea species 
probably had the basic chromosome number of x = 11. In 
addition, the diversification and speciation of each Coffea 
species occurred by DNA sequence changes (mutations) 
and small chromosomal rearrangements, which have been 
progressively identified and characterized through clas-
sical cytogenetics and cytogenomics (Rijo 1974; Yu et al. 
2011; Denoeud et al. 2014; Raharimalala et al. 2021). A 
micro-collinearity analysis between orthologous BACs of 
C. canephora and C. arabica, for instance, evidenced a high 
level of sequence similarity, but numerous small chromo-
somal rearrangements, including inversions, deletions and 
insertions (Yu et al. 2011; Cenci et al. 2012).

Allotetraploidy and diversification of C. arabica

Krug’s (1934) discovery the tetraploidy of C. arabica 
ignited a long debate on the origin (ancestry) and evolution 
(“omics” changes) of this species. As mentioned here, there 
was an agreement that C. arabica originated from hybridi-
zation between two diploid species with similar genomes, 
with the potential progenitors being C. eugenioides (Berthou 
1983; Lopes et al. 1984; Orozco-Castillo et al. 1996; Raina 
et al. 1998; Lashermes et al. 1999; Ruas et al. 2003), C. 
canephora (Lashermes et al. 1997, 1999; Ruas et al. 2003; 
Clarindo and Carvalho 2009), C. congensis (Höfling and 
Oliveira 1981; Lashermes et al. 1997; Raina et al. 1998) and 
C. brevipes (Lashermes et al. 1997). Therefore, the focus 
has been the C. arabica ancestors. However, further studies 
should be accomplished to unravel the genomic and epig-
enomic outcomes of the C. arabica allopolyploid condition.

C. arabica polyploid origin from a crossing between 
two diploids with similar genomes is a consensus, but its 
genomic origin classification has been discussed. Initially, 
C. arabica was classified as a natural segmental allotetra-
ploid (Orozco-Castillo et al. 1996; Pinto-Maglio and Cruz 
1998). ‘Segmental allopolyploid’ in this context was based 
on the Stebbins (1949) definition as a type of allopolyploid 
that contain two partially differentiated genomes, and that 
was originated from hybridization between species close 
enough to allow the partial pairing between homoeologous 
chromosomes. Thus, segmental allopolyploids are inter-
mediaries between autopolyploids and true (or genomic) 
allopolyploids, as the differentiation between the progeni-
tor genomes is insufficient for complete allopolyploidy. 

Exceptionally, the allotetraploid C. arabica exhibits a stable 
diploid-like meiotic behavior (Mendelian segregation). This 
might be possible owing to the genetic system occurrence 
wherein the pairing between homoeologous chromosomes 
is avoided (Pinto-Maglio and Cruz 1998), such as the Ph 
gene (homoeologous pairing suppressor) found in Triticum 
L., Avena L., Festuca L., Gossypium L., Nicotiana L. and 
Lolium L. Further molecular evidence on this hypothesis 
suggested that the absence of homoeologous pairing in C. 
arabica is not a consequence of structural differentiation 
between the two parental genomes, but rather the effect of 
one or several pair-regulating genes, which could be similar 
to Ph (Lashermes et al. 2000).

C. arabica was also hypothesized as an amphidiploid spe-
cies formed from the crossing between C. eugenioides as 
female progenitor and C. canephora, or its related ecotypes, 
as male progenitor. In addition, C. arabica origin is recent 
due to the low level of divergence between the two con-
stitutive genomes of this species and the related parental 
genomes (Lashermes et al. 1999). Amphidiploid refers to 
segmental allotetraploids that have gone through an event 
of WGD after hybridization (Stebbins 1949). In the absence 
of homoeologous pairing, the WGD event may restore de 
fertility of the hybrid (homoploid), since the presence of two 
copies of each genome would enable the Mendelian pairing 
(bivalent) during meiosis I. The WGD event that gave rise 
to the fertile allotetraploid ancestors of C. arabica possibly 
involved either chromosome set doubling in a diploid inter-
specific hybrid or backcrossing of a spontaneous triploid 
(Lashermes et al. 1999).

The true allotetraploid nature of C. arabica was rein-
forced from classical cytogenetics and chromosomal image 
cytometry (Box 2) analyses (Clarindo and Carvalho 2008, 
2009), corroborating with data based on molecular mark-
ers and GISH. The comparison with the karyotypes of two 
potential genitors, C. canephora and C. congensis, revealed 
the presence of identical chromosomes between C. arabica 
and both species concomitantly. In addition, C. arabica 
also exhibits a small acrocentric chromosome pair that is 
not present in either of these two species. Taken together 
these results also support the idea that only one of them par-
ticipated in the origin of C. arabica (Clarindo and Carvalho 
2009; Clarindo et al. 2012).

Cytogenetic evidence concerning the C. arabica origin 
was obtained from the SC/NOR chromosome. Three pachy-
tene chromosomes of C. arabica (14, 20 and 21) have SC 
(Pinto-Maglio and Cruz 1998), which were confirmed by 
18S rDNA signals in mitotic metaphases (Hamon et al. 
2009). C. canephora and C. congensis exhibit a single SC 
in the short arm of the chromosome 6 (Clarindo et al. 2012), 
also confirmed by 18S rDNA (Hamon et al. 2009). There-
fore, one of the SC/NOR chromosomes in C. arabica kar-
yotype was probably derived from the canephoroid genitor 
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(most likely C. canephora), while the other two were pos-
sibly inherited from C. eugenioides.

From orthologous coding sequence divergence analy-
sis, C. arabica evolutionary history was also evidenced 
as an allotetraploid originated from a natural hybridiza-
tion between C. canephora and C. eugenioides. Thus, the 
genome of C. arabica was represented by the genome for-
mula  CaCaEaEa (Lashermes et al. 1999; Yu et al. 2011). The 
most accurate estimation for the genomic origin time of 
the natural hybridization is in between 0.54 and 1.08 Mya 
(Bawin et al. 2020). Although the current geographical range 
of C. arabica do not overlap with any other Coffea species, 
including its possible progenitors, pollen records and lake 
sediment cores from the Congo basin and East Africa indi-
cate that the Afromontane rainforests regularly expanded 
to lower altitudes during glacial periods between 0.60 and 
1.05 Mya. Corroborating, C. canephora and C. eugenioides 
occurred in contact zone in this area. The changing envi-
ronmental conditions might have also played a role on this 
speciation event, weakening interspecific reproductive barri-
ers between C. arabica diploid parental species. In addition, 
the aridification of East Africa since 0.575 Mya is one of the 
possible explanations for the current non-overlapped distri-
bution areas of C. arabica, C. eugenioides and C. canephora 
(Owen et al. 2018; Bawin et al. 2020).

C. canephora and C. arabica ‘Tall Mokka’ comparison 
from BAC clones (~ 140–160 kb), bearing the aforemen-
tioned orthologous coding sequences, aimed to show the 
outcomes of the C. arabica allopolyploidy from a cytog-
enomic perspective. Despite the high degree of sequence 
conservation in coding regions, genomic differences were 
found. Major chromosomal rearrangements were observed 
in the intergenic regions of these BACs, including a para-
centric inversion between homoeologous regions within C. 
arabica  (Ca and  Ea). As C. eugenioides was not included 
in this study, it was not possible to distinguish if the chro-
mosomal inversion occurred in C. arabica or was inherited 
from one of the two diploid progenitors. Therefore, the 
inversion might not be a consequence of the C. arabica 
allopolyploidy. Moreover, the specific insertion of a Ty1-
copia retrotransposon in the  Ca sub-genome of C. arabica 
was also reported, which might be related to the burst in TE 
activity (Yu et al. 2011).

Allotriploidy of the Timor hybrid

In addition to the polyploidization event that gave rise to the 
well-established allotetraploid species C. arabica, another 
recent allopolyploidy event in the Coffea genus originated 
the hybrid named HT, or the Timor hybrid. HT arose in 
a plantation of C. arabica ‘Typica’, established around 
1917/18 on the Timor Island. All the accessions of this 
hybrid originated from this single plant, or from backcrosses 

between this plant and its progenitor C. arabica (Gonçalves 
et al. 1978). Besides the remarkable relevance of HT as a 
source of resistance genes in coffee breeding, this hybrid has 
also gained attention for its very recent allopolyploid origin 
of ~ 100 years (Gonçalves et al. 1978; Capucho et al. 2009). 
HT ‘CIFC 4106’, which has been vegetatively propagated, 
is a triploid hybrid with a chromosome number 2n = 3x = 33 
and a nuclear DNA content of 1C = 2.10 pg. Therefore, we 
considered that this accession represents the first plant of HT 
found in the Timor Island.

In summary, the hybridization/polyploidization events 
involving C. canephora, C. eugenioides, HT and C. arabica 
might be explained as follows. The allotetraploid C. arabica 
originated around 0.543 and 1.08 Mya (Bawin et al. 2020) 
from the fusion between a reduced reproductive cell from 
C. canephora (n = x = 11) and another from C. eugenioides 
(n = x = 11, Lashermes et al. 1999). After a polyploidization 
event in the sterile homoploid, fertility would be restored, 
resulting in the fertile allotetraploid with 2x = 4x = 44 chro-
mosomes, being 22 from C. canephora and 22 from C. 
eugenioides  (Ca and  Ea subgenomes, respectively). A natu-
ral backcross dating from ~ 100 years ago occurred between 
C. arabica and its progenitor C. canephora, involving the 
fusion of reduced reproductive cells from both species and 
resulting in the HT with 2x = 3x = 33 chromosomes. There-
fore, our research group recently launched the hypothesis 
that the genome of HT ‘CIFC 4106’ is represented by the 
formula  CCaEa. To provide more information regarding the 
karyotypic evolution of C. eugenioides, C. canephora, C. 
arabica and HT ‘CIFC 4106’, we have been combining clas-
sical and molecular cytogenetics, as well as flow cytometry 
for nuclear DNA content measurements (Box 2).

The six chromosome pairs presented by HT 'CIFC 4106' 
(2–3, 10–11, 12–13, 20–21, 25–26, 28–29) might represent 
the  CCa subgenomes, being C from C. canephora and  Ca 
from C. arabica (Figs. 2, 3). A look at the HT ‘CIFC 4106’ 
karyogram shows that the possible pairs 2–3, 10–11, 12–13, 
20–21, 25–26 and 28–29 may represent the chromosomes 
1, 4, 5, 7, 9 and 11 of C. canephora, respectively (Fig. 3). 
HT ‘CIFC 4106’ group 15–18 is similar to pair 6 and 7 
of C. canephora (Fig. 3). Another evidence that supports 
the  CCaEa genome hypothesis, specifically regarding the E 
genome, is that chromosomes 1, 4 and 9 of HT ‘CIFC 4106’ 
are similar to 1, 2 and 3 of C. eugenioides, respectively, 
considering morphometry. In addition, chromosomes 7 and 
11 of C. eugenioides are similar to 19 and 33 of HT ‘CIFC 
4106’, respectively (Fig. 3).

Our new data about 5S rDNA mapping performed in C. 
eugenioides and C. canephora showed that the two diploids 
exhibit one 5S rDNA loci, in the interstitial region of chro-
mosome 4 long arm for C. eugenioides, and in the pericen-
tromeric portion of the long arm of chromosome 8 in C. 
canephora. The allotriploid HT ‘CIFC 4106’ shows two loci 
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located interstitially in the long arm of chromosomes 9 and 
13 (Fig. 4). The association of these data with chromosome 
class provide additional evidence for HT origin, as C. eugen-
ioides chromosome 4 and HT 'CIFC 4106' chromosome 9 
both exhibit one 5S rDNA loci in the same position. There-
fore, the HT 'CIFC 4106' chromosome 9 was probably inher-
ited from a reduced cell of C. arabica  (CaEa), precisely from 
the  Ea subgenome. In addition, the nuclear DNA content 

of HT 'CIFC 4106' (1C = 2.10 pg, Clarindo et al. 2013) is 
equivalent to the sum of the mean 2C nuclear genome size 
of C. canephora (2C = 1.41 pg, 1C = 0.705, Clarindo and 
Carvalho 2009) and the 1C nuclear value of C. eugenioides 
(2C = 1.38 pg, 1C = 0.690 pg, Sanglard et al. 2019) and HT 
'CIFC 4106' chromosome number (2n  = 3x = 33) corre-
sponds to the fusion of one reproductive cell of C. arabica 
 (CaEa; n = 2x = 22) and one of C. canephora (C; n = x = 11). 
These data also support the  CCaEa hypothesis. A summary 
of the main cytogenetic features and evolutionary relations 
among the two allopolyploid Coffea and its parental diploids 
is depicted in Fig. 5.

Natural neoallopolyploids are valuable materials inten-
sively used as evolutionary models in plant polyploidy 
research, such as Spartina anglica C. E. Hubb. (Ainouche 
et al. 2004), Senecio cambrensis Rosser, Senecio ebora-
censis Abbott & Lowe (Abbott and Lowe 2004), Tragopo-
gon mirus Ownbey, Tragopogon miscellus Ownbey (Soltis 
et al. 2004), Cardamine × schulzii Urbanska-Worytkiewicz 
(Urbanska et al. 1997) and Mimulus peregrinus Vallejo-
Marín (Vallejo-Marín 2012). As HT is a recent allotrip-
loid hybrid originated only ~ 100 years ago, the refined 
study of its karyotype, in comparison to its progenitor C. 

Fig. 3  Karyograms obtained from metaphase chromosomes of: a C. 
eugenioides exhibiting 2 metacentric chromosome pairs (7, 10), 9 
submetacentric (1–6, 8, 9 and 11) and 2 chromosomes pairs with SC 
(3 and 5); b C. canephora with 2 metacentric chromosome pairs (4 
and 9), 9 submetacentric (1–3, 5–8, 10 and 11) and 1 with SC (chro-
mosome 6); c C. arabica exhibits 5 metacentric chromosome pairs (7, 
8, 13, 14 and 20), 16 submetacentric (1–6, 9–12, 15–19 and 21) and 
1 acrocentric pair (22); and d HT 'CIFC 4106' possess 6 metacentric 
(10, 11, 19, 25, 26, 30) and 27 submetacentric chromosomes (1–9, 
12–18, 20–24, 27–29, 31–33). Bar = 5 μm

Fig. 4  FISH mapping of 5S rDNA genes (red) on Coffea metaphase 
chromosomes using probes labeled with tetramethyl-rhodamine 
5-dUTP. Chromosomes were counterstained with 4’,6-diamidino-
2-phenylindole dihydrochloride (DAPI) (blue). a C. eugenioides with 
the 5S rDNA signal at the interstitial region of chromosome 4 long 
arm. b C. canephora exhibited a pericentromeric signal in the long 
arm of chromosome 8. c HT ‘CIFC 4106’ has two positive 5S rDNA 
signals, one in chromosome 9 and the other in chromosome 13, both 
interstitial. Bars = 5 μm
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arabica, would certainly provide substantial information on 
the genomic rearrangements associated with interspecific 
hybridization and polyploidy. Although not an established 
species due to the allotriploid condition and meiosis irregu-
larities, HT may also be considered an interesting asset for 
evolutionary research regarding plant polyploidy in the con-
text of natural populations.

Box 2: Flow and image cytometries

Flow and image cytometries have been performed in Cof-
fea since the early 90’s for measuring the nuclear (Cros 
et al. 1994, 1995; Noirot et al. 2003; Clarindo and Car-
valho 2009; Hamon et al. 2009; Clarindo et al. 2012; 
Razafinarivo et al. 2012) and chromosomal DNA content 
(Clarindo and Carvalho 2009). In contrast with the uni-
formity of chromosome number and morphology, Cof-
fea species exhibit considerable genome size variation, 
ranging from 1C = 0.475 pg (2C = 0.95) for C. racemosa 
Lour. (Cros et al. 1995) to 1C = 0.92 pg (2C = 1.84) for 
C. humilis A. Chev. (Razafinarivo et al. 2012). Such vari-
ability in genome size has been useful for identification 
of Coffea species (Noirot et al. 2003; Razafinarivo et al. 
2012), varieties (Ortega-Ortega et al. 2019) and hybrids 
(Clarindo et al. 2013).

For genome sequencing programs, knowing the 
genome size is fundamental for calculating the sequenc-
ing coverage, and flow cytometry has been considered 
the ‘gold standard’ technique (Pflug et al. 2020). Genome 
size information is also relevant for evolutionary studies, 
as in some species, variations in nuclear DNA content 
is correlated to adaptive traits (Cros et al. 1995; Yotoko 
et al. 2011). In Coffea, no significant correlations were 
yet found between genome size and adaptive traits. None-
theless, global trends for the genus are observed regard-
ing the geographic distribution, genome size and leaf 
shape. The species with the smaller genomes and smaller/
thicker leaves grow mainly in dry areas of east Africa or 
northern Madagascar, while those with larger genomes 
and wider/thinner leaves occupy the humid forests of west 
and central Africa (Razafinarivo et al. 2012).

Image cytometry studies in Coffea were performed 
mainly with focus on C. canephora and C. arabica. 
For the C. canephora cultivar ‘Conilon’, the estimated 
nuclear content was 2C = 1.57 pg, while for C. arabica, 
the values were 2C = 2.62 pg in the cultivar ‘Catuaí Ver-
melho’ and 2C = 1.89 pg in ‘Mundo Novo’ (Fontes 2003). 
Through image cytometry, Clarindo and Carvalho (2009) 
estimated the chromosomal DNA content of the same 
two Coffea and identified key similarities among their 
karyotypes, providing relevant insights on the evolution 
of C. arabica, which are discussed below.

Concluding remarks

Advances in Coffea cytogenetics over the years have been 
remarkable. Thus far, the development of improved pro-
tocols for classical and molecular cytogenetics, alongside 
with genomics, allowed a deeper understanding on the 
structure, organization and evolution of Coffea genomes. 
The relevance of these data also reaches applied research, 
with flow cytometry and karyotyping being used, for 
instance, to distinguish species, varieties and hybrids, 
including HT cytotypes. The potential role of cytogenet-
ics and flow/image cytometries on aiding Coffea genomes 
assembly is also worthy of notice (Box 2). The aim of any 
genome sequencing project is to achieve an assembly to 
the chromosome level, with each scaffold assigned and 
oriented onto a chromosome. Therefore, the refinement 
of sequence contigs assignment to chromosomes often 
requires the integration between the complementary data 
obtained from sequencing technologies and molecular 
cytogenetic mapping. The basis of another relevant infor-
mation, sequencing coverage, relies on reliably measur-
ing the total genome size of the target species, for which 
flow cytometry has been considered the ‘gold standard 
technique’. In addition to nuclear genome size, both flow 
and image cytometries also allow measuring the size of 
each chromosome of the karyotype, aiding to estimate the 
coverage at the chromosome level.

The increase of the sequencing information will also 
allow a deeper analysis of Coffea evolution, and the inte-
gration with the molecular cytogenetics is fundamental 
to associate the ex situ with the in situ localization of 
DNA sequences. Nonetheless, mitotic metaphases and 
pachytene chromosomes from different species of Cof-
fea, especially wild species of strict geographical dis-
tribution, will still be one of the main challenges for 
cytogenomics. Partial genome sequence analysis already 
revealed interesting patterns regarding the association 
of mobile elements with Coffea diversification and the 
recent publication of a new genome sequence from the 
wild C. humblotiana will open new fields for compara-
tive analysis. We also believe that the allotriploid HT is 
an interesting target for cytogenomics, especially to study 
the early genomic dynamics after an allopolyploidization 
event, such as the TE burst, sequence losses or gains 
and global effects on epigenetic regulation. Therefore, 
we hope that the continuous improvement in techniques 
and a closer integration of different research areas will 
lay the ground for future ground-breaking discoveries 
about Coffea genome.
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