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Abstract
Main conclusion The monocot cambium is semi-storied, and its cells do not undergo rearrangement.

Abstract The monocot cambium is a lateral meristem responsible for secondary growth in some monocotyledons of Aspara-
gales. It is an unusual meristem, not homologous with the vascular cambia of gymnosperms and non-monocotyledonous 
angiosperms. Owing to the limited information available on the characteristics of this meristem, the aim of this study was to 
survey the structure of the monocot cambium in order to clarify the similarities and dissimilarities of this lateral meristem to 
the vascular cambium of trees. Using the serial sectioning analysis, we have studied the monocot cambium of three species 
of arborescent monocotyledons, i.e., Quiver Tree Aloe dichotoma, Dragon Tree Dracaena draco, and Joshua Tree Yucca 
brevifolia, native to different parts of the world. Data showed that in contrast to the vascular cambium, the monocot cam-
bium is composed of a single type of short initials that vary in shape, and in tangential view display a semi-storied pattern. 
Furthermore, the cells of the monocot cambium do not undergo rearrangement. The criteria used in identifying monocot 
cambium initial cell are also discussed. 
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Introduction

During the course of evolution, the two secondary vas-
cular meristems have developed for the radial growth of 
plant organs, namely the vascular cambium and the mono-
cot cambium (Spicer and Groover 2010; Carlquist 2012). 
Both meristems are concentric and contain cambial ini-
tials that undergo periclinal divisions, and these, in turn, 
differentiate to produce secondary vascular tissues (Evert 

2006; Jura-Morawiec et al. 2015). The vascular cambium, 
characteristic of gymnosperms and non-monocotyledonous 
angiosperms, arises between the primary xylem and phloem, 
mainly from procambium, and contains fusiform and ray ini-
tial cells that form secondary phloem and secondary xylem, 
i.e., wood (Larson 1994). Conversely, the monocot cambium 
which occurs in some monocotyledons of the order Aspara-
gales, such as Aloe, Dracaena and Yucca (Rudall 1995), is 
formed outside the primary vascular bundles from the pri-
mary thickening meristem (Diggle and DeMason 1983a, b; 
Stevenson and Fisher 1980; Rudall 1991) or pericycle (Cat-
tai and Menezes 2010), and contains a single type of initial 
cells (Cheadle 1937; Philipson et al. 1971). Its derivatives 
form the secondary cortex centrifugally, and centripetally 
secondary ground tissue with secondary xylem and phloem 
arranged in collateral or amphivasal vascular bundles (Tom-
linson and Zimmermann 1967). Thus, the vascular cambium 
and monocot cambium have similar roles in radial growth 
but differ in establishment of the cambial cylinder, cell com-
position and the nature of their derivatives.

The monocot cambium is not considered to be homol-
ogous with the vascular cambium (Rudall 1995), and has 
been termed a ‘novel meristem’ (Spicer and Groover 2010; 
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Zinkgraf et al. 2017). Nearly a hundred years ago, Cheadle 
(1937) pointed out the lack of information available in the 
literature concerning monocot cambium initials. However, 
only Simpson (1975) subsequently took up this challenge, 
and based on studies of the monocot cambium of Yucca 
brevifolia, proposed that cell shape, lack of intercellular 
spaces and the thicker tangential wall of the terminal cell 
of a radial file may prove helpful in identifying these mer-
istematic cells. In general, however, the monocot cambium 
structure has received relatively little attention. Descriptions 
of secondary growth in monocots focus mainly on derivative 
tissues (Jura-Morawiec et al. 2015; Maděra et al. 2020) ham-
pering our understanding of monocot cambium organiza-
tion. On the other hand, the recent findings of Zinkgraf et al. 
(2017) have shown a considerable overlap in gene expression 
between the monocot cambium and the vascular cambium. 
Thus, the concept of monocot cambium remains obscure.

The aim of this study is to survey the structure of the 
monocot cambium of the tree-like representatives of Aspara-
gales in order to clarify the similarities and dissimilarities 
of this lateral meristem to the vascular cambium of gymno-
sperm and non-monocotyledonous angiosperm tree species. 
We compared the size, shape, and arrangement of the cam-
bial cells of three monocot species native to different parts 
of the world. The criteria used to identify monocot cambium 
initials are also discussed on this basis.

Materials and methods

Plant material

For the purpose of the study, samples of the monocot cam-
bium were taken from three species of arborescent monocots 
(Fig. 1a–c). The first was a Quiver Tree (Aloe dichotoma 
syn. Aloidendron dichotomum, Asphodelaceae), native to 
Northern Cape and Namibia (van Jaarsveld 2011; Cousins 
and Witkowski 2012; Guo et al. 2016). The samples were 
taken from an individual growing in Walter Sisulu National 
Botanical Garden located in Johannesburg, South Africa. 
The stem girth at the sampling point was 167 cm. The sec-
ond monocot was a Dragon Tree (Dracaena draco, Aspara-
gaceae), native to the Canary Islands, Madeira and Morocco 
(Marrero et al. 1998; Maděra et al. 2020). Samples were 
taken from three individuals growing in the natural vegeta-
tion belt for this species, a thermosclerophyllous forest at 
the Botanical Garden “Viera y Clavijo” on Gran Canaria 
(Spain). Their girth at the point of sampling was 111, 113 
and 125, respectively. The third arborescent monocot was a 
Joshua Tree (Yucca brevifolia var. brevifolia, Asparagaceae), 

native to the Mojave Desert of southwestern USA (Gilliland 
et al. 2006). Samples were taken from two individuals (circa 
98 and 101 cm in girth) growing in Yucca Valley, located in 
southern California’s San Bernardino County.

Microscopical analysis

Samples were fixed in FAA or glycerol:ethanol (1:1) and 
stored in 70% (v/v) ethanol. After cutting these into smaller 
pieces, they were embedded in epon resin (Sigma-Aldrich) 
according to the standard protocol (Jura-Morawiec 2017). 
Next, transverse, tangential and radial sections were cut 
at a thickness of 3.5 µm using a Leica 480A microtome, 
attached to glass microscope slides with Haupt adhesive 
and stained with PAS (Periodic Acid, Schiff) and toluidine 
blue, and mounted in Euparal (Roth). The preparations were 
then examined using an Olympus BX41 light microscope 
equipped with a Canon EOS 70D camera.

To study cell shape, cell arrangement and the occur-
rence of cell events (intrusive growth, symplastic growth, 
and cell divisions), numerous transverse and longitudinal 
sections were used, together with serial sectioning analysis. 
Cambial cell dimensions (length and width) were measured 
based on micrographs of tangential sections. Owing to the 
fact that cambial cells are polygonal in shape, the left–right 
and basal–apical axes were used to measure cell width and 
length, respectively (see Fig. 3b). One hundred cambial cells 
randomly selected for each species were measured with 
ImageJ. The term monocot cambium will be used here in a 
broad sense to include the initials and its recent derivatives. 
As long as these cells remain undifferentiated (i.e., before 
any evidence of anticlinal divisions, lack of intercellular 
spaces, lack of enlargement and lack of formation of the 
secondary wall), the cells should remain fairly representa-
tive of the cambial cells. The width of cambium is reported 
here in terms of cell number in a radial file. Cambial cells 
occur in horizontal tiers in tangential view when the ends 
of cells of one tier appear at approximately the same level. 
Intrusive growth is considered here as growth of cell tips 
which involves the formation of new contacts between cells 
and leads to a change in the existing position of cells (i.e., 
leads to rearrangement, e.g., Jura et al. 2006). Secondary 
cortex was distinguished based on the combination of the 
following criteria (i) abundant calcium oxalate crystals, (ii) 
cells arranged in radial files, (iii) no vascular bundles (apart 
from horizontal leaf traces, which are continuous to the outer 
surface of the protective tissue), in marked contrast to the 
primary cortex where many bundles terminate or fuse to 
others (Simpson 1975).
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Results

General characteristics of the monocot cambium

In transverse sections of the stem, the monocot cam-
bium consists of flattened cells organized into radial files 
(Fig. 1d–f). Cambial cells divide by periclinal divisions. 
Anticlinal divisions were not observed in investigated mono-
cot cambium cells. The cambium is narrow (2–4 cells) in 

Y. brevifolia, and wider in the two other species, up to 8 
cells in D. draco (Table 1; Fig. 1d–f). The outer edge of 
the cambium, adjacent to the secondary cortex, is clearly 
demarcated in Y. brevifolia and A. dichotoma, where cells 
of the cortex are isodiametric, or of irregular shapes when 
desiccated, and not aligned in radial files (Fig. 1d–f), in con-
trast to the cambium of D. draco (Fig. 1e). The transition 
with the central cylinder is more complex and less defined 
in all investigated species. There, some of the cells divide in 

Fig. 1  Examples of arborescent monocotyledons. a Aloe dichotoma, 
South Africa. b Dracaena draco, Gran Canaria, Spain. c Yucca 
brevifolia, Mojave Desert, USA. d–f Some details of the respective 
secondary growth. A thick arrow indicates possible location of the 
monocot cambium (mc); thin arrows and asterisks indicate intercellu-

lar spaces and anticlinal divisions outside the cambium, respectively. 
gt, secondary ground tissue; vb, secondary vascular bundle; devel-
oping secondary vascular bundles are encircled. Scale bar = 100 µm, 
valid for sections d–f 



 Planta (2021) 254:6

1 3

6 Page 4 of 10

all vertical planes and produce vascular bundle, while other 
cells usually enlarge radially (becoming secondary ground 
tissue cells), and usually clear intercellular spaces between 
them are visible (Figs. 1d–f, 2c).

Shape and size of cambial cells

Cambial cells have two characteristic features that help dis-
tinguish them from the derivatives. Serial sectioning anal-
ysis along the cortex (Fig. 2a), through the cambial cells 
(Fig. 2b), to the secondary ground tissue (Fig. 2c) reveals 
that cells of the monocot cambium have pointed ends and 
no or very reduced intercellular spaces at their corners. By 
contrast, cells of the secondary cortex and central cylinder, 
although similarly variable in appearance, have rounded cor-
ners with conspicuous intercellular spaces. Monocot cam-
bium cells vary from rectangular to polygonal in shape. In 
tangential section (two dimensional), each cambial cell can 
be considered as an n-sided polygon, where n determines the 
number of neighbors it possesses (Fig. 3a, b). Thus, cam-
bial cells may be 4-, 5-, 6-, 7- or 8-sided polygons. As seen 
in transverse view cells overlap by one-third in alternate 
radial files (Figs. 1d–f, 3c). As a result, in three-dimensions 
a cambial cell may possess 10 (a decahedron) to 18 (an octa-
decahedron) faces, the most frequent being 14 (a tetradeca-
hedron) (Fig. 3c). These cells are relatively short (Table 1), 
but rather taller than broad.

Arrangement and rearrangement of cambial cells

The organization of cambial cells in tangential view shows a 
semi-storied pattern. These cells thus form a mosaic where 
they occur locally in few-celled horizontal tiers (Figs. 2b, 3a; 
Table 1). Most of the cells contributing to these are 6-sided 
(hexagonal), as seen in the section, and are thus tetradecahe-
dra when considered in three dimensions (Fig. 3c).

No evidence of intrusive growth in the cambium was 
observed. Thus, the cambial cells do not undergo rearrange-
ment. In transverse section, differences in the tangential 
width of radial files are due to the height at which the cam-
bial cells are cut, i.e., whether the microtome knife passes 
through the body or through the ends of the cell (Fig. 3c). 
However, considering the variable shape of cambial cells 

and their general lack of uniformity when viewed in tan-
gential section (Fig. 3a), narrow files may also be due to the 
knife passing through relatively smaller and thinner 4-sided 
cells (hexagons as seen in section, decahedra when consid-
ered in three dimensions).

Table 1  Quantitative parameters 
of the monocot cambium

a n = 100
b n = 20

Trait Aloe dichotoma Dracaena draco Yucca brevifolia

Cambial cell length (µm)a 109.44 (79–138) 119.57 (80–165) 72.52 (53–89)
Cambial cell width (µm)a 81.59 (44–126) 73.48 (46–94) 53.7 (33–72)
Width of cambium (number of cells)b 2–7 3–8 2–4
Number of cells in  storiesb 2–10 2–7 2–9

Fig. 2  The monocot cambium and its derivative tissues in tangential 
view based on an A. dichotoma stem. a–c Selected successive tangen-
tial sections from a series of 65 sections covering a radial distance 
of 227.5  µm that included a tier (blue) of secondary cortex cells 
(a), cambial cells (b), and secondary ground tissue cells (c). In the 
lower left corner is the section number for the series. Note the slight 
changes in cell length and cell shape. Arrows indicate intercellular 
spaces; an asterisk shows anticlinal division in early vascular bundle 
differentiation
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Fig. 3  Characteristics of the shape and arrangement of cambial cells 
of three arborescent monocots. a Tangential sections through the 
monocot cambium of A. dichotoma, D. draco, and Y. brevifolia show-
ing the semi-storied arrangement. Examples of stories are indicated 
with dotted horizontal lines. b Drawings made on the basis of sec-
tions with polygonal (2D) representation of cells. Monocot cambium 
cells are represented as n-sided polygons depending on the number 
of sides they possess, i.e., 4-sided (yellow), 5-sided (orange), 6-sided 

(gray), 7-sided (green), 8-sided (light green). In the central scheme, 
the way of measurement of the polygonal cell (length and width) is 
illustrated. c Scheme showing three-dimensional shape of the mono-
cot cambium cell (14-sided; seven contacts marked 1–7 are visible, 
but the remaining seven are not), and corresponding views of the ends 
and body regions of cells as viewed in transverse sections through the 
monocot cambium of Y. brevifolia 
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Discussion

Monocot cambium versus vascular cambium

The vascular cambium and monocot cambium have simi-
lar roles but differ in how they are formed, cell composi-
tion and the nature of their derivatives (e.g.,Cheadle 1937; 
Tomlinson and Zimmermann 1967; Diggle and DeMason 
1983a, b; Stevenson and Fisher 1980; Rudall 1991; Cattai 
and Menezes 2010; Jura-Morawiec et al. 2015). Our results, 
combined with literature studies, indicate some other differ-
ences (Table 2). In terms of cell shape, cell arrangement and 
size, the differences are substantial. Whereas the vascular 
cambium has two types of cambial initials, the fusiform and 
ray initials, which in tangential view appear to be arranged in 
non-storied, semi-storied, storied or double-storied patterns 
(Larson 1994; Kojs et al. 2004a, b), the monocot cambium 
has only one type of initials (Cheadle 1937). As our results 
show, these initials may be arranged in a semi-storied pat-
tern. This pattern probably results from anticlinal divisions 
that occurred during the formation of the monocot cambium 
from the primary thickening meristem, where anticlinal divi-
sions account for the rapid expansion of the stem (Simpson 
1975). Some monocot cambial cells are rectangular, whereas 
others are polygonal and truncated at one end, but pointed at 
the other (Cheadle 1937; Philipson et al. 1971). Taking into 
account that cambial cells overlap by one-third in alternate 
files their shape in three-dimensions may vary from deca-
hedra to octadecahedra.

In general, cambial cell length is a species-specific char-
acter (Larson 1994). For Agave americana, Aloe saponaria, 
Dasylirion serratifolium and Yucca glauca, they vary from 
50 to 75 µm (Cheadle 1937). These values are considerably 
smaller than ours for D. draco (80–165 µm) and A. dicho-
toma (79–138 µm). Nevertheless, comparing our results 
for cambial cell length in Y. brevifolia (53–89 µm) reveals 
that they are rather similar to those (40–60 µm) reported by 
Simpson (1975). Admittedly, our measurements were taken 
for only a small number of individuals, since plant material 
is difficult to obtain, owing to the endemic status of the 
species involved. However, according to Simpson (1975), 
the average size of cambial cells shows no correlation with 
stem diameter but differs from stem to stem.

The length of initials reflects the type of anticlinal divi-
sion involved. As a general rule, species with short fusiform 
initials tend to divide by means of radial anticlinal walls, 
whereas those with long initials divide obliquely (Larson 
1994). Radial and oblique anticlinal divisions are relatively 
rare in the monocot cambium (Simpson 1975). Transverse 
divisions are absent in this meristem (Simpson 1975), but 
do occur in its centripetal derivatives which differentiate 
to form vascular bundles. Radial anticlinal divisions may 

occur in cambial cells as a prerequisite for symplastic growth 
with its associated increase in cambial circumference. This 
is defined as a uniform, coordinated growth process that 
does not involve a change in contacts between adjacent 
cells (Erickson 1986). Thus, the circumferential symplastic 
growth of cambial cells is contingent on the increase in the 
radius of the cambial ring (Karczewska et al. 2009; Miodek 
et al. 2021). Since the rate of growth in stem thickness of a 
woody plant diminishes with age (Bannan 1962), anticlinal 
divisions in old trunks are extremely rare, and this agrees 
with our observations. For example, trunk diameter of a 
50–100 year old D. draco increases at a rate of about 1.0 cm 
per year, whereas the diameter of a young stem increases at 
a rate of 4.0 cm per year (Symon 1974).

Another difference between the vascular cambium and 
the monocot cambium is that of cell rearrangement. The 
initial cells of the vascular cambium grow intrusively, 
changing cell contacts and affecting the formation of wood 
grain (Harris 1989; Larson 1994; Lev-Yadun 2001; Włoch 
et al. 2002; Kojs et al. 2004a, b). In contrast, the initials 
of the mature monocot cambium do not grow intrusively 
and do not rearrange. Therefore, the monocot “wood”, 
apart from having a completely different structure, shows 
also no association between the direction of alignment of 
cells relative to the longitudinal axis of the stem. Intrusive 
growth is restricted only to the cambial derivatives i.e., 
developing tracheids within the vascular bundles which 
may be several orders of magnitude (forty times or more) 
longer than the cambial cells (Scott and Brebner 1889; 
Jura-Morawiec 2017).

Despite some remarkable differences between the struc-
ture of the monocot cambium and that of the vascular cam-
bium (cellular composition, and lack of cell rearrangement), 
the general design and function of the meristems are similar. 
In transverse section, the meristem is cylindrical in shape 
and its initials and recent derivatives are arranged in radial 
files (Fig. 4a). The main direction of growth of cambium 
cells is radial, and the main type of division is periclinal. 
The width of the cambium varies according to the rate of 
differentiation and number of cell divisions (Larson 1994; 
Jura-Morawiec 2015). Cambial circumference is modified 
by symplastic growth (Fig. 4a).

Location of initial cell

The vascular cambium contains initial cells that maintain 
the integrity of the meristem, but are anatomically indistin-
guishable from their derivatives (Larson 1994; Evert 2006). 
The concept of the initial cell is based on its development, 
not its structure. Unlike its derivatives which will eventually 
leave the meristem and differentiate into permanent tissues, 
the initial cells will remain within the cambium. Taking 
into account the analysis of cell events (periclinal divisions, 
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intrusive growth), the cambial initial is located in the radial 
file in a four-celled complex named Sanio’s four (Larson 
1994), situated closer to the phloem during the period of 
greatest vascular cambium activity (Bannan 1962), and 
growing intrusively during cambial cell rearrangement that 
is recorded in wood structure (Włoch et al. 2002; Kojs et al. 
2004a, b; Jura et al. 2006; Wilczek et al. 2011). Cambial 
initials may also develop thick walls with deeply depressed 
primary pit-fields (Esau 1965).

The initial cell of the monocot cambium is also anatomi-
cally indistinguishable within a radial file. However, accord-
ing to Simpson’s (1975) report for Y. brevifolia, a number 
of criteria, when used in combination, can help identify it 
or at least do so to a group of 2–3 cells (Fig. 4b). The initial 
cell of the monocot cambium divides almost exclusively by 
periclinal divisions. If the cambial cell produces deriva-
tives alternately first centripetally and then centrifugally, 

it will possess thin walls. However, if the initial produces 
cells either centripetally or centrifugally for a prolonged 
period, it produces an increasingly thicker wall in that area 
(Fig. 5). Relatively thick periclinal walls may occur in the 
cambial cells, and it is probable that the initial cell is located 
next to this wall and is usually the terminal cell of a radial 
file. This is not a precise criterion since sooner or later this 
thicker wall will appear at the side associated with the sec-
ondary cortex or secondary ground tissue. Another crite-
rion involves cell shape and its contacts. Only cambial cells 
have pointed ends visible in tangential section and thus lack 
or have very reduced intercellular spaces at their corners. 
Monocot cambium cells also have primary pit-fields in their 
walls. Our studies confirmed the universal nature of these 
criteria, however, even when used in combination, although 
they allow the general identification of monocot cambial 

Fig. 4  The organization of the monocot cambium. a An increase in 
monocot cambium circumference is the result of symplastic growth 
in circumferential direction (green box) whereas an increase in the 
width of the monocot cambium is the result of symplastic growth in 

radial direction (orange box). b Criteria for possible identification of 
the initial cell of the monocot cambium based on the work of Simp-
son (1975)
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cells, they do not enable the precise identification of the 
initial cell.

To conclude, some monocotyledonous plants have 
uniquely achieved the ability to grow in girth by means of 
a remarkable secondary vascular meristem referred to as the 
monocot cambium. Although its function is the same as that 
of the vascular cambium of gymnosperms and non-mono-
cotyledonous angiosperms, the monocot cambium differs 
in establishment, its composition, and its derivative tissues. 
Like the vascular cambium, in transverse section, the mono-
cot cambium is seen to form a ring that increases in both 
width and circumference owing to symplastic growth of the 
cambial cells following periclinal and anticlinal divisions, 
respectively. The initial cell of the monocot cambium is also 
anatomically indistinguishable. However, unlike the vas-
cular cambium, cells of the monocot cambium are shorter, 
vary in shape, and in the mature monocot cambium may 
occur only in a semi-storied pattern. Finally, cells of the 

monocot cambium do not grow intrusively, and therefore, 
do not undergo rearrangement.
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