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Abstract
Main conclusion  This review provides insights into the molecular interactions between Phytophthora infestans and 
tomato and highlights research gaps that need further attention.

Abstract  Late blight in tomato is caused by the oomycota hemibiotroph Phytophthora infestans, and this disease represents 
a global threat to tomato farming. The pathogen is cumbersome to control because of its fast-evolving nature, ability to 
overcome host resistance and inefficient natural resistance obtained from the available tomato germplasm. To achieve suc-
cessful control over this pathogen, the molecular pathogenicity of P. infestans and key points of vulnerability in the host plant 
immune system must be understood. This review primarily focuses on efforts to better understand the molecular interaction 
between host pathogens from both perspectives, as well as the resistance genes, metabolomic changes, quantitative trait loci 
with potential for improvement in disease resistance and host genome manipulation via transgenic approaches, and it further 
identifies research gaps and provides suggestions for future research priorities.
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Introduction

Tomato (Solanum lycopersicum Mill.) is a highly popu-
lar horticultural crop cultivated worldwide, although it is 
prone to several plant pathogens (Singh et al. 2017). Phy-
tophthora infestans (Mont.) de Bary, the causal agent of late 
blight of tomato, is one of the most aggressive pathogens 
of tomato and causes crop loss (Nowicki et al. 2012). P. 
infestans is a member of the Peronosporaceae family of the 
phylum Oomycota, and it infects the entire plant, including 
the stems, leaves and fruits of tomato (Erwin and Ribeiro 
1996). In 2007, the late blight epidemic episode in inner 

Mongolia, China, caused damage to approximately 638,900 
tons of tomato production (Li 2008). In addition, this disease 
is also reported to cause continual annual losses of winter 
tomato production in Florida, which is a USD 464 million 
industry and produces 36% of the total fresh tomatoes of 
USA (Schultz et al. 2010).

The major symptom associated with late blight in tomato 
is the formation of small blackish/brown lesions on leaves, 
fruit and stems that progress to water-soaked chlorotic 
spots, which ultimately lead to necrosis in the entire plant 
(Fig. 1). P. infestans reproduces by both sexual and asex-
ual means, but infection (Fig. 2) via sexual spores is rela-
tively rare (Fry 2008). Asexual spores are dispersed via air 
and seed, while sexual spores are dispersed via soil (Seifu 
2017). Aerial dispersion of the pathogen occurs via asexual 
spores known as sporangia, which is the primary mode of 
infection for P. infestans (Leesutthiphonchai et al. 2018). 
Sporangia are formed in sporangiophores that are dispersed 
by wind or water and facilitate the rapid dispersal of the 
pathogen (Aylor 2003). Sporangia settle on the leaf surface, 
and under favourable conditions (20–25 °C and available 
nutrients), sporangia germinate directly and cause infection, 
while under unfavourable conditions (lower temperature of 
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10–15 °C and low nutrients), sporangia cleave their multinu-
cleate cytoplasm and release 3–8 biflagellate mononucleate 
motile zoospores (Fry 2008; Grenville-Briggs et al. 2005). 
Motile zoospores rapidly encyst and produce a germ tube 
that invades the plant leaves and stems through stomata or 
develops an appressorium that invades the cuticle and epi-
dermal cell wall (Kots et al. 2017). Following the invasion, 

intracellular hyphae of the pathogen ramify within the host 
cells (Fig. 2). P. infestans has a hemibiotrophic lifestyle, with 
an initial biotrophic infection phase that mainly relies on 
living host cells followed by a necrotrophic phase in which 
host cell death is induced (Botero et al. 2018).

In addition to aerial dispersion, dispersion via seeds is 
another concern. Often, transport of asymptomatic infected 
fruits can disperse infected seeds to new locations. Asympto-
matic infected fruit dispersion was the factor underlying the 
late blight epidemic in tomato in the eastern United States 
(Leesutthiphonchai et al. 2018). Dispersion via soil mainly 
occurs by oospores, in which sexual spores are produced by 
the two known mating types, A1 and A2 (Judelson 2007). 
Oospores are more tolerant than sporangia and can easily 
survive adverse conditions in soil between growing seasons 
(Drenth et al. 1995).

Control of P. infestans mainly relies on chemical fun-
gicide applications and resistance breeding (Poudel et al. 
2020). However, P. infestans is difficult to manage because 
of its high adaptability to overcome the resistance of host 
plants (Fry 2008; Hass et al. 2009). Although few resistance 
genes have been identified in wild relatives of tomato (Van 
der Vossen et al. 2003; Pel et al. 2009; Zhang et al. 2013), 
several of the resistance genes have been overcome by dif-
ferent strains of P. infestans (Vleeshouwers et al. 2011). 
The ability of the pathogen to overcome the resistance was 

Fig. 1   Phytophthora infestans infected tomato foliage and fruits 
exhibiting necrosis
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Fig. 2   Disease cycle of Phytophthora infestans in tomato. The diagram illustrates infection through leaves, while fruit or oospores in the soil 
also act as infection repositors between seasons
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explained as a consequence of unique genome organization, 
which emphasizes the extraordinary adaptation ability of 
the pathogen against host plant resistance (Haas et al. 2009; 
Raffaele et al. 2010). In addition, host plants have evolved 
several strategies to shield themselves from pathogen attack. 
Hence, knowledge of the molecular basis of plant–pathogen 
interactions is essential for designing an effective strategy for 
controlling fast-evolving pathogens, such as P. infestans. In 
this review, we focus on recent advancements in our under-
standing of the molecular basis of pathogenicity between P. 
infestans and its host plant tomato and discuss the progress 
made regarding the identification of resistance in the host 
genome, effector proteins, metabolomic models, signalling 
process and quantitative trait loci (QTLs).

Molecular pathogenesis

Plants present several layers of immune defence. The inter-
actions between pathogens and plant immune defence 
responses determines the fate of the pathogen in the host 
plants (Gilroy et al. 2011). The first line of immune defence 
against invading pathogens relies on a large family of pattern 
recognition receptors (PRRs), which recognize the unique 

evolutionarily conserved structures of pathogens known as 
pathogen-associated molecular patterns (PAMPs) (Alten-
bach and Robatzek 2007). The recognition of PAMPs by 
host plants induces PAMP-triggered immunity, which results 
in the generation of reactive oxygen species (ROS) and 
hypersensitive cell death in the host plant (Furuichi et al. 
2014). During the infection process, host signalling pro-
cesses, such as mitogen‐activated protein kinases (MAPKs), 
are activated and modulate the expression of pathogenesis‐
related (PR) genes. However, P. infestans suppresses the host 
immune system while minimizing damage to plants because 
host cell integrity is crucial for its initial biotrophic life-
style phase (Leesutthiphonchai et al. 2018). A schematic 
overview of the molecular pathogenesis of P. infestans is 
presented in Fig. 3. P. infestans has evolved several strategies 
to overcome PAMP-triggered immunity (PTI) by delivering 
immunity-suppressing molecules known as effectors to the 
plant. However, several of these effectors are recognized by 
the host plant and activate effector-triggered immunity (ETI) 
and subsequently programmed cell death in the host plant 
(Gilroy et al. 2011). The host plant ETI is mediated by a 
group of highly specific and conserved plant disease resist-
ance (R) genes (Saunders et al. 2012a). We have discussed 

PAMPs

RXLR effector

HaustoriumZoospore

PTI

Nucleus

PRR

HR

ETI

ROS

Défense gene 
expression

MAPK activation (Susceptibility factor/Positive regulator)

CMPG1 AVR3a

Respiratory burst 
homolog D

AV
R

?

CWDE
SFI1
SFI2
SFI3
SFI4
SFI5
SFI6
SFI7
SFI8

R
 g

en
e

ICD NAC TF (NTP1, NTP2)
Endoplasmic reticulum

PITG_03192

Toxins

Fig. 3   Schematic model showing the molecular pathogenesis of Phy-
tophthora infestans. Zoospores released from sporangium encysted 
and then germinated. P. infestans releases pathogen-associated molec-
ular patterns (PAMPs), which are recognised by host  pattern recog-
nition receptors (PRRs), and induces  PAMP-triggered  immunity. 
To suppress PTI, P. infestans secretes cell wall degrading enzymes 
(CWDE), toxins and RXLR. Some RXLR effectors are recognised by 

the host resistance (R) gene and induce effector-triggered  immunity 
(ETI). For simplicity, all possible steps are not shown, and only some 
of the characterised protein targets and activities are presented in this 
diagram. AVR avirulence, MAPK mitogen-activated protein kinase, 
CMPG1 ubiquitin E3 ligase CMPG1, HR hypersensitive response, 
ICD infestin 1-triggered cell death, ROS reactive oxygen species
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the molecular interaction between pathogens and host plants 
from two perspectives: from the pathogen and from the host 
plant.

Viewpoint from the pathogen

In the initial biotrophic phase, during which the host’s 
immune defence and cell death are actively suppressed, 
pathogens produce invasive hyphae or haustoria within 
living plant cells (Koeck et al. 2011). Through haustoria, 
the pathogen derives nutrients from the host and releases 
a large array of effector proteins (Panstruga and Dodds 
2009). Effectors can be extracellular (apoplastic) or intra-
cellular (cytoplasmic) based on their location in plant cells 
(Fig. 3). Extracellular effectors are secreted in the apoplast 
and interact with extracellular defence-associated factors, 
whereas cytoplasmic effectors are transported inside the host 
cytoplasm and localised in various plant subcellular regions 
(Sharpee and Dean 2016; Wang et al. 2017).

Extracellular effectors

Extracellular effectors released by P. infestans are mainly 
of two types. The first type mediates the protection of the 
pathogen from host defence, and the second type medi-
ates host invasion. Effectors that mediate protection of the 
pathogen from the host defence include protease inhibitors 
and glucanase inhibitors. Protease inhibitor effectors inhibit 
host-resistant proteases (Wang et al. 2019). For example, 
EPI1 and EPI10 effectors released by P. infestans inhibit 
the tomato subtilisin-like protease P69B (Tian et al. 2004). 
Similarly, EPIC1 and EPIC2B inhibit the tomato defence 
cysteine protease Rcr3pim (Song et al. 2009). Glucanase 
inhibitor proteins (GIPs) secreted by Phytophthora bind 
and inhibit the release of host extracellular endo-β-1,3-
glucanases, which target the β-1,3 glucan polymers of the 
oomycete cell wall (Damasceno et al. 2008).

The second type of effector mediates host invasion using 
several approaches, including secretion of cell wall degrad-
ing enzymes (CWDEs) (Ospina-Giraldo et al. 2010; Wawra 
et al. 2012) and toxins (Liu et al. 2005). P. infestans secretes 
CWDEs, such as carbohydrate esterase, glycosyl hydrolases 
and polysaccharide lyases, which degrade the plant cell 
wall, thereby allowing entry of the pathogen into host tis-
sue (Ospina-Giraldo et al. 2010). P. infestans also releases 
a group of toxins to establish infection inside the host cell. 
For example, P. infestans releases the small S locus cysteine-
rich protein (SCR) family (Liu et al. 2005). The SCR gene 
family is highly similar to the PcF gene family, which is 
known for its phytotoxic necrosis-inducing role in Phytoph-
thora cactorum (Chen et al. 2016). Another toxin secreted 
by P. infestans belongs to necrosis and ethylene-inducing 
protein 1 (Nep1)-like family (NLPs), which are involved in 

the damage of plasma membranes and successive cytoly-
sis (Ottmann et al. 2009). NLPs were proposed to possess 
dual functions in plant-pathogen interactions, acting both 
as elicitors of immune responses and as toxin-like virulence 
factors (Qutob et al. 2006).

Elicitor is a general term that refers to molecules that act 
as PAMPs for the plant and subsequently induce defence 
responses against pathogens (Huet et al. 1994; Maffei et al. 
2012). Functional characterization of the NLP protein 
PiNPP1.1 in P. infestans showed that rather than being elici-
tor, it acts as a toxin in Nicotiana benthamiana and tomato 
(Kanneganti et al. 2006). P. infestans secretes another group 
of toxins called elicitins (Huet et al. 1994; Derevnina et al. 
2016). Elicitin are elicitors with highly conserved sterol-
binding proteins with characteristics of PAMPs, secreted 
by oomycete pathogens (Derevnina et al. 2016). Elicitins 
were first demonstrated by Ricci et al. (1989) in oomycete 
pathogens Phytophthora cryptogea and Phytophthora cap-
sici that elicit HR response and systemic acquired resist-
ance in Nicotiana species (Ricci et al. 1989) and some rad-
ish cultivars (Keizer et al. 1998). Following that several 
studies have demonstrated elicitins from a diverse family 
of oomycete, such as cryptogein from P. cryptogea, capsi-
cein from P. capsici, parasiticein from, and INF1 from P. 
infestans (Derevnina et al. 2016). In tomato, elicitins INF1 
and INF1S3 induce basal defence, such as activation of jas-
monic acid‐and ethylene‐mediated signalling pathways, but 
do not induce HR cell death or SA-mediated pathway activa-
tion (Kawamura et al. 2009). Therefore, INF1 might act as 
a PAMP in tomato; however, such defence responses were 
not enough to suppress host colonization by P. infestans 
because tomato is susceptible to the pathogen. In addition to 
the abovementioned toxin, during the process of plant–path-
ogen interactions, P. infestans also secretes proteins with 
RGD (Arg-Gly-Asp)-containing effector protein IPI-O, 
which weakens the plant defence responses by damaging 
the interconnections between the plant cell wall and plasma 
membrane (Senchou et al. 2004).

Intracellular effector secreted in the cytosol of host 
plants

Compared with extracellular effectors, intracellular effectors 
are translocated after secretion into host cells (Kamoun et al. 
2015). Plants have evolved resistance (R) genes that encode 
R proteins that are capable of recognizing several of these 
effector genes, leading to the induction of effector-triggered 
immunity (ETI) (Jones and Dangl 2006). This immune reac-
tion involves a hypersensitive response, followed by pro-
grammed cell death. Among the intracellular effectors in P. 
infestans, the RXLR effector has been extensively studied, 
followed by the CRN effector.
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RXLR effector

RXLR effectors are secreted from haustoria and translo-
cated to the host cell (Ackerveken 2017). The RXLR effec-
tor consists of an N-terminal signal peptide and RxLR motif 
(where R is arginine, X is any amino acid, and L is leu-
cine) (Wawra et al. 2017) and is often followed by another 
conserved motif, i.e., a dEER motif (Asp-Glu-Glu-Arg) 
(Win et al. 2012). The C-terminal domain mostly consists 
of a variable number of motifs that appear in a repeated 
manner (Jiang et al. 2008). The N-terminal domain of the 
RXLR motif is essential for secretion and targeting, while 
the C-terminal domain is essential for effector functions 
(Bos et al. 2006). Phylogenetic analyses have indicated that 
RXLR motifs are highly conserved and signatures of posi-
tive selection have been identified in the C-terminal region 
of a number of RXLR-class effectors (Win et al. 2007). 
Genome-wide analysis of the RXLR effector gene family in 
P. infestans has shown the presence of approximately 563 
RXLR effector genes (Hass et al. 2009). Studies have shown 
that thirty-one RXLX effector genes are expressed during 
interactions between tomato and P. infestans (Zuluaga et al. 
2016), and fourteen of these genes were novel compared 
to RXLX effector genes expressed during the interaction 
between potato and P. infestans. Some of these effectors 
have proteins that can be recognized directly or indirectly 
by the host plant’s resistance (R) gene and are subsequently 
termed avirulence (AVR) genes (Petit-Houdenot and Fudal 
2017). The identification of RXLR effectors and recogni-
tion that some of them act as AVR factors have driven the 
identification of several effector genes and their molecular 
interaction with AVR (Amaro et al. 2017). Knowledge of 
R-AVR interactions is very important for designing strate-
gies to control oomycete diseases in plants. 

Avirulence 3 (AVR3a) is the first functionally character-
ized AVR effector gene of P. infestans (Bos et al. 2010). 
The AVR3a gene has a virulent allele and an avirulent allele 
that differ by only two amino acids: AVR3a (KI) and AVR3a 
(EM) (Huang et al. 2019). AVR3a (KI) is recognized by the 
host resistance gene R3a, which strongly suppresses infes-
tin 1 (INF1)-triggered cell death (ICD), and AVR3a (EM) 
eludes recognition by R3a and thus weakly suppresses host 
ICD (Bos et al. 2003; Torto et al. 2003). AVR3a targets and 
stabilizes the host ubiquitin E3 ligase CMPG1, which is 
necessary for inducing ICD. A mutation in the C-terminal 
tyrosine residue of AVR3a failed to suppress ICD (Bos et al. 
2010). Other than AVR3a, another AVR effector protein of 
P. infestans, AVRblb2, is recognized by host plants. AVRblb2 
interferes with host immunity by targeting the host plant 
defence protease papain-like cysteine protease C14, which 
elevates the susceptibility of host plants to P. infestans by 
preventing its secretion into the apoplast (Bozkurt et al. 
2011). The RXLR effectors SFI1, SFI2, SFI3, SFI4, SFI5, 

SFI6, SFI7, and SFI8 also manipulate host immunity by tar-
geting PTI (Zheng et al. 2014). However, the exact molecu-
lar mechanism and plant proteins targeted by these effectors 
have yet to be explored.

Some effector proteins require an association with host 
plant proteins to initiate interactions with resistance genes. 
For example, AVR2 effectors associate with the plant phos-
phatase BSU-LIKE PROTEIN1 (BSL1) and mediate the 
interaction of BSL1 with plant R2 genes that activate ETI 
in host plants (Saunders et al. 2012b). However, virulent 
strains of P. infestans express an unrecognized form of 
AVR2-like protein that does not facilitate the association of 
BSL1 with R2 despite interacting with BSL1. On the other 
hand, some effector proteins directly manipulate defence-
associated transcription regulators. For example, the RXLX 
effector PITG_03192 interacts with plant NAC transcription 
factors (NTP1 and NTP2) at the endoplasmic reticulum and 
prevents their release from the ER to the host nucleus to 
enhance host susceptibility (McLellan et al. 2013). Some 
RXLR effectors target host susceptibility factors to promote 
virulence. For example, Pi04314 interacts with phosphatase 
1 catalytic isoforms (Boevink et al. 2016), and Pi04089 
interacts with the plant RNA-binding protein KRBP1 (Wang 
et al. 2015) to promote colonization. AVRblb2, another 
RXLX factor of P. infestans, interacts with host papain-like 
cysteine protease C14 and blocks its release to the apoplast 
to inhibit the degradation of virulence proteins of Phytoph-
thora (Bozkurt et al. 2011). In addition, RXLR effectors 
such as AVR1, which is perceived by R1, interact and sta-
bilize the exocyst component Sec5 (a subunit of the exocyst 
protein complex that is associated with vesicle trafficking) 
to enhance resistance against P. infestans (Du et al. 2015). 
Although much progress has been made in identifying sev-
eral RXLR effectors, the function and molecular mechanism 
of many of the effectors are still unknown.

Crinkler (CRN) effector

P. infestans secretes a group of effector gene families known 
as Crinkler (CRN for CRinkling and Necrosis). The name 
is based on a typical leaf crinkling phenotype detected upon 
ectopic expression of two cDNAs of this group in host plants 
(Torto et al. 2003). Bioinformatic analysis of Phytophthora 
genomes has revealed the presence of 196 full-length genes 
and 255 pseudogenes in the CRN gene family and 10 CRN 
genes were actively expressed during P. infestans infection 
of potato (Hass et al. 2009). On the other hand, an analysis 
of CRN expression during P. infestans infection of tomato 
identified 51 novel CRN effector upregulations that were not 
found during P. infestans–potato infection (Zuluaga et al. 
2016). This finding highlights that CRN effector expres-
sion is strongly influenced by the nature of the host. Simi-
lar to RXLR effectors, CRN proteins consist of conserved 
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N-terminal signal peptides followed by diverse C-terminal 
domains (Hass et al. 2009). The N-terminus of the CRN pro-
tein includes a characteristic ∼ 50-amino-acid LXLFLAK 
motif and is responsible for CRN secretion and translocation 
into the host. The N-terminus of the CRN protein also con-
tains an adjacent diversified DWL domain and HVLVXXP 
motif (Amaro et al. 2017). The C-terminus of the CRN is 
composed of diverse domain structures with effector and vir-
ulence functions (Schornack et al. 2010; Amaro et al. 2017). 
Compared with the N-termini, the C-terminal domains are 
highly diverse and often resemble enzymes, such as restric-
tion endonuclease (REase), protein kinase, NTPease, HNH 
endonuclease, LK-nuclease and peptidase, which are pre-
dicted to be involved in toxicity determinants (Zhang et al. 
2016). NTPase coupled with REase domains is common in 
prokaryotic organisms and mainly associated with transpos-
able elements (Amaro et al. 2017). In P. infestans, the CRN 
coding gene PITG_23144 showed the presence of a gypsy 
retrotransposon, which indicated the prokaryotic origin of 
the C-terminus of the CRN protein (Haas et al. 2009). Com-
pared with the C domains, no evidence has been found for 
the presence of the N-terminal domain of the CRN protein 
among prokaryotes (Amaro et al. 2017). Although recent 
studies have identified and characterized several CRN viru-
lence functions, the molecular mechanisms required for 
CRN secretion and translocation remain largely unknown.

Viewpoint from the plant

Plant pattern recognition receptors (PRRs) are either mostly 
surface-localised receptor kinases or receptor-like proteins 
containing several ligand-binding ectodomains that rec-
ognize PAMPs (Zipfel 2014). Several PAMPs have been 
reported in P. infestans, such as PiPE (a mycelial wall-
derived PAMP derived from the surface-existing glyco-
protein fructose-1,6-bisphosphate aldolase of P. infestans) 
(Furuichi et al. 2013), Nep1-like proteins (Kanneganti et al. 
2006), arachidonic and eicosapentaenoic acids (Bostock 
et al. 2011) and elicitin (Noman et al. 2020). PTI includes 
a wide range of responses to impede disease progression. 
Initial PTI responses include the generation of ROS, acti-
vation of calcium ion signalling (Cheval et al. 2013), acti-
vation of mitogen-activated protein kinases (MAPKs), and 
the expression of defence-related genes (Boller and Felix 
2009). However, P. infestans releases an array of effector 
proteins contributing to virulence, among which some sup-
press PTI, while others reprogram host cell physiology and 
metabolic processes to establish host colonization (Bozkurt 
et al. 2012; Toruño et al. 2016). On the other hand, to restrict 
pathogen progression, the host plant uses the second layer of 
the recognition system, intracellular immune receptor NB-
LRR proteins, also known as R (resistance) proteins. R genes 

account for approximately 1–3% of the genome of tomato, 
potato, pepper and tobacco (Wei et al. 2016).

Resistance protein of host plant

Plant resistance proteins are encoded by a family of R genes 
(Malik et al. 2020). R proteins recognise pathogens directly 
by binding to effectors or indirectly by sensing effector-
induced alterations in other proteins of the host plant (Qi 
and Innes 2013). The R protein is composed of a C-terminal 
leucine-rich repeat (LRR) domain, a highly conserved mid-
dle nucleotide-binding site (NBS) domain and a diverse 
N-terminal domain (Takken and Goverse 2012). The LRR 
domain was also reported to play a role in the autoinhibi-
tion of the receptor preceding effector interactions to keep 
the R proteins in the “off” state (reviewed in Qi and Innes 
2013; Bentham et al. 2018). The conserved C-terminal NBS 
domain functions as a molecular switch for R gene activation 
via nucleotide-dependent conformational changes mediated 
by ADP/ATP exchange (Takken et al. 2006). The N-termi-
nus is composed of either the TIR (Toll/interleukin-1 recep-
tor) domain or the CC (coiled-coil) domain (Elmore et al. 
2011). Both of these domains are believed to function as 
receptor modules required for downstream signal transduc-
tion following R gene activation (Takken and Goverse 2012).

The interaction of the R protein and effector is a complex 
process, and several models, such as the elicitor-receptor 
model, guard model, and decoy model, have been proposed 
to explain the interaction mechanism. In the elicitor-receptor 
model, the R protein directly recognises its corresponding 
AVR protein and activates defence responses in host plants 
(Petit-Houdenot and Fudal 2017). This model was sup-
ported by the direct binding of few R-AVR combinations. 
However, for many R-AVR combinations, no direct physical 
interactions between effectors and R proteins were observed 
(reviewed in van der Hoorn and Kamoun 2008). To explain 
the indirect interaction mechanism between the R protein 
and effectors, the Guard model was proposed. According to 
the Guard model, R proteins do not directly detect the pres-
ence of the pathogen effector but rather monitor or guard the 
effector’s target protein in the host (Dangl and Jones 2001). 
Any modifications of the target by the effector lead to R 
gene activation. This model was initially proposed to explain 
Pseudomonas syringae AVRPto recognition by the tomato 
proteins Pto and Prf (Van der Biezen and Jones 1998), 
and subsequently, it was found in another effector protein 
(Jones and Dangl 2006). According to the Guard model, the 
guarded effector target is essential for the virulence func-
tion of the effector protein in the absence of the cognate R 
protein. However, further exploration of additional targets 
of AVRPto (AVR proteins of Pseudomonas syringae pv 
tomato) and AVRBs3 (family bacterial Avr proteins) demon-
strated that some targets of effectors in the host act as decoys 



Planta (2021) 253:119	

1 3

Page 7 of 24  119

to identify pathogen effectors via R proteins, and a decoy 
model was proposed (Van der Hoorn and Kamoun 2008). 
According to the decoy model, the guarded host protein has 
no defence function but imitates as a functional effector tar-
get and traps the pathogen effector and redirects it from its 
true targets (Grund et al. 2019). In this model, guardees will 
be subject to two opposing selection pressures dependent 
on the presence or absence of the guarding R protein. In the 
presence of the R protein, the guardee would be optimised 
for AVR interactions and hence enhance the recognition of 
effectors, while in the absence of the R protein, the guardee 
would be under pressure to evade interaction with pathogen 
effectors to reduce the virulence of the pathogen (Van der 
Hoorn and Kamoun 2008; Champouret 2010).

Interaction of Phytophthora infestans with the host 
signalling pathway

Interaction of P. infestans with the host activate mitogen-
activated protein kinase (MAPK) cascades (Pitzschke et al. 
2009). The activation of MAPK cascades plays a crucial 
role in activating multiple signal transduction pathways in 
the host plant (Murphy et al. 2018). MAPKs are composed 
of 3 protein kinases: MAP kinase (MAP3K), MAP2K, and 
MAPK. These kinases are phosphorylated in a cascading 
series, where MAPK is phosphorylated by MAP2K, which 
itself is phosphorylated by MAP3K (Ren et  al. 2019). 
MAPKs phosphorylate several downstream molecules, 
including transcription factors and RESPIRATORY BURST 
OXIDASE HOMOLOG D, which generates ROS to induce 
defence responses (Asai et al. 2008). The most studied PTI 
activated signalling pathway is the flg22 (a fragment of bac-
terial flagellin)-induced signalling pathway, which recruits 
MAP kinase cascades (Chinchilla et al. 2007; Jelenska et al. 
2017). To suppress PTI, P. infestans releases several effec-
tor proteins. Eight RXLR effectors, SFI1-SFI8 (suppressor 
of early Flg22-induced immune response, SFI), from P. 
infestans showed the potential to suppress PTI in protoplast-
based assays in tomato (Zheng et al. 2014). Among these, 
SFI5, SFI6 and SFI7 have been shown to suppress flg22-
dependent MAP kinase activation upstream of MAPK and/
or at the time of MAP3K activation. This demonstrated that 
these effectors target the earliest stages of the MAPK signal 
transduction pathway in tomato. However, P. infestans does 
not possess any flagellin; therefore, the function of these 
RXLX effectors in attenuating flg22-mediated MAP kinase 
activation and induction was presumed to be related with the 
similarity in early targets associated with both bacterial and 
oomycete PAMP recognition (Zhang et al. 2014).

MAPKs either act as susceptibility factors or positive reg-
ulators during interactions with pathogen effectors. Potato 
vascular Highway1-Interacting Kinase (StVIK), which 
encodes MEK kinase (MAP3K), interacts with the RXLX 

effector Pi17316 to suppress plant immunity (Murphy et al. 
2018). Silencing of this MEK kinase in N. benthamiana 
attenuates P. infestans colonization, while transient expres-
sion of Pi17316 in N. benthamiana attenuates cell death 
triggered by Infestin1. These findings show that MAP3K 
(StVIK) acts as a susceptibility factor to promote disease 
establishment. On the other hand, the MAP3K kinase 
NbMAP3Kβ2 interacts with the RXLR effector Pi22926 
to incite plant immunity (Ren et al. 2019). Silencing of 
NbMAP3Kβ2 in N. benthamiana enhanced P. infestans 
colonization and attenuated AVR4 (Cladosporium fulvum 
avirulence protein AVR4)/Cf4 (tomato resistance protein)-
induced cell death, while transient and stable transgenic 
expression of the RXLR effector Pi22926 in N. benthamiana 
promoted leaf colonization by P. infestans (Ren et al. 2019). 
This finding showed that NbMAP3Kβ2 acts as a positive 
regulator. Similarly, another MAP3K, MAPKKKε, inter-
acts with the RXLR effector PexRD2 and acts as a positive 
regulator of plant immunity. Silencing of MAPKKKε in N. 
benthamiana or expression of PexRD2 enhances susceptibil-
ity to P. infestans (King et al. 2014).

Metabolic alterations mediated in host plants 
by Phytophthora infestans

Plant–pathogen interactions involve the release of patho-
gen-effector proteins to manipulate plant cell processes and 
scavenge nutrients from the host cell by the pathogen to sup-
port its growth and establishment (Rodenburg et al. 2019). 
Although additional data have been obtained on nutrition 
requisition by the pathogen, much more remains to be 
determined. Similar to other oomycete fungi, P. infestans 
is considered an osmotroph that extracellularly catabolises 
complex host nutrients, such as proteins, sugars, and fatty 
acids, by secreting several depolymerizing enzymes and 
importing the resulting simple sugars, micronutrients and 
amino acids into the pathogen cell (Richards et al. 2013). In 
addition, P. infestans is a hemibiotroph that requires viable 
host cells during the initial biotrophic stages of infection 
(Zuluaga et al. 2016). Hence, it produces minimal symp-
toms in the biotrophic phase, which is followed by a necro-
trophic phase in which the lesion becomes larger and sporan-
gia start emerging from necrotic regions (Rodenburg et al. 
2019). Therefore, the physiology of the host plant changes 
as the infection process progresses and nutrients become 
available for the pathogen (Ah-Fong et al. 2017). Based on 
the availability of the nutrient content in the host plant, P. 
infestans adjusts its metabolism by regulating the expression 
of enzyme-encoding genes related to glycolytic, gluconeo-
genic and amino acid pathways (Judelson et al. 2009). Tran-
scriptome mining also showed dynamics in the expression 
of genes encoding nutrient transporters in P. infestans when 
grown in leaves or tubers or artificial media, mainly in the 
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biotrophic stage, which indicates a rich influx of nutrients 
during the early stage of infection (Abrahamian et al. 2016). 
In addition to these transcriptomic studies, Rodenburg et al. 
(2018) proposed genome-scale metabolic models (GEMs) 
for P. infestans. By extracting information from annotated 
genomes (KEGG Orthology database) and introducing simu-
lations, these authors constructed GEMs that were capable 
of predicting biochemical data for metabolic and genetic 
context and can also be used as a reference for designing 
future experiments to characterise the metabolism of P. 
infestans. To further understand the nutrient flux from host 
to pathogen during infection and the metabolic interaction of 
the host and pathogen, Rodenburg et al. (2019) reconstructed 
an integrated metabolic model of P. infestans and tomato 
(Yuan et al. 2016) by integrating two previously published 
models of both species. This integrated metabolic model 
elucidated the dynamics of pathogen–host metabolism 
throughout the infection process and presented information 
for controlling late blight infection in tomato by targeting 
important metabolic processes, such as thiamine biosynthe-
sis, lipid metabolism and fatty acid biosynthesis.

Natural quantitative and qualitative resistance 
against Phytophthora infestans in tomato

The resistance of the host plant to P. infestans is either qual-
itative or quantitative. Qualitative resistance is controlled 
by the resistance (R) gene, while quantitative resistance is 
controlled by quantitative trait loci (QTLs). Approximately 
68 resistance genes were identified in Solanum spp. against 
P. infestans (Rodewald and Trognitz 2013). Most of the 
resistance genes were from wild relatives of potato, such as 
Solanum bulbocastanum, S. venturii, S. demissum, S. ver-
rucosum, S. microdontum and S. paucissectum (Vleeshouw-
ers et al. 2011; Rodewald and Trognitz 2013). Additionally, 
several quantitative trait loci (QTLs) have been identified 
from both wild relative and cultivated potato species (Ghis-
lain et al. 2001; Tan et al. 2008). Compared to potato, fewer 

investigations have focused on tomato because this pathogen 
was reported to cause more damage in potato than tomato. 
However, with time, P. infestans has undergone several 
genomic evolutions and thus has become one of the highly 
infectious pathogens of tomato (Foolad et al. 2008; Zhang 
et al. 2014). Natural genomic resistance to P. infestans has 
been reported in wild relatives of tomato, such as Solanum 
pimpinellifolium, S. habrochaites and S. pennellii. The 
resistance reported in S. pimpinellifolium is mainly qualita-
tive, while the resistance reported in S. habrochaites and S. 
pennellii is quantitative (Merk et al. 2012). Approximately 
6 resistance genes (Ph-1, Ph-2, Ph-3, Ph-4, Ph-5–1 and Ph-
5–2) have been identified in tomato and its wild relatives 
(Panthee et al. 2017) (Table 1). The Ph-1 gene identified in S. 
pimpinellifolium, a wild relative of tomato, was reported to 
display resistance against P. infestans isolate T-0, and intro-
duction of Ph-1 into the susceptible cultivar of tomato led 
to improved resistance (Bonde and Murphy 1952; Gallegly 
and Marvel 1955). However, the resistance was gradually 
overcome by predominant race T1 of the pathogen (Peirce 
1971; Panthee et al. 2017). The second resistance gene, Ph-
2, was identified in another accession of S. pimpinellifolium 
(Gallegly and Marvel 1955). Ph-2 was only able to provide 
partial resistance by restricting the spread of infection rather 
than completely eradicating the infection (Goodwin et al. 
1995; Black et al. 1996). Similar to Ph-1, the resistance pro-
vided by Ph-2 was also gradually overcome by novel isolates 
of P. infestans (Zhang et al. 2014), which prompted further 
screening for new resistance genes in tomato germplasms. 
Subsequently, another single partially dominant gene, Ph-3, 
was isolated from S. pimpinellifolium L3708 (Chunwongse 
et al. 2002) and a hybrid of S. lycopersicum CLN2037B 
(containing Ph-3) × S. lycopersicum LA4084 (Zhang et al. 
2013), which was found to be strongly resistant to several 
isolates of P. infestans and able provide resistance when 
Ph-1 and Ph-2-associated resistance failed. Although Ph-3 
was initially considered the most effective genetic resistance 
resource against P. infestans (Chunwongse et al. 2002), a 

Table 1   Resistance genes identified in tomato and its wild relatives

Resistance gene Chromosome Species name References

Ph-1 7 Solanum pimpinellifolium(accessions; West Virginia 19 and 731) Bonde and Murphy (1952); 
Gallegly and Marvel 
(1955)

Ph-2 10 Solanum pimpinellifolium(West Virginia 700 Gallegly and Marvel (1955)
Ph-3 9 Solanum pimpinellifolium (accessions; L3708) Chunwongse et al. (2002)

Solanum lycopersicum CLN2037B (containing Ph-3) × Solanum 
lycopersicum LA4084

Zhang et al. (2013)

Solanum habrochaites ‘LA2099’, ‘LA1777’ and ‘LA1033 Shah et al. (2014)
Ph-4 2 Solanum habrochaites LA1033 Kole et al. (2006)
Ph-5–1 1 Solanum pimpinellifolium PSLP153 Merk et al. (2012)
Ph-5–2 10 Solanum pimpinellifolium Merk et al. (2012)
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few novel and more aggressive P. infestans isolates have 
also overcome the resistance provided by Ph-3 (Foolad et al. 
2008). The combination of Ph-3 with Ph-2 was found to 
successfully control aggressive strains (Merck et al. 2012). 
The combination of these two genes has been tested in recent 
tomato breeding lines (e.g., NC1 CELBR and NC2 CELBR) 
(Gardner and Panthee 2010), and hybrid cultivars of S. lyco-
persicum, Mountain Magic and Mountain Merit (Panthee 
and Gardner 2010), showed strong resistance against several 
isolates of P. infestans. The resistance gene Ph-4 (Kole et al. 
2006) was identified in S. habrochaites LA1033, and Ph-5–1 
and Ph-5–2 were identified in S. pimpinellifolium PSLP153 
(Merk et al. 2012). However, a later investigation showed 
that Ph-4 is a QTL and a functional characterisation of Ph-5 
for its biological role towards resistance against P. infestans 
has yet to be determined (Panthee et al. 2017).

The qualitative resistance controlled by R genes is not 
stable because of the rapid evolution tendency of P. infestans 
(Li et al. 2011), whereas qualitative resistance controlled 
by quantitative trait loci is generally not specific to any race 
(Brun et al. 2010). Therefore, QTL identification, mapping, 
validation and functional characterization can aid in accel-
erating the map-based and/or positional cloning of resist-
ance genes against P. infestans. Table 2 summarises the 
list of late blight resistance quantitative trait loci identified 
in tomato and its wild relatives. In tomato, wild S. habro-
chaites was assumed to be a potential source for high levels 
of quantitative non-race-specific resistance against several 
P. infestans isolates (Lobo and Navarro 1987). Resistance 
QTLs against P. infestans were identified on all twelve 
tomato chromosomes of the two reciprocal backcross popu-
lations derived from S. lycopersicum × wild S. habrochaites 
(BC-E, backcross to S. lycopersicum; BC-H, backcross to 
S. habrochaites) (Brouwer et al. 2004). Among them, six 
QTLs were found to be reliable QTLs (Table 2), as con-
sistently detected in the replicate experiment. In another 
S. habrochaites accession, LA1777, 5 QTLs were identi-
fied, four of which were reported to be colocalised with 
QTLs identified by Brouwer et al. (2004), and one of them 
was a novel QTL. Smart et al. (2007) also reported a late 
blight-resistant QTL from Lycopersicon pennellii LA716 
(now known as S. pennellii). Three of the QTLs reported 
by Brouwer et al (2004) on chromosomes 4, 5, and 11 were 
fine-mapped and validated using near-isogenic lines (NILs) 
and sub-NILs (Brouwer and St. Clair 2004), which showed 
that QTLs located on chromosome 5 exhibit foliar resist-
ance while QTLs located on chromosomes 4 and 11 exhibit 
both foliar and stem resistance. The introgressed regions 
containing the resistance QTLs were also found to be linked 
with QTLs affecting agricultural traits, such as plant height, 
plant shape, maturity, yield, and fruit, which shows the pos-
sibility of linkage drag between the S. habrochaites resist-
ance alleles and the phenotypical trait alleles (Brouwer and 

St. Clair 2004). Similar co-linkage between disease resist-
ance QTLs were reported by Johnson et al. (2012) in two 
selected QTLs from S. habrochaites chromosomes 5 and 
11 related to foliar and stem resistance against P. infestans. 
These QTLs present complex genomic organisations, includ-
ing several loci that depicted pleiotropy and/or strong link-
ages. Subsequently, Haggard et al. (2015) re-evaluated the P. 
infestans resistance lb11 QTL identified by Brouwer and St. 
Clair (2004) as a probable source of quantitative resistance 
against P. infestans infection in tomato using the same sub-
NILs in replicated field trials over 2 years for 17 agricultural 
traits, such as fruit size, shape, quality, yield, maturity, and 
plant architecture. The lb11 QTL was first reported via fine-
mapping, where each QTL fractionated into multiple QTLs 
using higher resolution mapping. Approximately 34 QTLs 
were identified via fine-mapping among these traits, with 
14% revealing a significant interaction between QTLs and 
the environment. Additionally, QTLs for several traits were 
found to be colocalised, indicating either pleiotropic effects 
or a strong linkage between genes regulating those traits. 
The association of disease resistance QTLs with phenotypi-
cal QTLs possesses both opportunities and constraints. The 
opportunity involves a favourable blend of P. infestans resist-
ance and beneficial agricultural traits, such as that shown in 
the sub-NIL 08GH3999 tomato line, which can directly be 
used as a donor parent for marker-assisted breeding (Col-
lard et al. 2005; Foolad and Panthee 2012) or as a parent in 
crossbreeding for pyramiding resistance QTL alleles with 
other QTL donor lines to escalate the quantitative resist-
ance level against P. infestans infection (Collard and Mack-
ill 2008; Brouwer and St. Clair 2010). Constraints involve 
the combination of P. infestans resistance and undesirable 
agricultural traits, such as that displayed in the sub-NIL 
08GH8032 tomato lines, which show higher foliar resist-
ance but shorter and wider fruit shapes and smaller ripe fruit 
perimeters with delayed maturity. Therefore, the use of such 
QTLs in tomato breeding requires separation from nega-
tive effects through recombination, which requires testing 
of thousands of progeny to recover favourable recombinants 
(Haggard et al. 2015).

Generation of resistance against Phytophthora 
infestans in tomato via a transgenic approach

The generation of resistant varieties using plant transfor-
mation is a faster approach than traditional breeding. The 
availability of several efficient regeneration systems ame-
nable to plant transformation systems (Abu-El-Heba et al. 
2008; Hoshikawa et al. 2019) and the recently developed 
CRISPR-mediated genome editing system (Danilo et al. 
2019; Ghorbani et al. 2020) for tomato varieties has opened 
up wider opportunities for testing the function of several 
stress-related genes as well as the generation of resistant 
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varieties. Overexpression of several antifungal genes from 
resistant wild relatives, transcription factors, defence-related 
genes, and R genes and silencing of negative regulators, such 
as microRNA and circular RNA, have shown promising 
results for the development of resistance against P. infestans 
in tomato (Table 3).

Expression of antifungal genes

The expression of antifungal genes is the most common 
approach for addressing oomycete diseases in plants. The 
expression of antifungal Kiwi pathogenesis-related group 
5 (PR-5) proteins in tomato showed improved resistance 
against P. infestans (Korneeva et al. 2010). Pathogenesis-
related (PR) proteins are induced and accumulate in host 
plants in the event of pathogen attack (Jain and Khurana 
2018). Chitins are β-1,4-like polymers of N-acetylglucosa-
mine polysaccharides and primary components of cell walls 
in fungus (Elsoud and Kady 2019). Although a putative chi-
tin synthase (CHS) gene is present in the genome, the pres-
ence of chitin has not been detected in the cell wall of P. 
infestans (Guerriero et al. 2010; Hinkel et al. 2017). A study 
on ectopic expression of chitin-binding genes from Ama-
ranthus caudatus (ac), A. retraflexus (RS-intron-Shir) and 
hevein-like antimicrobial peptides (amp1 and amp2) from 
Stellaria media in tomato plants showed enhanced resistance 
against P. infestans (Khaliluev et al. 2011). However, the 
mechanism by which chitin-binding genes enhances resist-
ance in tomato were not well explained.

Expression of defence‑related genes

The expression of defence-related genes is another approach 
to elevating disease resistance. Overexpression of the potato 
R1 resistance gene (Faino et al. 2010), S. bulbocastanum R 
gene (Rpi-bIb1) (Van Der Vossen et al. 2003) and S. pimpi-
nellifolium R1 gene (Jiang et al. 2018a) in tomato showed 
significantly improved resistance. However, tomato plants 
that overexpressed the potato R1 resistance gene (S. lyco-
persicum cv Moneymaker and cv San Marzano) showed 
improved resistance only against IPO-0, an isolate of P. 
infestans, and displayed susceptibility to another isolate, 
88,133 (Faino et al. 2010). This study provided evidence 
indicating that the use of a single R gene is not a sustain-
able approach to achieving resistance against fast-evolving 
pathogens, such as P. infestans. Overexpression of two phy-
toalexin genes of grapevine (Vitis vinifera) stilbene synthase 
(vst1 and vst2) in tomato showed significant improvements 
in resistance against P. infestans (Table 3). Stilbene synthase 
catalyses the biosynthesis of stilbene phytoalexin trans-res-
veratrol, which is known for its active role in plant defence 
mechanisms (Parage et al. 2012).Ta
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Manipulation (overexpression/silencing) 
of transcription factors

Overexpression of transcription factor (TF) genes, such 
as WRKY and MYB, also shows significant enhancement 
in resistance against P. infestans. Transcription factors are 
important components in the signalling system and have 
been involved in mainly positive but sometimes negative 
regulatory processes underlying stress responses in plants 
by inducing and/or repressing the expression of an array 
of downstream defence-related genes (Ma et al. 2013; Tian 
et al. 2015). The WRKY family is an example of a positive 
stress regulator TF that is mainly associated with diverse 
biotic stresses (Pandey and Somssich 2009). Overexpres-
sion of S. pimpinellifolium WRKY1 (SpWRKY1) in the sus-
ceptible cultivated tomato cultivar Zaofen No. 2 showed a 
significant reduction in cell death, ROS accumulation, lipid 
peroxidation and relative electrolyte leakage and an increase 
in ROS scavenging antioxidant enzyme activity (peroxidase, 
superoxide dismutase, phenylalanine ammonia-lyase) com-
pared to the wild type (Li et al. 2015). The overexpression 
of SpWRKY1 also upregulated other downstream defence-
related genes, such as ROS scavenging-related genes and 
salicylic acid/jasmonic acid-responsive genes, in trans-
genic lines (Cui et al. 2019). Similarly, overexpression of 
SpWRKY3 (Cui et al. 2018b) and SpWRKY6 (Hong et al. 
2018) also showed promising enhancement in resistance in 
tomato plants against P. infestans (Table 3). SpWRKY3 and 
SpWRKY6 overexpression showed elevated resistance, which 
is evidence of lower necrosis, small lesion sizes, less ROS 
generation and a low disease index, while the silenced lines 
showed more severe disease symptoms than the wild-type 
lines. Furthermore, the overexpression lines after inoculation 
with P. infestans infection showed upregulated pathogene-
sis-related (PR) gene expression in transgenic tomato plants 
compared to wild-type plants.

In addition to WRKYs, MYB TFs are also known for their 
crucial role in increasing the susceptibility of plants to 
biotic stresses (Erpen et al. 2017). Overexpression of native 
MYB49 in the susceptible tomato cultivar S. lycopersicum 
Zaofen no. 2 significantly enhanced resistance against P. 
infestans, as evidenced by lower necrosis, small lesion size 
and lower disease index (Cui et al. 2018a). Compared to 
the wild-type control plants, the transgenic lines showed 
higher accumulation of ROS and malonaldehyde content 
and lowered relative electrolyte leakage and higher activ-
ity of ROS scavenging enzymes (peroxidase and superoxide 
dismutase) upon P. infestans inoculation. Although some of 
the TFs are reported to have a significant response against 
P. infestans, a vast majority of the TF family remains unex-
plored. For example, the role of biotic stress-related TFs, 
including ERF and bZIP, has been reported in response to 
P. infestans in potato. ERF was reported to act as a negative 

stress regulator in potato. Transgenic potato lines with 
silenced ERF (StERF3) showed significant enhancement in 
resistance against P. infestans (Tian et al. 2015). Moreover, 
bZIPs were reported to act as positive stress regulators in 
potato, and potato overexpressing bZIP (Stb ZIP 61) (Zhou 
et al. 2018) showed significant enhancement in resistance 
against P. infestans. Hence, the TFs ERF and bZIP can also 
be explored in tomato in response to P. infestans.

Silencing of susceptibility genes

Silencing of the negative regulator is another approach to 
improving resistance. Plant genes that facilitate infection and 
aid in the compatibility of the host are known as suscepti-
bility (S) genes (van Schie and Takken 2014). Silencing of 
such an S gene Defense No Death 1 (DND1) in tomato plants 
(S. lycopersicum cultivar Moneymaker) showed remarkably 
increased resistance against P. infestans (Sun et al. 2016).

Manipulation of non‑coding genes

In addition to functional genes, manipulation of non-coding 
genes, such as microRNAs (miRNAs), long non-coding 
RNAs and circular RNAs, was also reported to be useful for 
improving resistance in tomato plants against P. infestans. 
MiRNAs are a class of endogenous small non-coding RNAs 
of approximately 22 -24 nucleotides that post-transcription-
ally regulate the expression of genes via translational repres-
sion or mRNA degradation (Cai et al. 2009). miRNAs can 
regulate both positive and negative resistance genes. Nega-
tively regulated miRNAs are downregulated during biotic 
stress in resistant plants, while positively regulated miRNAs 
are upregulated (Chauhan et al. 2017). Therefore, miRNAs 
serve as a potential alternative resource to be used for the 
control of plant pathogens.

Several tomato miRNAs, such as miR396a-5p and -3p, 
miR1916, miR482a, miR482b, miR482c and miR4773p, 
are actively involved in interactions between tomato and P. 
infestans and negatively affect tomato resistance by targeting 
mainly R gene (NBS-LRR) genes. Infection of P. infestans 
in tomato plants downregulates the expression of miR396a-
5p and miR396a-3p (Chen et al. 2017) and MiR1916 (Chen 
et al. 2018). MiR396a-5p targets growth-regulating factor 
(GRF) genes (Chen et al. 2017), while miR1916 targets stric-
tosidine synthases, uridine diphosphate‐glycosyltransferases, 
disease resistance protein RPP13‐like, late blight resistance 
protein homologue R1B‐16 and MYB 12 (Chen et al. 2018). 
Overexpression of miR396a-5p and miR396a-3p in tomato 
plants increases the susceptibility to P. infestans, as evi-
denced by lower necrosis and higher ROS compared to the 
wild type (Chen et al. 2017). Similarly, overexpression of 
miR1916 in transgenic tomato also increases susceptibility 
to late blight infection, while silencing of miR1916 improves 
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tolerance (Chen et al. 2018). Overexpression of another neg-
ative regulator, miR482a (Jiang et al. 2020) and miR482b 
(Jiang et al. 2018b), in tomato plants showed impairment in 
resistance against P. infestans, while silencing resulted in 
improvement in tomato resistance. Similar impairment in 
resistance was observed for miR482c-overexpressing tomato 
lines, where the transgenic plants showed reduced activity of 
ROS scavenging enzymes (peroxidase, superoxide dismutase 
and phenylalanine ammonia-lyase) and higher lipid peroxi-
dation than wild-type tomato plants. The overexpressed lines 
showed downregulation of target resistance genes (NBS-
LRR): Solyc07 g049700 and Solyc11 g006530. Additionally, 
for another miRNA, miR1918, transgenic tomato lines over-
expressing artificial pi-miR1918 exhibited a higher infection 
rate than wild-type plants upon inoculation with P. infestans, 
which indicates that miR1918 increases the susceptibility of 
tomato plants to P. infestans (Hong et al. 2019).

In contrast to negative regulator miRNAs, few miRNAs 
act as positive regulators in tomato stress resistance. Overex-
pression of miR172a and b in the susceptible tomato cultivar 
Zaofen No. 2 significantly improved resistance against P. 
infestans by suppressing the AP2/ERF transcription factor 
(Solyc11 g072600.1.1). The overexpressed line displayed a 
lower disease index, smaller lesion sizes, lower ROS, lower 
lipid peroxidation levels but higher activities of ROS scav-
enging enzymes (POD and SOD) and photosynthetic rates 
(Luan et al. 2018).

In addition to miRNAs, long non-coding RNAs also regu-
late plant resistance. Long non-coding RNAs are a group 
of non-coding RNA molecules that are longer than 200 
nucleotides (Kung et al. 2013). MiRNAs cleave long non-
coding RNAs and generate phased small interfering RNAs, 
which compete with endogenous RNAs and act as decoys for 
mature miRNAs, leading to re-expression of miRNA target 
genes (Ratti et al. 2020). In tomato, a long non-coding RNA, 
Sl‐lncRNA15492 (511 bp), was reported to repress the nega-
tive stress regulator miR482a, whose precursor was placed 
within the Sl‐lncRNA15492 antisense sequence (Jiang et al. 
2020). Degradome analysis followed by RLM‐5′ RACE 
experiments showed that mature Sl‐miR482a might also 
cleave Sl‐lncRNA15492. This shows that Sl‐lncRNAS15492 
and Sl‐miR482a reciprocally destroy Sl‐NBS‐LRR1 homeo-
stasis during the process of tomato plant resistance against 
P. infestans.

Circular RNAs (circRNAs) are long non-coding RNAs 
whose 5’ and 3’ termini are covalently linked, and because 
of their capacity to bind microRNAs (miRNAs), they also 
serve as miRNA sponges (Yu and Kuo 2019). In silico analy-
sis detected a total of 68 circRNAs, of which 9 were reported 
to be upregulated during the P. infestans infection process in 
tomato plants (Hong et al. 2020). Among them, circRNA45 
and circRNA47, transiently overexpressed in tomato plants, 
displayed smaller lesion areas in both transgenic lines 

compared to wild-type plants upon P. infestans infection. 
CircRNA45 and circRNA47 act as sponges for the nega-
tive regulator miR477-3p, which might be the main reason 
behind the improvement in resistance, as evident by the low 
expression of miR477-3p.

Conclusion and future prospects

P. infestans has become a devastating pathogen to control 
even 180 years after its identification because of its tremen-
dous ability to overcome host resistance. By mining the lit-
erature on P. infestans and tomato interactions, we observed 
the involvement of multiple cell wall-degrading enzymes, 
effectors of pathogens and host resistance genes, kinases, 
transcription factors and non-coding RNAs in the molecular 
interactions underlying pathogenesis. The molecular interac-
tions between P. infestans virulence and host resistance drive 
the coevolution of the pathogen as well as the host genome. 
R genes exert selection pressure on pathogens to improve 
their virulence through the modification of the pathogen 
AVR gene inventory to overcome host plant defence. To date, 
approximately 6 resistance genes/genomic regions have been 
identified in tomato and its wild relatives (Table 1), most of 
which have already been overcome by aggressive isolates of 
P. infestans. At present, the combination of Ph-3 with Ph-2 
is the most successful. Hence, detailed research is needed 
to screen new resistance genes in tomato germplasms. Sev-
eral QTLs were identified, although few of them have been 
validated (Table 2). Several QTLs were found to be linked 
with other phenotypic traits. Validated QTLs with favour-
able phenotypic traits will be promising candidates for use 
in P. infestans resistance breeding programs in tomato. Much 
progress has been made in elucidating tomato metabolome 
manipulation by P. infestans. Based on that, an integrated 
host–pathogen genome-scale metabolic model was proposed 
that can be used for further exploration of plant–oomycete 
metabolic interactions and identification of novel defence 
or oomycete genes. Overexpression of several antifungal 
genes, defence-related genes, and long non-coding RNAs 
and silencing of negative regulators, such as susceptibil-
ity genes or miRNAs, showed improvement in resistance 
in transgenic tomato lines (Table 3). However, for a fast-
evolving pathogen such as P. infestans, a more strategic 
approach is needed, such as stacking multiple genes with 
a suitable combination along with or silencing of negative 
regulators. With advancements in sequencing technology, 
genomes of both the pathogen and host plant tomato are 
now available in public domains and efficient transformation 
and genome editing systems are reported. These resources 
provide an opportunity to explore further the functions and 
networks of effectors, regulatory genes, defence genes and 
non-coding RNAs associated with pathogenesis, along with 
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evolutionary insight to design targeted strategies to eliminate 
late blight in tomato.
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