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Abstract
Main conclusion Nitro fatty acids (NO2-FA)have relevant physiological roles as signaling molecules in biotic and abi-
otic stress, growth, and development, but the mechanism of action remains controversial. The two main mechanisms 
involving nitric oxide release and thiol modification are discussed.

Abstract Fatty acids (FAs) are major components of membranes and contribute to cellular energetic demands. Besides, 
FAs are precursors of signaling molecules, including oxylipins and other oxidized fatty acids derived from the activity of 
lipoxygenases. In addition, non-canonical modified fatty acids, such as nitro-fatty acids  (NO2-FAs), are formed in animals 
and plants. The synthesis  NO2-FAs involves a nitration reaction between unsaturated fatty acids and reactive nitrogen species 
(RNS). This review will focus on recent findings showing that, in plants,  NO2-FAs such as nitro-linolenic acid  (NO2-Ln) and 
nitro-oleic acid  (NO2-OA) have relevant physiological roles as signaling molecules in biotic and abiotic stress, growth, and 
development. Moreover, since there is controversy on mechanisms of action of  NO2-FAs as signaling molecules, we will 
provide evidence showing why this aspect needs further evaluation.
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Introduction

Nitro-fatty acids  (NO2-FAs) are the product of the reac-
tion between nitric oxide (NO)- and nitrite  (NO2

−)-derived 
reactive nitrogen species (RNS) and unsaturated fatty acids. 
The formation of nitro-lipids was initially proposed based 
on the observation that NO inhibited lipid oxidation propa-
gation reactions (Rubbo et al. 1994). The resulting species 
remained elusive, but the incorporation of a  NO2 group into 
linoleic acid was reported (O'Donnell et al. 1999). Nitrated 
linoleic acid was then reported in humans (Baker et al. 
2004; Lima et al. 2002).  NO2-FAs were later detected in 
plants (Fazzari et al. 2014) and proposed as signal molecules 

involved in oxidative stress responses, plant development, 
and defense responses (Mata-Perez et al. 2016a; Arruebar-
rena Di Palma et al. 2020; Vollár et al. 2020; Di Fino et al. 
2020).

Mechanisms of  NO2‑FA formation

The signaling events triggered by  NO2-FAs have been exten-
sively studied, contrasting with the lower number of reports 
evaluating the formation and characterization of endogenous 
species. In animals, reactions in the gastric compartment 
promoted by dietary or salivary  NO2

− are the major contrib-
utor to systemic levels (Delmastro-Greenwood et al. 2015). 
A second mechanism includes NO-driven nitration reactions 
during inflammation (Bonacci et al. 2012; Vitturi et al. 2013; 
Villacorta et al. 2018). A third mechanism includes the reac-
tion of  NO2

−-derived species during ischemia/reperfusion 
events. Independent of the mechanism, the nitration of fatty 
acids occurs through an initial addition of the nitrogen 
dioxide radical (•NO2) to a double bond with the formation 
of a β-nitroalkyl radical (Trostchansky and Rubbo 2008; 
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Schopfer et al. 2019). Figure 1 summarizes the chemical 
mechanisms of  NO2-FA formation. Thus, the different bio-
logical scenarios in which  NO2-FA are formed are defined 
by the mechanism involved in the formation of •NO2. This 
has important consequences, as the different mechanisms 
involve reaction milieus that differ on hydrophobicity, the 
rate and level of different nitrogen oxides formation, oxy-
gen tension, and contributions of other oxidants and anti-
oxidants. These factors will modulate the rates, yields, and 
products formed during the nitration reactions. The main 
nitration pathways relevant to biological conditions are 
depicted in different colours in Fig. 1:

• NO-dependent nitration: NO plays a central role in the 
formation of nitrated fatty acids. Under oxidative condi-
tions with concomitant formation of superoxide anion 
 (O2

•−) and •NO, these molecules react at diffusion-
limited reaction rates to yield peroxynitrite  (ONOO−). 
Upon protonation to peroxynitrous acid at physiological 
pH values, ONOO—can undergo homolytic cleavage 
to form (•NO2 and •OH). Under conditions with high 

local •NO concentrations and the presence of oxygen, the 
auto-oxidation of NO leads to the formation of nitrogen 
dioxide.

• Heme peroxidase-catalyzed formation of •NO2:  NO2
−, 

the proximal product of •NO oxidation and nitrate 
 (NO3

−) reduction, can be oxidized to •NO2 in a one-elec-
tron oxidation reaction catalyzed by heme peroxidases 
(van der Vliet et al. 1997).

• Acid-catalyzed formation of •NO2: The protonation of 
 NO2

− to  HNO2 under acidic conditions (pKa 3.4) leads 
its dimerization to form dinitrogen tetroxide  (H2N2O4), 
which, upon dehydration, forms  N2O3. This species is 
unstable and undergoes homolysis to form NO and •NO2 
(Vitturi et al. 2015).

The nitration of fatty acids proceeds through the addition 
of the •NO2 radical to a double bond present in fatty acids. 
This is an extremely fast reaction, but results in an unstable 
product and the •NO2 is consequently eliminated with the 
reformation of the double bond (Pryor et al. 1981; Gallon 
and Pryor 1993). This futile reaction can lead to double bond 
isomerization, as demonstrated for arachidonic acid (Bal-
azy and López-Fernández 2003). When the addition reac-
tion occurs on a conjugated double bond, the intermediary 
product is stabilized by resonance, providing on opportunity 
for other reactions to occur. Through a series of complex 
reactions, this radical is finally oxidize to a nitroalkene (Faz-
zari et al. 2014). Consequently, nitration yields are largely 
increased (>  105 fold) in the presence of conjugated double 
bonds (Bonacci et al. 2012). In plants, similar scenarios can 
be foreseen; however, it is unclear whether any of the mecha-
nisms mentioned above play a role or if these reactions take 
place in specific cellular or subcellular compartments.

NO2‑FAs detection

Nitrated fatty acids were initially described in plants as 
cysteine adducts of nitro-oleic acid  (NO2-OA) (50 pmol 
 NO2-OA-Cys/g FW) and as conjugated nitro-linoleic acid 
 (NO2-cLA) (9- and 12-NO2-cLA isomers), as described in 
olive fruit and extra virgin olive oil (EVOO), respectively 
(Fazzari et al. 2014). Later, in Arabidopsis thaliana, nitro-
linolenic acid  (NO2-Ln) was detected in seeds (11 pmol/g 
FW), 14-old days seedling (3.8 pmol/g FW) and in leaves 
of 45-day old plants (0.54 pmol/g FW) (Mata-Pérez et al. 
2016a). The same group later reported the presence of 
 NO2-Ln in rice (Oryza sativa) and Pea (Pisum sativum). 
However, some methodological details were missing in the 
manuscript (e.g., growth plant condition, stage of the plants, 
techniques for isolation and detection of  NO2-FAs), making 
the interpretation of the results more difficult (Mata-Pérez 

Fig. 1  Role of reactive nitrogen species in fatty acid nitration. Nitra-
tion of fatty acids occurs via the addition of •NO2 (nitrogen dioxide 
radical) to a double bond. NO-dependent nitration (dark grey boxes). 
Under oxidative conditions with concomitant formation superox-
ide anion  (O2

•−) and •NO, these molecules react at diffusion-limited 
reaction rates to yield peroxynitrite  (ONOO−). Through protonation 
and then homolysis,  ONOO− produces •NO2. Under conditions with 
high local NO concentrations and the presence of oxygen, the auto-
oxidation of NO leads to the formation of nitrogen dioxide. Heme 
peroxidase-catalyzed formation (light grey boxes).  NO2

−, the proxi-
mal product of •NO oxidation and nitrate  (NO3

−) reduction, can be 
oxidized to •NO2 in a one-electron oxidation reaction catalyzed by 
heme peroxidases. Acid-catalyzed formation (white boxes). The pro-
tonation of  NO2

− to  HNO2 under acidic conditions (pKa 3.4) leads to 
its dimerization to form dinitrogen tetroxide  (H2N2O4), which, upon 
dehydration, forms  N2O3. This species is unstable and undergoes 
homolysis to form •NO and •NO2
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et al. 2017). Recently, another group reported the presence 
of  NO2-OA in Brassica napus seeds (1.69 nmol/g FW) and 
7-day-old seedling plants (0.66 nmol/g FW) (Vollár et al. 
2020). The published data makes it clear that the high-
est content of  NO2-FAs as free fatty acid (non-esterified) 
is found in seeds, likely due to the high fatty acid content 
found in seeds (Mata-Pérez et al. 2016a; Vollár et al. 2020). 
In mammals, the levels of esterified  NO2-FAs account for 
over 95% of total circulating levels, with accumulation in 
the adipose tissue (Fazzari et al. 2017). Thus, these reports 
provide support to the presence and regulation of  NO2-FAs 
levels in plants.

Despite these findings, the detection, characteriza-
tion, and quantification of  NO2-FAs in plants have proven 
extremely challenging. Several factors have contributed to 
this fact and are analyzed below:

Formation of Michael addition products:  NO2-FAs form 
reversible covalent adducts with nucleophilic amino acids of 
proteins, particularly cysteine and histidine (Rudolph et al. 
2009). The cellular cytoplasm is a highly reducing envi-
ronment and, in animals, the cysteine content in proteins 
amounts to 10–50 mM and glutathione (GSH) levels are 
between 4 and 12 mM (Rudolph et al. 2009; Turell et al. 
2013). In animal-derived cells, it has been calculated that 
approximately 99% of  NO2-cLA is adducted, leaving only a 
small proportion of the molecule free for detection (Turell 
et al. 2017). Moreover, the proportion of free fatty acids in 
plant cells is low compared to the total fraction of fatty acid 
esterified to membranes phospholipids and triglycerides. 
Thus, to account for the presence of  NO2-FA in membranes, 
investigators treated the lipid extracts with a lipase cocktail 
(Mata-Pérez et al. 2016a, 2018).

Matrix effects: plant samples are very rich in pigments 
of lipidic nature, such as chlorophylls and carotenoids, that 
can affect extraction yields and further reduce detection of 
 NO2-FAs by dampening ionization when measured by liquid 
chromatography with tandem mass spectrometry (LC–MS/
MS) (Mata-Pérez et al. 2018). Although specific experi-
ments to address this problem have not been conducted, the 
high content of these pigments might be partially responsi-
ble for the low concentration detected in pigmented tissues 
compared to non-pigmented tissues.

Currently, the number of identified nitrated lipid species 
in plants  (NO2-OA,  NO2-Ln and  NO2-cLA) is smaller than 
those reported in humans (Salvatore et al. 2020).  NO2-cLA 
is the most abundant  NO2-FA detected in human urine and 
plasma, followed closely by  NO2-cLn (Salvatore et al. 2020; 
Bonacci et al. 2012). In vitro assays revealed that conjugated 
LA (cLA) yielded  105 greater nitration products than LA 
(Bonacci et al. 2012). The presence of  NO2-cLA in olive 
is intriguing given the scarcity of cLA when compared to 
other fatty acids (Fazzari et al. 2014). Apart from the cLA 
isomers, the isomers of α-linolenic acid (Ln) containing 

conjugated dienes and trienes are the second most preva-
lent species in humans (Salvatore et al. 2020). Conjugated 
linolenic acid (cLn) isomers are present at high levels in 
certain plant species and are the primary natural source 
of conjugated trienes (Hennessy et al. 2016), providing 
an interesting and abundant pool of nitration targets. Fatty 
acids with conjugated triene systems present in plants are 
mainly represented by (i) eleostearic acid (9-cis,11-trans,13-
trans-octadecatrienoic) found in a tung plant Aleurites fordii 
(Takagi and Itabashi 1981) and chinese bitter gourd Momor-
dica charantia (Liu et al. 1997); (ii) Calendic acid (trans-
8,trans-10,cis-12-octadecatrienoic acid) found throughout 
the genus Calendula (Qiu et al. 2001) and (iii) Punicic 
acid (cis-9,trans-11,cis-13-octadecatrienoic acid) found in 
pomegranate seeds (Punicia granatum) (Takagi and Itabashi 
1981) and in Trichosanthes, Mormodica balsamina, Fevil-
lea trilobata oil and Ecballium elaterium (Hennessy et al. 
2016). Thus, the presence of cLn in different plant species 
makes them attractive candidates for searching and identify-
ing new nitro-fatty acids in plant species.

Mechanisms of  NO2‑FA action

Nitro-lipids are electrophilic molecules that participate in 
reversible Michael addition with proteins involved in cell 
signaling, metabolism, and transcription (Schopfer et al. 
2019). The main intracellular targets are soft nucleophiles 
such as cysteine present in proteins and/or GSH, but prot-
eomic approaches also revealed the formation of histidine 
adducts (Schopfer et al. 2011). In animals and humans, the 
mechanism of action of  NO2-FAs involves nitro-alkylation, a 
post-translational modification that regulates stability, activ-
ity, and localization of the target proteins (Rubbo and Radi 
2008; Rudolph and Freeman 2009; Geisler and Rudolph 
2012). Nitro-alkylation is a reversible process with the abil-
ity to regulate physiological processes by modulating the 
activity of transcription factors and enzymatic reactions. In 
plants, the first evidence of nitro-alkylation was reported in 
olive fruit, where  NO2-OA was found adducted to cysteine 
residues (Fazzari et al. 2014). The significance of nitro-
alkylation reactions in plants was later established by the 
targeting of cytosolic Ascorbate peroxidase (APX) in Arabi-
dopsis (Aranda-Caño et al. 2019).

Nitro-alkylation resembles the mode of action of reactive 
electrophile species (RES) produced by plant cells under dif-
ferent stresses (Farmer and Davoine 2007; Farmer and Muel-
ler 2013). Interestingly, transcriptional and physiological 
responses are shared between RES and  NO2-FA. First, the 
RES-oxilipins OPDA (12-oxophytodienoic acid) (Muench 
et al. 2016) and electrophilic isothiocyanates (Øverby et al. 
2015; Ferber et al. 2020) induced the activation of heat 
shock factors and transcription of several heat shock (HS) 
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proteins as described for  NO2-Ln (Mata-Pérez et al. 2016a). 
In addition, inhibition of primary root growth and cellular 
cycle was reported for RES-oxylipins, electrophilic isothio-
cyanates (Almeras et al. 2003; Mueller et al. 2008; Pau-
wels et al. 2008; Åsberg et al. 2015; Urbancsok et al. 2017, 
2018) and  NO2-OA treatments in Arabidopsis (Di Fino et al. 
2020). Considering the similarities between these reactive 
electrophilic species, future studies should focus on evaluat-
ing possible common signaling and/or mechanisms of action 
on plant physiology and divergent activities between these 
reactive species. More research is necessary to expand our 
understanding of target proteins and shed light on the signal-
ing pathway in which  NO2-FA participate.

Another mechanism of action reported for  NO2-FAs 
relates to their ability to act as NO donors. This mechanism 
was first described in biochemical systems, cell culture, 
ex vivo and in vitro, and later translated to plant physiol-
ogy (Schopfer, et al. 2005; Lima et al. 2003; Gorczynski 
et al. 2007; Mata-Pérez et al. 2016b, c; Grippo et al. 2020; 
Sánchez-Calvo et al. 2013). Nonetheless, the mechanism(s) 
whereby  NO2-FAs release NO have not been definitively 
established and remain controversial. A possible mechanism 
may include a modified Nef reaction, where, under neutral 
aqueous conditions,  NO2-FAs form a nitronate anion, that 
upon a sequence of protonation and deprotonation steps 
forms a nitroso intermediate characterized by a weak C–N 
bond that decomposes to release NO (Schopfer, et al. 2005). 
Using electron paramagnetic resonance (EPR) spectros-
copy,  NO2-cLA,  NO2-LA and  NO2-OA have been shown to 
decompose and generate NO in aqueous solutions. By com-
paring the EPR signal intensities of spin-adducts,  NO2-cLA 
generated a significantly greater yield of NO than  NO2-LA 
and  NO2-OA (Grippo et al. 2020). In vitro,  NO2-LA releases 
less than 0.1% of NO in an aqueous solution. The NO release 
was inhibited in the presence of non-ionic detergent micelles 
as hydrophobic environments stabilize  NO2-LA (Schopfer 
et al. 2005). Other studies demonstrated that both  NO2-OA 
isomers yields, under optimal conditions, less than 0.1% 
of NO, with a 46 times lower release compared to NO 
donor SNP when using a 50 times higher concentration of 
 NO2-OA (Gorczynski et al. 2007). In an aqueous solution, 
 NO2-Ln releases NO with a peak within the first hour but 6 
times lower than the rate reported for the NO donor GSNO 
(Mata-Pérez et al. 2016b; Ederli et al. 2009). The deproto-
nation of the bisallylic carbon is the first step in releasing 
NO; consequently,  NO2-Ln and  NO2-LA display higher NO 
release rates than  NO2-OA. Nonetheless, the rates and yields 
observed in biochemical systems remain very low. These 
results clearly show that nitro-alkenes have an objectively 
lower ability to release NO than SNP or GSNO donors. 
More importantly,  NO2-FA NO release reactions compete 
against in vivo alkylation reactions. The high intracellular 
thiol concentration, the rapid formation of GSH and protein 

adducts, and the increased stability by incorporation into 
phospholipids and glycerolipids further reduces their ability 
to release NO (Schopfer et al. 2019). However, subcellular 
compartmentalization and/or enzymatic reactions could pro-
mote NO release under specific environments and cellular 
contexts.

NO formation was detected in vivo in Arabidopsis leaves 
and roots treated with 1 mM  NO2-Ln (Sánchez-Calvo et al. 
2013), and in primary root treated with 100 µM of  NO2-Ln 
(Mata-Pérez et al. 2016c). Curiously, those  NO2-Ln treat-
ments triggered different physiological responses than those 
triggered by NO donors (further discussed in the next sec-
tion). A dual response was reported in Brassica seeds treated 
with  NO2-OA: at 50 µM,  NO2-OA did not release NO; how-
ever, at 100 µM,  NO2-OA NO was formed, while 500 µM 
 NO2-OA did not produce NO (Vollár et al. 2020). In con-
trast, we failed to detect NO release from Arabidopsis roots 
or tomato culture cells treated with  NO2-OA (Arruebarrena 
Di Palma et al. 2020; Di Fino et al. 2020). In aggregate, 
while all nitro-alkenes are electrophilic and react with cellu-
lar nucleophiles, some of them might release NO under spe-
cific conditions. The elucidation of the mechanism of action 
for  NO2-FA under physiological conditions will require 
considering NO release and Michael addition reactions and 
incorporate new approaches to dissect the individual contri-
butions of these pathways to the biological response.

Differentiation from NO‑dependent 
activities

In higher plants, NO is involved in a wide range of biological 
processes, including germination, plant metabolism, senes-
cence, cellular death, stomatal movement, photosynthesis, 
gravitropism, and primary root growth (Del Castello et al. 
2020; Lamattina et al. 2003). Some molecular targets of 
 NO2-FAs are chemically similar to those described for NO 
signaling, including redox-sensitive cysteine residues. This 
signaling crossover complicates the analysis of the responses 
obtained with NO donors and  NO2-FAs and the evaluation of 
the mechanism responsible for the biological actions.

NO participates in seed germination regulation by inter-
acting with the ABA signaling during seed dormancy (Liu 
and Zhang 2009). For instance, pharmacological approaches 
demonstrated that most known NO donors promote dor-
mancy-releasing and subsequent germination, while NO 
scavengers favour dormancy (Bethke et al. 2007). It was 
reported that in Brassica napus,  NO2-OA releases NO, 
which in turn increases germination rate (Vollár et al. 2020). 
However, this effect was only observed when seeds were 
treated with 100 µM  NO2-OA, with higher or lower concen-
trations failing to increase NO levels and affect germination. 
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Further work will be necessary to elucidate the mechanisms 
of action and the signaling pathway involved in this process.

NO upregulates APX activity through S-nitrosation of 
the conserved cysteine 32 residue (Correa-Aragunde et al. 
2013; Begara-Morales et al. 2014; Yang et al. 2015). Con-
versely, in vitro  NO2-Ln nitro-alkylate APX’s histidine resi-
dues inhibiting its enzymatic activity (Aranda-Caño et al. 
2019). However, although  NO2-Ln has been proposed to act 
through NO release (Mata-Pérez et al. 2016b), S-nitrosation 
of the APX cysteine residue upon in vitro  NO2-Ln treat-
ments has not been reported (Aranda-Caño et al. 2019). The 
overlapping activities as an NO donor and alkylation agent 
highlight the complication of establishing a mechanism 
of action and remind us to be cautious when considering 
 NO2-Ln exclusively as a NO donor.

NO inhibits primary root growth in Arabidopsis thaliana 
(Fernández-Marcos et al. 2011). Seedlings treated with NO 
donors show an imbalance in auxin levels (decrease in auxin 
response reporter DR5:GUS activity) due to NO-depend-
ent alteration of the auxin efflux protein PIN-FORMED1 
localization in the cellular membrane of meristematic cells 
(Fernández-Marcos et  al. 2011). Arabidopsis seedlings 
treated with  NO2-OA showed primary root length inhibition 
without affecting endogenous NO levels and auxin homeo-
stasis (Di Fino et al. 2020). In contrast,  NO2-OA reduced 
root growth by inhibiting the cell cycle in the meristem zone 
(Di Fino et al. 2020). This provides further evidence that NO 
and  NO2-FAs can induce the same morphological responses 
through independent signaling pathways.

RNAseq analysis of Arabidopsis cell suspensions 
treated with  NO2-Ln showed that several upregulated genes 
are related to the heat shock response (Mata-Pérez et al. 
2016a). This response was first reported in  NO2-FAs-treated 
endothelial cells (Kansanen et al. 2009). To study whether 
 NO2-Ln modulates gene expression via exclusive NO pro-
duction, we compared RNAseq data from  NO2-Ln (Mata-
Pérez et al. 2016a) vs. NO treated Arabidopsis leaves (Hus-
sain et al. 2016) (Fig. 2). Among the most representative 
shared genes, heat shock protein (HSPs) expression was 
strongly up-regulated while RNA transcription factors were 
down-regulated (Fig. 2, a complete set of data is shown in 
Supplemental Table S1, and a complete list of GO terms 
for biological processes in Supplemental Table S2). Despite 
this similarity, it is worth mentioning that only 122 genes 
are shared between both treatments and that the expression 
of 194 genes regulated by  NO2-Ln was unaffected by the 
NO treatment under the analyzed conditions. Altogether, the 
evidence presented above points towards a  NO2-FA-specific 
mechanism of action in different plant physiological systems.

NO2‑OA as regulators of ROS and  Ca2+

A recent report showed that exogenous application of 
 NO2-OA induced ROS production on both tomato cell 
suspensions and tomato and Arabidopsis leaves (Fig. 3, 
Arruebarrena Di Palma et al. 2020). Pharmacological and 
reverse genetic experiments showed that  NO2-OA-induced 
ROS were generated specifically by NADPH oxidase 
RBOH isoform D. The NADPH oxidase RBOHD is 
responsible for the rapid and robust production of ROS 
upon pathogen-associated molecular patterns percep-
tion (Kadota et al. 2015). In line with the activation of 
RBOHD, we tested the expression of genes related to 
pathogen responses observing up-regulation of SlPR1a, 
SlHSR203J and SlPAL (Arruebarrena Di Palma et  al. 
2020). Multilayered regulations tightly control RBOHD 
activity. It is mainly activated via direct binding of  Ca2+ 
to EF-hand motifs, by  Ca2+-dependent and independent 
protein kinases, and by the signal lipid phosphatidic acid 
(PA) (Kadota et al. 2015; Zhang et al. 2009). No Nitric 
Oxide was detected under these experimental conditions, 
suggesting that  NO2-FA-derived NO was not a primary 
contributor to the observed biological responses. Moreo-
ver, as RBOHD was reported to be negatively regulated 

Fig. 2  Overlap of genes whose expression is affected by treatments 
with  NO2-Ln and NO. Venn Diagram showing the overlap of differ-
ential expressed genes (p-value < 0.05 and log2 ≥ 1 or ≤ − 1) between 
treatment with  NO2-Ln (blue circle) and treatment with NO (yellow 
circle) was performed with MapMan Software. On the overlapping 
area are the principal groups of genes shared between the treatments. 
Those groups of genes were extracted from the BIN analysis per-
formed with MapMan Software. On the unshared area genes related 
to stress, development and transcription whose expression is only 
affected in one of the two treatments. A complete list can be found in 
Supplemental Table 1. RNA seq data was obtained from: Arabidopsis 
cells treated with from 100 µM of  NO2-Ln for 1 h (Mata-Pérez et al. 
2016a) and Arabidopsis leaves infiltrated with 1 mM CysNO for 6 h 
(Hussain et al. 2016)
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by NO via S-nitrosation of Cys890 (Yun et al. 2011), a 
NO role is unlikely as we observed enzymatic activation 
upon treatment with  NO2-OA (Arruebarrena Di Palma 
et al. 2020). In addition, RBOHD and F were required 
for  NO2-OA-dependent induction of stomatal closure 
(Fig. 3, Arruebarrena Di Palma et al. 2020). However, the 
mechanism involved in the NADPH oxidase activation by 
 NO2-OA remains unclear, and it could be hypothesized 
that  NO2-FA form adducts directly with RBOHD protein 
regulating its activity. Nevertheless, we found that calcium 
and protein kinase activation are required to induce maxi-
mal ROS production upon  NO2-OA treatments (Arruebar-
rena Di Palma et al. 2020). Thus, it might be possible 
that  NO2-FA directly regulate protein kinases and/or  Ca2+ 
channels and, therefore,  Ca2+-dependent protein kinases.

Cytosolic-free calcium elevation is an early signal in the 
developmental process and response to abiotic and biotic 
stresses in plants. Membrane-localized  Ca2+ permeable ion 
channels modulate the influx of  Ca2+

, leading to elevation 
in cytosolic  Ca2+ concentrations (Kong et al. 2020). Results 
obtained in our lab using leaf discs that express the cytosolic 
calcium sensor aequorin showed that  [Ca+2]cyt increases 

within 60–90 min in a dose-dependent manner between 5 
and 25 µM  NO2-OA treatments (unpublished result). The 
specific target and the mechanistic regulation of  NO2-FA on 
calcium intracellular concentrations have not been explored, 
but cys residues in target proteins might be key molecu-
lar targets. Recently, the  H2O2-induced  Ca2+ increase 1 
(HPCA1, a leucine-rich-repeat receptor kinase) was shown 
to act as an extracellular  H2O2 sensor (Wu et al. 2020). 
Interestingly, HPCA1 contains four Cys residues acting as 
conserved redox-active sites. The molecular mechanism of 
 H2O2 sensing involves the oxidation of these cysteines that 
induce a conformational change of the receptor. Nitrolipid 
targeting and regulation of HPCA1 might hold the key to 
understanding the relationship between  Ca2+ and  NO2-FA.

Redox regulators as targets of  NO2‑FAs?

Activation or deactivation of signaling pathways and enzy-
matic activities mediated by  NO2-FA involves the reaction 
with cysteines of various cellular targets (Schopfer et al. 
2019).

A well-described signaling pathway regulated by 
 NO2-FAs in mammals is Nfr2/Keap1 (nuclear factor (eryth-
roid-derived 2)-like 2)/kelch-like ECH-associated protein 1). 
Keap1 functions as a negative regulator of Nrf2 by keeping 
Nrf2 in the cytoplasmic compartment, promoting ubiquitina-
tion and downstream degradation by the proteasome. Under 
metabolic and inflammatory stress conditions, the forma-
tion of  NO2-FA leads to the nitro-alkylation of Keap1 and 
destabilization of Nfr2-Keap1 complex. This inhibits Nrf2 
proteasomal degradation and causes nuclear translocation 
and accumulation of newly synthesized Nrf2 protein, induc-
ing the gene transcription of antioxidant and detoxification 
enzymes that protect against oxidative stress, inflammation, 
and drug toxicity (Magesh et al. 2012; Suzuki et al. 2013; 
Joshi et al. 2012; Kansanen et al. 2011). The central redox 
regulator NPR1 (non expressor of pathogenesis-related 
genes 1) is the plant counterpart of the mammalian Nfr2-
Keap1 pathway, with which they share a common redox 
sensing mechanism (González-Bosch 2018). Both are acti-
vated by modifications (oxidation or alkylations) of their 
thiol groups that promote their nuclear translocation and 
activation of defense genes. In both pathways, proteaso-
mal degradation prevents their activation and transcription 
activity (González-Bosch 2018). Arabidopsis NPR1 has 17 
cysteines, with 10 of them being highly conserved among 
different species (Mou et al. 2003). Upon pathogen infection 
or accumulation of salicylic acid (SA), changes in cellular 
redox potential lead to the reduction of cysteines through the 
activity of thioredoxins (TRX-h3 and TRX-h5), promoting 
NPR1 translocation to the nucleus (Withers and Dong 2016). 
Unlike Nrf2, NPR1 does not contain a DNA-binding domain 

Fig. 3  Schematic representation of the physiological responses 
induced by  NO2-FAs in Arabidopsis. Exogenous application of nitro-
oleic acid  (NO2-OA) induces both reactive oxygen species (ROS) 
and cytosolic calcium levels in Arabidopsis leaf discs (Arruebarrena 
Di Palma et  al. 2020). In addition,  NO2-OA induces stomatal clo-
sure (Arruebarrena Di Palma et  al. 2020), seed germination (Vollár 
et al. 2020), and cell cycle regulation (Di Fino et al. 2020). Another 
 NO2-FA, nitro-linolenic acid  (NO2-Ln) induces a specific set of 
genes that codify for heat shock proteins (HSP) and heat shock fac-
tors (HSF) in Arabidopsis cell cultures (Mata-Peréz et al. 2016a). The 
green box shows the biological process involved. Arrow indicates 
induction
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but acts as a transcriptional coactivator by interacting with 
several transcriptional factors leading to the expression 
of pathogenesis-related (PR) proteins (Withers and Dong 
2016). Indeed, Farmer and Mueller (Farmer and Mueller 
2013) proposed NPR1 as a possible target of RES. Consid-
ering the similarities between both signaling mechanisms, 
it will be interesting to focus future research on NPR1 as a 
possible target of  NO2-FA action in plants.

Another relevant cellular target reported in animals is 
glutathione (GSH) (Schopfer et al. 2019). Through enzy-
matic and non-enzymatic reactions, GSH plays an active 
role in plant cell redox control systems. Glutathione 
protects cells against oxidative damage induced by envi-
ronmental challenges (Hernández et al. 2017). The con-
centration of GSH in Arabidopsis leaf cells is between 
0.05 mM in vacuole to near 15 mM in mitochondria (Gill 
et al. 2013), making it a likely target of  NO2-FA in plants. 
Exogenous treatment of tomato cell suspension with 
 NO2-OA results in the formation of GS-NO2-OA adducts, 
with a concomitant reduction in GSH cellular concentra-
tion (Arruebarrena Di Palma et al. 2018). Also, it was 
reported that the release of 15N-labeled NO from exog-
enously applied 15NO2-Ln (1 mM) induces the generation 
of  GS15NO (Mata-Pérez et al. 2020). The authors indicated 
that the formation of NO from  NO2-Ln probably led to 
the modulation of the intracellular GSH pool, although 
the exact mechanism of GSNO formation from  NO2-Ln 
and GSH remains to be elucidated. Moreover, GSH was 
reported to interplay with different plant hormones like 
JA, MeJA, SA, and ethylene (Hasanuzzaman et al. 2017). 
Although GSH has multiple roles in plant physiology, the 
pathways or mechanisms involved in transducing GSH-
induced responses have only been partially addressed 
(Hasanuzzaman et al. 2017). Given the concentration and 
reactivity of GSH with  NO2-FA, it would be important to 
establish the role that adduct formation plays in modulat-
ing plant signaling and physiology.

Final considerations

NO2-FA has emerged as new molecules regulating physi-
ological processes in plants. Different  NO2-FA were iden-
tified and detected in a variety of species. Our group has 
expanded the knowledge about this molecule on plant physi-
ology, studying both their role in development (Di Fino et al. 
2020) as well as signaling (Arruebarrena Di Palma et al. 
2020) (Fig. 3). Depending on the nitrolipid, the exogenous 
application may exert a role as an electrophile  (NO2-OA), 
an NO donor  (NO2-Ln), or both. The identification of 342 
protein adducted to  NO2-FA (working as an electrophile) 
has been reported, but unfortunately, their identities have not 

been revealed so far (Aranda-Caño et al. 2019). The study 
of nitrolipid function in non-model plants and the identifica-
tion of the cellular targets of  NO2-FA will shed light on its 
mechanism of action and the plant physiological responses 
that they might regulate.

Author contribution statement AML and LDF conceived the 
review. LDF wrote the initial draft. AADP wrote about the 
physiological role of NO2-FA. EAP performed the RNAseq 
analysis. CGM, AML and FJS contributed to writing and 
manuscript editing.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00425- 021- 03777-z.

Acknowledgements This work was supported by the UNMdP, Consejo 
Nacional de Investigaciones Científicas y Técnicas, Agencia Nacional 
de Promoción Científica y Tecnológica, ANPCyT; PICT-Raíces 2013-
0800 and PICT 2017-0601 (to AML), PICT 2016-3084 (to AADP) and 
NIH GM125944 and DK112854 (to FJS).

Data availability All data generated or analyzed during this study are 
already published. Data sharing does not apply to this article as no 
datasets were generated during the current study. The comparison of 
the two different already published RNAseq is, however, presented as 
a supplemental table and available to the readers.

Declarations 

Conflict of interest FJS acknowledges financial interest in Creegh Inc. 
No other competing financial interests are noted.

References

Akaike T, Nishida M, Fujii S (2013) Regulation of redox signalling 
by an electrophilic cyclic nucleotide. J Biochem 153:131–138. 
https:// doi. org/ 10. 1093/ jb/ mvs145

Almeras E, Stolz S, Vollenweider S, Reymond P, Mene-Saffrane L, 
Farmer EE (2003) Reactive electrophile species activate defense 
gene expression in Arabidopsis. Plant J 34:205–216. https:// doi. 
org/ 10. 1046/j. 1365- 313x. 2003. 01718.x

Aranda-Caño L, Sánchez-Calvo B, Begara-Morales JC, Chaki M, 
Mata-Pérez C, Padilla MN, Valderrama R, Barroso JB (2019) 
Post-translational modification of proteins mediated by nitro-fatty 
acids in plants: nitroalkylation. Plants (basel) 8(4):82. https:// doi. 
org/ 10. 3390/ plant s8040 082

Arruebarrena Di Palma A, Di Fino LM, Salvatore SR, D’Ambrosio 
JM, Grozeff GEG, García-Mata C, Schopfer F, Laxalt AM (2018) 
Nitro-oleic acid induced reactive oxygen species formation and 
plant defense signaling in tomato cell suspensions. BioRxiv 
2:e263

Arruebarrena Di Palma A, Di Fino, LM, Salvatore, S. R, D’Ambrosio, 
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