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Abstract
Main conclusion Plant osmoprotectants protect against abiotic stresses. Introgression of osmoprotectant genes into 
crop plants via genetic engineering is an important strategy in developing more productive plants.

Abstract Plants employ adaptive mechanisms to survive various abiotic stresses. One mechanism, the osmoprotection system, 
utilizes various groups of low molecular weight compounds, collectively known as osmoprotectants, to mitigate the nega-
tive effect of abiotic stresses. Osmoprotectants may include amino acids, polyamines, quaternary ammonium compounds 
and sugars. These nontoxic compounds stabilize cellular structures and enzymes, act as metabolic signals, and scavenge 
reactive oxygen species produced under stressful conditions. The advent of recent drastic fluctuations in the global climate 
necessitates the development of plants better adapted to abiotic stresses. The introgression of genes related to osmoprotect-
ant biosynthesis from one plant to another by genetic engineering is a unique strategy bypassing laborious conventional and 
classical breeding programs. Herein, we review recent literature related to osmoprotectants and transgenic plants engineered 
with specific osmoprotectant properties.
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Introduction

Plants being sessile in nature, have to simultaneously 
or sequentially endure changing environments including 
various prevalent abiotic stresses. These abiotic stresses 
include temperature extremes, high light intensity, salinity, 
water scarcity, flooding and nutrient deficiency/excess that 
individually or in combination pose negative effects on plant 
growth, development and productivity (Dutta et al. 2018; 
Khan et al. 2019). It is estimated that global yield reductions 
to abiotic stress approach 70 percent (Acquaah 2009). These 
stresses need to be managed to ensure optimum crop pro-
ductivity under extreme environmental conditions. In recent 

years, concerns have grown about the effects of climate 
change in reinforcing the intensity of abiotic stresses (Fedor-
off et al. 2010; Songstad et al. 2017; Khan et al. 2019). It is 
therefore necessary to improve plant abiotic stress tolerance. 
However, improvement in plant traits can only be effectively 
accomplished with a complete knowledge of plant natural 
defense mechanisms. Thus, it is imperative to appraise plant 
physiological and biochemical strategies by which plants 
can protect their cellular machinery, e.g., proteins and cell 
structure under varying environmental conditions that are a 
serious threat for agriculture.

Plant cellular functions are modified differently upon 
exposure to a particular abiotic stress or under specific stress 
combinations (Wang et al. 2018). Among these modifica-
tions, production and accumulation of a myriad of organic, 
highly soluble, low molecular weight, electrically neutral 
and nontoxic compounds, generally known as osmolytes or 
osmoprotectants (Slama et al. 2015; Per et al. 2017; Riaz 
et al. 2019) are important because of their protective role 
against cellular machinery damage in response to a stressful 
environment. The occurrence of osmoprotectants in plants is 
a common phenomenon, however, their tissue/cellular levels 
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depend on a number of factors such as tissue or cell types, 
developmental phase, and type and permanency of a stress-
ful environment (Joshi et al. 2010).

The production and upregulation of these intracellular 
low molecular weight compatible solutes or osmoprotect-
ants play a protective role against protein denaturation and 
disruption of cell structures without interfering with nor-
mal metabolism of the plant (Szabados et al. 2011; Nahar 
et al. 2016). In addition, nontoxic compatible solutes have 
been shown to stabilize the cell turgor pressure and oxi-
dation–reduction phenomenon to counteract high levels of 
ROS and regain the redox balance to offset stressful envi-
ronments (Cortleven et al. 2019). Based on their chemical 
properties, osmoprotectants are categorized into three types: 
amino acids (proline, ectoine, pipecolic acid, etc.), betaines 
(glycine betaine, choline-O-sulfate, β-alanine betaine, etc.), 
and sugar alcohols and non-reducing sugars (trehalose, 
sorbitol, inositol, mannitol, etc.) (Slama et al. 2015). Plants 
can produce 5–50 μmol g−1 fresh weight of osmoprotectants 
naturally, which remain in different cell components such 
as chloroplast, cytosol and in different components of cyto-
plasm (Rhodes and Hanson 1993). However, their concentra-
tion and composition vary with plant species and environ-
mental stress (Lugan et al. 2010). Contrary to inorganic ions, 
which pose negative effects on plant cells at high concentra-
tions, osmoprotectants as compatible solutes, have the ability 
to maintain cell turgor pressure, alleviating ion toxicity and 
replacing inorganic salts (Szabados et al. 2011). Moreover, 
these osmoprotectants are considered to facilitate osmotic 
adjustment under limited water supply, in order to provide 
alternative water in biochemical reactions, and regulate the 
internal osmotic potential and macromolecule structures 
(Parida and Das 2005). Achieving food production goals for 
increasing human population demands effective strategies to 
cope with the unfavorable environmental conditions such as 
drought, and high or low temperature that drastically affect 
crop yields worldwide. Owing to variation in the levels of 
osmoprotectants, even between cultivars of one species, 
there exists an opportunity to increase the tolerance towards 
harsh conditions by utilizing the lines or cultivars with high 
osmoprotectant production (Li et al. 2019a). In this regard, 
many attempts have successfully used conventional breeding 
protocols to develop crop varieties with enhanced endurance 
against abiotic stresses. Among recent advances, knowledge 
on plant cellular functions and genome editing technologies 
have facilitated an increase in the ability of plants to accu-
mulate increased concentrations of osmoprotectants making 
the crop plants better able to resist abiotic stresses and ensur-
ing maximum food production (Ashraf and Foolad 2007; 
Marwein et al. 2019). Transcriptome analysis has made 
it possible to identify genes related to the biosynthesis of 
osmoprotectants under abiotic stress conditions (Suprasanna 
et al. 2016). This approach aims to develop transgenic plants 

with enhanced osmoprotectant production, by introducing 
genes for abiotic stress tolerance along with those conveying 
the additional benefits of high yield and biomass production. 
Transgenic plants developed with enhanced accumulation of 
osmoprotectants include wheat (Sawahel and Hassan 2002), 
potato (Zhang et al. 2011), rice (Garg et al. 2002; Su and 
Wu 2004), maize (Quan et al. 2004; Bai et al. 2019), pigeon 
pea (Surekha et al. 2014), soybean (Zhang et al. 2015), and 
tobacco (Szabados and Savoure 2010). In the present review, 
the recent advances on the role of individual potential osmo-
protectants playing a role in tolerating abiotic stress condi-
tions are discussed. Moreover, it also elaborates the latest 
genetic engineering strategies used to develop transgenic 
plants with enhanced osmoprotectant production ability for 
improvement in plant abiotic stress tolerance.

Osmoprotectant functions in plants—an overview

A high accumulation of cellular osmoprotectants mediates 
diverse functions in plant defense mechanisms under vary-
ing environmental conditions. These small and highly solu-
ble, organic and compatible compounds have low molecular 
weight with hydrophilic properties. Moreover, unlike inorganic 
compounds, osmoprotectants, at high cellular concentrations, 
are nontoxic to intracellular metabolisms operating in plants 
under harsh environmental conditions (Nahar et al. 2016). 
Under unfavorable conditions, osmoprotective compounds that 
accumulate in plants are proline, ectoine, fructan, pipecolic 
acid, trehalose, polyols, quaternary ammonium compounds 
including glycine betaine, alanine betaine, proline betaine, 
choline-O-sulfate, γ-aminobutyric acids, hydroxyproline, 
betaine, pipecolaite betaine, polyamines, D-ononitol, fructan, 
raffinose, sorbitol, inositol, amino acids, mannitol, gamma 
amino butyric acid (GABA), and carbohydrate sugars (Ashraf 
and Foolad 2007) (Fig. 1). Generally, three distinct categories 
on the basis of chemical composition of osmoprotectants are 
well known that include: (1) the amino acids, (2) quaternary 
ammonium compounds, (3) polyols, sugars, and sugar alcohols 
(Nahar et al. 2016). The accumulation, concentration, struc-
ture and compartmentalization of osmoprotectants at cellular 
level in plants under abiotic stresses depend on factors includ-
ing growth conditions, stress type, severity of stress and plant 
species (Kumar 2009; Evers et al. 2010, Ashraf and Foolad 
2007). The main role of osmoprotectant accumulation under 
harsh conditions is regulation of osmotic balance in plants. 
Under harsh conditions, osmoprotectants maintain cell turgor 
pressure via osmoregulation, replace inorganic ions, protect 
cellular components, and alleviate ion toxicity. In brief, osmo-
protectants play a diverse role in improving stress tolerance by 
protecting biological membranes, stabilizing protein structure 
and other cellular structures, detoxifying ROS, and maintain-
ing cellular redox balance (Suprasanna et al. 2016). Moreover, 
osmoprotectants also control the regulation of protein folding 
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that assists in mediating stress signaling (Rosgen 2007). These 
organic compounds also help to stabilize thylakoid mem-
branes, resulting in upregulation of photosynthesis (Alam 
et al. 2014). These osmoprotective compounds improve the 
antioxidant defense system of plants by directly scavenging 
toxic ROS and protecting key antioxidant enzymes (Hasa-
nuzzaman et al. 2014). Moreover, osmoprotectants play their 
role in the activation of defense related genes under various 
stresses (Wani et al. 2018). Thus, osmoprotectants in plants 
are an important and well-organized evolutionary strategy to 
survive under hostile environments. Owing to their importance 
in plant survival, this topic is considered as a central dogma 
in plant physiology and molecular biology. Understanding 
the diverse roles of individual osmoprotectants is therefore 
necessary to improve stress tolerance in crops. In the follow-
ing sections, we briefly provide an update on different osmo-
protectants, their accumulation, functions and the transgenic 
approaches adopted to achieve their increased production and 
accumulation in crops.

Group of osmoprotectants

Amino acids

Amino acid metabolism in plants under abiotic stress condi-
tion play a pivotal role in inducing stress tolerance in plants 

(Joshi et al., 2010). On the exposure to abiotic stresses and 
resultant desiccation, the accumulation of different amino 
acids including proline, alanine, arginine, glycine, amides 
such as glutamine and asparagine and nonprotein amino 
acids such as gamma-aminobutyric acid (GABA), citrulline, 
pipecolic acid and ornithine, and minor amino acids and 
branched chain amino acids (isoleucine, leucine and valine) 
is well documented (Araújo et al. 2010; Carillo et al. 2005; 
Mansour 2000; Joshi et al. 2010; Woodrow et al. 2017). 
Among these, proline (Pro), a proteinogenic amino acid, 
is widely documented and plays a crucial role in both the 
metabolism and plant defense as an osmoprotectant (Kaur 
and Asthir 2015). As a molecular chaperone, it plays an 
important role in regulation of enzyme activities and protec-
tion of protein integrity (Suprasanna et al. 2016). It also acts 
as an antioxidant having singlet oxygen quenching and ROS 
scavenging abilities (Suprasanna et al. 2016). Several studies 
have reported the accumulation of Pro in response to differ-
ent stresses including drought (Akram et al. 2007), salinity 
(Akram et al. 2012; Vives-Peris et al. 2017), metal toxicity 
(Zouari et al. 2016), and high temperature (Vives-Peris et al. 
2017). On exposure to stress conditions, plants accumulate 
elevated levels of Pro in the cytoplasm and chloroplast 
(Rejeb et al. 2015). Pro is one of the abundantly distributed 
osmoprotectants in plants, however, the nature of its accu-
mulation in stressed plants is still debatable (Carillo 2018). 

Salinity Drought

High Temperature Low Temperature

Exposure of plant to individual or 
mulple abioc stress

Protect 
Enzymes

Protect 
Photosynthesis 
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Fig. 1  A schematic representation describing the functions of osmo-
protection in plants. On the onset of individual or multiple stresses 
(red part in the left side), plant activates its natural osmoprotection 

system and ultimately acquires stress tolerance. Various functions 
performed by osmoprotectants to mitigate the negative effects of abi-
otic stresses are illustrated in middle step (blue portion)
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It is not yet obvious whether Pro accumulation is an indica-
tion of stress, response of stress, or just an adaptive strat-
egy. However, Pro can have diverse functions including: its 
putative role as an osmoprotectant, a stabilizing compound 
of membranes and proteins, buffer cellular redox potential, 
a scavenger of ROS, an inducer of expression of salt stress 
responsive genes, in particular genes with Pro-responsive 
elements (e.g., PRE, ACT CAT ) in their promoters. How-
ever, Pro can be abruptly metabolized when it is no longer 
needed (Woodrow et al. 2017; Carillo 2018). However, the 
accumulation/concentration of Pro varies from species to 
species and can be a hundred times more under stressful con-
ditions than that under control conditions (Verbruggen and 
Hermans 2008). Proline accumulation in response to stresses 
can occur due to its increased accumulation and/or reduced 
degradation (Verbruggen and Hermans 2008). Proline accu-
mulation helps protect the cell from ROS (Kaur and Asthir 
2015). Proline synthesis in plant cells can occur through two 
pathways: glutamate pathway and ornithine pathway (Liang 
et al. 2013; Rai and Penna 2013). Of these two, the glutamate 
pathway is considered the major source of Pro accumulation, 
while the ornithine pathway is activated in chloroplasts or 
cytoplasm, producing Pro from glutamic acid through an 
intermediate pyrroline-5-carboxylate (P5C) under nitrogen 
limiting or osmotic stress conditions (Delauney et al. 1993; 
Dar et al. 2016). The two main enzymes in the glutamate 
pathway are: (1) pyrroline 5-carboxylate synthetase (P5CS), 
and (2) pyrroline 5-carboxylate reductase (P5CR) (Sekhar 
et al. 2007). In most plants, P5CS and P5CR are encoded by 
two and one genes, respectively (Dar et al. 2016). Moreover, 
Pro synthesis in the chloroplast under stress conditions bal-
ances the low NADPH:  NADP+ ratio, sustains the electron 
flow between photosynthetic excitation centers, regulates the 
redox balance, alleviates cytoplasmic acidosis, and protects 
from photoinhibition and damage of photosynthetic appara-
tus (Taiz and Zeiger 2010; Filippou et al. 2014).

After plant exposure to stress conditions, catabolism of 
Pro in the mitochondria contributes to oxidative respiration 
and produces energy for resuming plant growth (Kaur and 
Asthir 2015). It acts as a metabolic signal for stabilizing 
metabolite pools and, hence, causes a beneficial impact on 
growth and development (Verbruggen and Hermans 2008). 
However, there are species-specific differences in Pro 
accumulation in plants under stress conditions (Dar et al. 
2016). Proline engineering of transgenic crop varieties 
with enhanced stress endurance ability is mediated through 
overexpression and accumulation of P5CR, P5CS, ornithine 
aminotransferase (OAT), or via domination of proline dehy-
drogenase (ProDH) (Kaur and Asthir 2015). In this regard, 
development of transgenic crop varieties harboring osmo-
protectant genes from other organisms has been achieved 
worldwide. For instance, transgenic tobacco with Vigna 
aconitifolia P5CS expression produced more Pro than wild 

tobacco (Kishor et al. 1995). Similarly, in transgenic rice and 
chickpea plants, expression of introduced P5CS gene from V. 
aconitifolia resulted in a Pro content five times greater than 
that in non-transformed plants (Karthikeyan et al. 2011). 
Surekha et al. (2014) reported a fourfold increase in Pro 
accumulation along with salt tolerance compared to its wild 
counterpart by transformation of pigeon pea (Cajanus cajan) 
with V. aconitifolia P5CSF129A. Li et al. (2019b) produced 
transgenic Arabidopsis expressing salt-tolerant sweet potato 
IbRAP2-12 gene, which accumulated increased Pro and 
reduced ROS accumulation under salt and drought stresses 
compared with the wild type. Thus, further crops must be 
considered for the introduction of such beneficial genes to 
counteract the negative effect of abiotic stresses.

Quaternary amines: glycine betaine

Glycine betaine (GB) [(CH3)3N + CH2COO −] is a major and 
efficient putative osmoprotectant that accumulates in differ-
ent plant species. It is widely believed that GB can protect 
the plants against exposure to harsh environmental condi-
tions such as drought, high temperature and salinity without 
causing cellular toxicity (Ashraf and Foolad 2007). Glycine 
betaine is a zwitterionic, quaternary ammonium compound 
which is a N-methylated derivative of glycine (Ashraf and 
Foolad 2007; Fariduddin et al. 2013) and accumulates abun-
dantly in many plant species, especially halophytes, under 
a range of environmental stresses (Pardo-Domènech et al. 
2016). Owing to its unique structure, GB tends to inter-
act with both the hydrophilic and hydrophobic domains of 
plant cellular macromolecules such as enzymes and proteins 
(Ashraf and Foolad 2007; Kumar et al. 2017). The intrinsic 
levels of GB are believed to be ontogenetically regulated 
because it is found in young tissues during continued stress, 
while its degradation does not significantly occur in plants. 
The ability of plants to synthesize/accumulate excess levels 
of GB in young tissues under stressful environments does 
not depend on N availability. This supports the viewpoint 
that plant N allocation is required to safeguard the develop-
ing tissues, even under N deficit regimes (Annunziata et al. 
2019). Since GB is not actively degraded/metabolized plant 
tissues, therefore its concentration depends on synthesis, 
transport and dilution in plants (Annunziata et al. 2019).

The extent of accumulation depends on the plant species 
and degree of their stress tolerance (Rhodes and Hanson 
1993). Glycine betaine is a dipolar and electrically neutral 
osmoprotectant at physiological pH (Rhodes and Han-
son 1993). It increases the cell osmolality in plants under 
abiotic stress conditions (Rhodes and Hanson 1993). In 
angiosperms, GB is synthesized widely in chloroplasts and 
protects membranes, enzymes, and proteins of the photo-
synthetic machinery (e.g., Rubisco and PSII) under harsh 
environmental conditions (Ashraf and Foolad 2007; Chen 
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and Murata 2011) (Fig. 2). It has been reported that GB 
accumulation in plants in response to abiotic stresses pro-
tects the reproductive organs resulting in high yields (Chen 
and Murata 2008).

Generally, GB biosynthesis in higher plants is via two 
substrates, choline and glycine. GB synthesis from choline 
in the chloroplast is a two-step process. Biosynthesis of GB 
occurs in the chloroplast from serine through ethanolamine, 
choline, and betaine aldehyde (Hanson and Scott 1980; Rho-
des and Hanson 1993). Choline in plants is transformed to 
betaine aldehyde by the choline monooxygenase enzyme, 
the betaine aldehyde being subsequently converted to GB by 
the action betaine aldehyde dehydrogenase (BADH) (Ashraf 
and Foolad 2007). Although other pathways including direct 
N-methylation of glycine also exist, the choline to GB path-
way has been detected in all GB-accumulating plant species 
(Weretilnyk et al. 1989).

Under normal conditions, plants accumulate low levels 
of GB which increase at the onset of abiotic stress (Chen 
and Murata 2011; Fariduddin et al. 2013). Annunziata et al. 
(2019) reviewed the spatial and temporal profile of GB in 
plants under abiotic stress conditions and inferred that the 
efficacy of GB metabolism transformation for field grown 
crop plants, has not been completely demonstrated. This 
could be due to the reason that although GB concentration in 
genetically modified plants increases considerably, its levels 
are still markedly lower than those in naturally high accumu-
lator plant species. Moreover, even if GB is supplied exog-
enously to older parts, it is rapidly re-translocated to younger 
expanding tissues. However, despite spatial distribution of 
GB, its synthesis is temporally delayed compared to that of 

other vital osmoprotectants like proline. It is believed to be 
due the reason that GB cannot be metabolized. As a matter 
of fact, it is synthesized/accumulated in young tissues/organs 
of plants exposed to stressful cues as well as at N deficit 
regimes. Thus, it can be inferred that GB plays a critical role 
in safeguarding young expanding tissues.

However, there are some species that are naturally non-
accumulators of GB under both normal and stress conditions 
(Chen and Murata 2008). For instance, major cereals like 
maize, wheat or barley partially lack the natural ability of 
adequate GB accumulation under harsh conditions (Faridud-
din et al. 2013; Kurepin et al. 2015). Additionally, rice, 
tomato, and tobacco are among those crops that completely 
lack the GB accumulation ability under normal or stress con-
ditions (Fariduddin et al. 2013; Kurepin et al. 2015). Iden-
tification and transfer of GB biosynthesis-associated genes 
into non-betaine accumulator crops via genetic engineer-
ing has been targeted as a potentially effective strategy to 
improve abiotic stress tolerance (Chen and Murata 2011). 
This approach has been successfully applied in diverse crops 
to develop transgenic cultivars.

Quan et al. (2004) transformed maize with the Escheri-
chia coli choline dehydrogenase betA gene, which improved 
maize tolerance to chilling stress by increasing the accu-
mulation of GB compared with that in the untransformed 
plants. Similarly, Di et al. (2015) transferred the BADH gene 
from Atriplex micrantha into two maize inbred lines and 
the resultant maize plants demonstrated enhanced GB accu-
mulation and tolerance to salt stress along with increased 
growth and biomass production. In a recent study, Song et al. 
(2018) developed transgenic cotton with co-expression of 

Fig. 2  Schematic example showing involvement of an osmoprotectant (glycine betaine) in abiotic stress tolerance
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ApGSMT2g and ApDMT2g genes and observed increased 
GB accumulation under saline stress. Tian et al. (2017) 
transformed wheat with the BADH gene from Atriplex hort-
ensis and the resultant wheat plants showed tolerance to 
salt stress which was found to be mainly associated with 
increased GB biosynthesis along with regulation of different 
physiological and biochemical attributes. Enhanced heat tol-
erance was observed in a transgenic tomato line possessing 
the BADH gene (Li et al. 2014), which accumulated high 
levels of GB compared with its non-transformed counter-
part. While also working with tomato, Wei et al. 2017 devel-
oped a transgenic line by transferring the Arthrobacter globi-
formis choline oxidase gene codA and reported enhanced GB 
accumulation which resulted in improved salt tolerance. In 
a more recent study, Zhang et al. (2019) reported increased 
fruit size in transgenic tomato in response to enhanced GB 
biosynthesis.

Sugars: trehalose

Trehalose (Tre), a naturally occurring non-reducing disac-
charide sugar, plays a critical role in plant metabolic pro-
cesses as a reserve carbohydrate and an osmoprotectant 
(stress protector) in several living organisms including 
plants (Elbein et al. 2003; Almeida et al. 2007; Paul et al. 
2008). Trehalose is composed of two glucose residues 
(D-glucopyranose units) joined by a very stable α-α- (1 → 1) 
linkage (Richards et al. 2002; Fernandez et al. 2010). Tre-
halose is highly soluble in nature and chemically unreac-
tive because of its non-reducing property that makes it a 
compatible solute or osmoprotectant even at its high con-
centrations (Lunn et al. 2014). It has been suggested that 
Tre has the ability to function as scavenging ROS, thus pro-
viding protection to protein synthesis machinery of plants 
(Luo et al. 2010; Koyro et al. 2012). Trehalose 6-phosphate 
(Tre6P), an intermediate of trehalose biosynthesis, is of 
paramount importance as a signal metabolite in plants, con-
necting growth and development to carbon status (Figueroa 
and Lunn, 2016). Tre is responsible for expression of genes 
and signaling pathways associated with stress response and 
detoxification (Abdallah et al. 2016; John et al. 2017). Tre-
halose possesses high hydrophilicity because of the absence 
of internal hydrogen bonding (Paul and Paul 2014; Abdallah 
et al. 2016). Owing to this unique property, Tre acts as a pro-
tective molecule for cellular, membranous and proteinaceous 
structures (López-Gómez and Lluch 2012; Abdallah et al. 
2016). Under stress conditions, Tre protects the structures 
of membranes and proteins by making an amorphous glass 
structure and by acting with surrounding polar phospholip-
ids head groups or with amino acids via hydrogen bonding 
(Crowe et al. 1984; Crowe 2007; Einfalt et al. 2013). This 
amorphous glassy structure formation saves the biomole-
cules from the adverse effects of abiotic stresses especially 

dehydration and helps in recovery of their specific functions 
on the onset of normal non-stress environmental conditions 
(Fernandez et al. 2010; Kosar et al. 2018).

Trehalose biosynthesis in plants follows the OtsA–OtsB 
pathway which depends on two key molecules: uridine-
diphospho-glucose (UDP-Glc) and glucose-6-phosphate 
(Glc-6-P) in a two-reaction process (Paul et al. 2008; Kosar 
et al. 2018). Initially, the enzyme trehalose phosphate syn-
thetase (TPS) catalyzes UDP-Glc and Glc-6-P into treha-
lose-6-phosphate (T-6-P) and uridine diphosphate (UDP) 
(Zentella et al. 1999). Subsequently, the T-6-P is dephos-
phorylated into Tre by trehalose-6-phosphate phosphatase 
(TPP) (Vandesteenea et al. 2010). Additionally, the trehalase 
enzyme catalyzes the hydrolysis of Tre (Vandesteenea et al. 
2010).

Various studies have reported enhanced levels of Tre in 
plants under different abiotic stress conditions (Iordachescu 
and Imai 2008; Henry et al. 2015; Akram et al. 2016; Shafiq 
et al. 2015). In view of the well-known stress mitigating 
properties of Tre, attempts are currently underway to gener-
ate transgenic plants with enhanced Tre biosynthesis. For 
instance, transgenic rice with bacterial Tre biosynthesis 
genes (otsA and otsB) resulted in an increased accumula-
tion of Tre and ultimately improved tolerance to drought, 
salt, and cold (Garg et al. 2002). Likewise, in the same crop, 
Li et al. (2011) reported increased Tre and Pro accumula-
tion along with salt, cold and drought tolerance via over-
expression of Tre synthase gene (OsTPS1) compared with 
its wild counterpart. Nuccio et al. (2015) developed trans-
genic maize plants by introducing a gene encoding a rice 
trehalose-6-phosphate phosphatase (TPP) gene from rice. 
The transgenic maize plants produced 31–130% higher yield 
than that the non-transgenic controls. Thus, there is a need to 
further elaborate the genes related to Tre biosynthesis genes 
from different organisms and to evaluate their potential to 
enhance the abiotic stress tolerance when introduced into 
in crop plants.

Sugar alcohols: inositol and mannitol

Sugar alcohols are categorized into two groups, namely 
cyclic polyols (e.g., pinitol) and acyclic polyols (e.g., man-
nitol) (Slama et al. 2015). Their accumulation in plants is 
believed to perform multiple functions including facilita-
tion of osmotic adjustment, and regulation of redox system 
(ROS scavengers) and molecular chaperons (Szabados et al. 
2011; Upadhyay et al. 2015). Of the acyclic sugar alcohols, 
mannitol is the six-carbon liquor polyol (Upadhyay et al. 
2015). It is the most important and common osmoprotect-
ant that is widely accumulated in various plant species 
except halophytes (Slama et al. 2015) and has a critical role 
in photosynthesis and abiotic stress tolerance (Loescher 
et al. 1992). Mannitol possesses the capacity to act as an 
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osmoprotectant to counteract ROS, a repository of reducing 
power, and as a carbon stockpiling compound (Upadhyay 
et al. 2015). In plants, biosynthesis of mannitol starts from 
fructose-6-P by the actions of different enzymes includ-
ing mannose-6-P isomerase (phosphomannose isomerase), 
mannose-6-phosphate reductase and mannose-1-phosphate 
phosphatase (Loescher et al. 1992). The enzyme manni-
tol dehydrogenase which then controls the catabolism of 
mannitol, produces mannose which on phosphorylation is 
converted into mannose 6-P. Further, the enzyme mannose 
6-P isomerase converts mannose 6-P into fructose 6-P (Loe-
scher 1987). Mannitol is not accumulated naturally in all 
plant species and thus introduction of mannitol into non-
mannitol accumulators can improve their tolerance of harsh 
environmental conditions. For instance, Bhauso et al. (2014) 
transferred MtlD gene from bacteria into a non-mannitol 
accumulator plant species peanut and the resulted trans-
genic plants showed increased accumulation of mannitol and 
hence improved drought tolerance. Rahnama et al. (2011) 
reported improved salinity tolerance in transgenic potato 
expressing the mtlD gene, resulting over-accumulation of 
mannitol. Similarly, Patel et al. (2016) reported enhanced 
salinity stress tolerance in transgenic peanut manipulated 
with bacterial mannitol dehydrogenase mtlD gene. Thus, 
incorporation of mannitol biosynthesis genes from differ-
ent organisms into crop plants to enhance their tolerance to 
abiotic stresses can be an effective strategy to counter the 
adverse impacts of climate change.

Inositol

Myo-inositol (cyclohexane hexol) is a sugar-like unique car-
bohydrate, which is critically important for a myriad of plant 
cellular processes (Valluru and Van den Ende 2011; Nisa 
et al. 2016). Besides performing basic cellular functions, 
inositol is also found to contribute as an osmoprotectant for 
plant protection against abiotic stress (Sengupta et al. 2012). 
Moreover, this compound is reported to control the transport 
of plant hormones such as auxins, membrane biogenesis, 
phytic acid biosynthesis, signal transduction, plant immunity 
and programed cell death (Hazra et al. 2019). In addition, 
myo-inositol also contributes to the synthesis of phospho-
inositide, which aids in a well-defined signaling pathway 
(P1), especially under osmotic stress signaling (Munnik and 
Vermeer 2010). Besides inositol (myo-inositol), its derivates 
such as pinitol, galactinol, and ononitol also accumulate in 
plants and perform diverse functions including osmopro-
tection (Valluru and Ende 2011; Handa et al. 2018). It has 
been observed that under salinity stress, inositol functions 
in two ways: as a protectant against ROS and as a control-
ler of cell water potential. Of the seven isomers of inositol, 
myo-inositol is the most abundant (Sengupta et al. 2012). 
The glycosidic linkage present in inositol and its derivates 

(pinitol, galactinol, and ononitol) is not hydrolysis-labile and 
owing to this property, inositol derivatives are among the 
most stable compounds in the plant cell (Valluru and Ende 
2011). The biosynthesis of inositol is a two-step biochemical 
pathway that involves enzymatic conversion of d-glucose-
6-P into myo-inositol-1-P mediated by myo-inositol-1-P 
synthase (Majumder et al. 1997), followed by dephospho-
rylation of myo-inositol-1-P resulting in myo-inositol that 
further produces different inositol containing compounds 
such as phospholipids (Dastidar et al. 2006). There is great 
potential to use genetic engineering to increase production 
of myo-inositol and its derivatives in transgenic crop plants 
which could thrive well under adverse environmental condi-
tions (Sengupta et al. 2012). For example, Nisa et al. (2016) 
transferred GsMIPS2, the myo-inositol-1-phosphate syn-
thase biosynthesis gene from Glycine soja (wild soybean) 
into Arabidopsis and observed increased tolerance of salt 
stress.

Sambe et al. (2015) reported increased accumulation 
of inositol along with cold tolerance in tobacco plants via 
transformation with a myo‐inositol transporter‐like protein 
(MfINT‐like) of Medicago sativa subsp. Falcate compared 
with its wild counterpart. Khurana et al. (2017) developed 
transgenic Arabidopsis plants with an introduced wheat 
TaMIPS2 gene encoding the myo-inositol phosphate syn-
thase biosynthesis gene and observed increased tolerance 
to heat stress. Developing transgenic plants with enhanced 
inositol biosynthesis may ameliorate the effects of abiotic 
stresses on crop plants.

GABA

A four carbon non-proteinogenic amino acid, γ-amino 
butyric acid (GABA), widely existing in uni- and multi-
cellular organisms including plants, performs diverse func-
tions in plant life cycles (Salah et al. 2019). GABA was 
first discovered during the 1949s in potato tubers (Steward 
et al. 1949). Since then it has received increased attention by 
plant physiologists investigating its role in plant metabolism. 
GABA is produced endogenously in plant cells and acts as a 
signaling molecule which rapidly accumulates under biotic 
stress conditions and provides osmoprotection to plants 
(Bown and Shelp 2016; Li et al. 2018; Podlešáková et al. 
2018). Additionally, under harsh environmental conditions, 
GABA contributes to the regulation of redox status, osmotic 
pressure, maintenance of cytosolic pH, C and N fluxes and 
C–N metabolism (Suprasanna et al. 2016; Salah et al. 2019). 
It can have a scavenging activity against ROS exceeding 
those of proline and glycine betaine (Carillo, 2018). In a 
recent review, it was suggested that the synthesis of GABA 
by glutamate decarboxylation catalyzed by GAD could be 
conducive to the dissipation of excess energy and release of 
 CO2, enabling the Calvin cycle to function while employing 
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a lower influence on photosynthetic electron chain along 
with decreasing both ROS and photo-damage (Carillo 2018). 
GABA is metabolized in plants via a pathway known as the 
GABA shunt, which bypasses two steps of the tricarboxylic 
acid cycle (TCAC) (Shimajiri et al. 2013). In plant cells, 
GABA biosynthesis primarily occurs in the presence of the 
enzyme α-glutamate decarboxylase (GAD) via the decar-
boxylation of glutamate in the cytosol from where GABA 
is transported to mitochondria (Sağlam and Jan 2014; Sei-
fikalhor et al. 2019). The GABA shunt is a feedback loop 
for the production and conservation of GABA (Seifikalhor 
et al. 2019). Information on transgenic plants modified with 
GABA biosynthesis genes is scarce. Research on transfer-
ring GABA biosynthesis-associated genes from different 
organisms via genetic engineering to crop plants to enhance 
plant tolerance to abiotic stresses should be considered.

AL-Quraan and Al-Share (2016), characterized Arabi-
dopsis thaliana pop2 mutant lines for their tolerance ability 
against different abiotic stresses including high temperature, 
low temperature and salinity. The transgenic lines trans-
formed with γ-aminobutyric acid transaminase, subjected 
to different stresses showed variation in their response to 
stress. The authors reported a significant increase in GABA 
concentration in transgenic lines under low temperature and 
osmotic (mannitol) stress. However, only a slight increase 
was observed in both wild and mutant lines under salinity 
stress. It was concluded that the response of GABA trans-
ferred genes varies under different stress types and acts as 
an osmoprotectant in plants under some abiotic stress con-
ditions (Al-Quraan and Al-Share 2016). There is a need to 
evaluate the impact of GABA genes introduced into different 
plant species to better understand their potential, especially 
under abiotic stresses.

Ammonium compound group: polyamines

Polyamines are small aliphatic nitrogenous compounds with 
hydrocarbon chains and amino groups that are reported to 
be important in plant growth and development (Pál et al. 
2015). By virtue of their endogenous protonation (cationic 
nature) ability at cell physiological pH, polyamines regulate 
diverse biological activities such as cell division, differen-
tiation, organogenesis, floral induction, root formation, pol-
lination, tuber development, fruit ripening and programmed 
cell death (Saxena et al. 2013 and references therein). These 
ubiquitous low molecular weight compounds also function 
as anti-stress agents in plants (Pál et al. 2015). Polyamines 
are important for counterbalancing the excess ROS levels 
from the plant cell under abiotic stress conditions. These 
positively charged molecules also protect plant cells from 
oxidative damage via a direct or an indirect route. Directly, 
polyamines act as antioxidants and indirectly they regu-
late the enzymatic and non-enzymatic oxidants in the cell 

environment correlating with the level of stress tolerance 
in plants. Among the various osmoprotectants, polyamines 
are contemplated as the most important for alleviating the 
negative effects of environmental stresses. In higher plants, 
the most abundant and studied polyamines are putrescine, 
spermidine, and spermine (Liu et al. 2015). Besides these 
major polyamines, others including cadaverine and homo-
spermine also occur in living organisms including plants 
(Liu et al. 2015). In addition to their role as osmoprotect-
ants, polyamines are known as nitrogen sinks in plants (Pál 
et al. 2015). In plants, the biosynthesis pathway and key 
enzymes involved are well documented (Tiburcio et al. 2014; 
Khare et al. 2018). The biosynthesis pathway involves decar-
boxylation of arginine or ornithine, catalyzed by arginine 
decarboxylase (ADC) or arginase to give rise putrescine. 
The agmatine resulting from arginine is then transformed to 
putrescine, by agmatine iminohydrolase (AIH) and N-car-
bamoylputrescine amidohydrolase (CPA). Spermine and 
spermidine are derived by the consecutive addition of ami-
nopropyl groups to putrescine and spermidine from decar-
boxylated S-adenosylmethionine (SAM) by the action of 
SAM decarboxylase. Additionally, a large body of research 
suggests that transformation of plants with polyamine bio-
synthetic pathway genes, encoding arginine decarboxylase, 
ornithine decarboxylase, S-adenosylmethionine decarboxy-
lase or Spd synthase, and their overexpression enhanced 
abiotic stress tolerance in several plant species (Gill and 
Tuteja 2010). There are many promising reports on the 
development of transgenic crop plants harboring polyamine 
biosynthetic genes with the aim to enhance abiotic stress 
tolerance. For example, overexpression of ADC, EC 4.1.1.19 
genes from Datura stramonium and Avena sativa resulted 
in increased accumulation of putrescine in transgenic crop 
plants, which ultimately enhanced drought tolerance com-
pared with that of the wild counterparts (Roy and Wu 2002; 
Capell et al. 2004). Espasandin et al. (2014) generated trans-
genic Lotus tenuis plants overexpressing oat ADC gene. The 
authors reported increased putrescine content accumulation 
in the transgenic plants under drought stress that ultimately 
improved water balance of the cells by enhancing drought 
tolerance. In another study, Duque et al. (2016) transferred 
the oat Adc gene of arginine decarboxylase (ADC), a key 
enzyme responsible for polyamine (PA) biosynthetic path-
way to Medicago truncatula and reported increased drought 
tolerance in transgenic plants. In a recent study, Espasan-
din et al. (2018) developed Lotus tenuis transgenic plants 
expressing ADC (pRD29A: oat arginine) decarboxylase 
gene. Overexpression of ADC increased salinity tolerance 
by osmotic adjustment along with Pro accumulation and bal-
anced  Na+/K+ ratios compared with those in wild counter-
parts (Espasandin et al. 2018). Considering the diverse roles 
of polycationic amines, there is a need to further elucidate 
how polyamine biosynthesis genes can be engineered in crop 
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plants to trigger metabolism able to counteract the adverse 
effects of stresses.

Enhanced synthesis of osmoprotectants 
through genetic engineering

Global crop yields must increase to feed the growing popula-
tion. To accomplish this, it is essential to develop practical 
and sustainable strategies to increase yields by protecting 
crops from biotic and abiotic stresses (Aquino et al. 2011). 
For many crops, there is limited or low genetic variability 
available, compatible for use in conventional breeding, from 
which to develop improved cultivars (Ashraf et al. 2008). 
Additionally, conventional breeding technologies are time 
consuming, laborious, costly and inefficient in developing 
stress-tolerant cultivars because abiotic stress tolerance 
is primarily multigenic, whereas biotic stress tolerance is 
often monogenic (Flowers 2004). Transgenic technology 
has the potential to improve plant abiotic stress tolerance 
by developing stress-resistant plants (Jain, 2015). Genome 
editing protocols can be employed in different organisms 
for achieving different processes such as targeted mutation, 
deletion, insertion, and exact sequence alteration by tailored 
nucleases. Transcriptional activator-like effector nucleases 
(TALENs), zinc finger nucleases (ZFNs), and clustered 
regularly interspaced short palindromic repeat (CRISPR)-
Cas9 (CRISPR-associated nuclease 9) are contemplated to 
be promising genome editing tools (Kumar and Jain 2015; 
Jain 2015). Among these, CRISPR–Cas9 system has con-
siderable potential to enable the appraisal of gene/genome 
function and engineering of abiotic stress tolerance in a vari-
ety of plants (Jain 2015). It is an inexpensive, simple, most 
user-friendly, easy and rapidly adopted genome editing tool 
for producing genome edited crops to fulfill the increasing 
food demands in the context of climate change (Khatodia 
et al. 2016). Identification and classification of the specific 
genes associated with the complex mechanisms of tolerance 
is essential to better understand the underlying metabolism. 
Success in developing stress-tolerant cultivars depends upon 
concerted efforts of multiple research domains including 
cell physiology, genetics and molecular biology. Biotech-
nology, genomics and plant molecular biology along with 
plant breeding are successfully contributing to the develop-
ment of abiotic stress-tolerant crops. Abiotic stress results 
in upregulation of the genes to counter abiotic stress condi-
tion. These genes are of two types: directly involved genes 
including osmoprotectants, chaperones, antifreeze proteins; 
and the regulation genes for regulating the genes expression 
for upregulation and signal transduction including protein 
kinases or transcription factors (Kasuga et al. 1999). These 
genes can be altered and expressed in different species via 
transformation system and, on their introduction, cause 
molecular, biochemical and physiological changes that leads 

to increase abiotic stress tolerance and enhanced growth and 
yield characters (Bhatnagar-Mathur et al. 2008). Many crops 
lack the ability to upregulate the production of osmopro-
tectants under abiotic stress conditions. Therefore, it was 
hypothesized that introduction of osmoprotectants pathways 
into such crops is a potential strategy to improve stress toler-
ance (Rathinasabapathi 2000; Wani et al. 2013). Osmopro-
tectants are not species-specific and, thus, can be engineered 
into various crop plants to create stress-tolerant cultivars 
(Bhatnagar-Mathur et al. 2008). In plants, natural accumula-
tion of osmoprotectants ranges from 5 to 50 µmol g−1 fresh 
weight and become higher under the exposure to harsh con-
ditions (Rontein et al. 2002). Osmoprotectants are mainly 
confined to the chloroplast, cytosol and other cytoplasmic 
divisions of plant cells. However, the natural biosynthesis 
of osmoprotectants is lacking in many major crops. Many 
studies have been executed to evaluate the response of plants 
that have been genetically transformed to increase osmo-
protectant production under abiotic stress conditions (Park 
et al. 2004; Yang et al. 2005; 2008; Cai et al. 2017; Wei 
et al. 2017; Zhang et al. 2019). However, the incorporation 
of transgenes into the host genome, though is quite often not 
stable, it is certainly of considerable public concern when it 
comes to edible plants (Stephens and Barakate 2017).

Conclusions and future prospectives

The increased food demand of the growing world human 
population presents a great challenge in the era of cli-
mate change where reliance on the sustainable production 
approaches with minimal additional resources is also desir-
able. Climate change has aggravated this problem as its asso-
ciated abiotic stresses limit crop productivity by adversely 
affecting vital crop growth and developmental processes. 
Naturally, some plants possess the ability to cope with these 
harsh environmental stresses and this ability varies between 
species and between cultivars within species. In general, 
stress-tolerant plants accumulate low molecular weight 
compounds known as osmoprotectants under abiotic stress 
conditions. These important compounds perform vital adap-
tive functions in regulating osmotic adjustment and protect-
ing structures at cellular and subcellular levels. However, 
non- or low-accumulator crops, cannot accumulate sufficient 
levels of these osmoprotectants under stress conditions with 
low yield resulting from their lack of this ability. Thus, in 
order to ensure food security under the situations described 
above, increasing osmoprotectant levels in non- or low-accu-
mulators is considered an important endeavor. To increase 
accumulation, multiple strategies are being employed in an 
attempt to enhance the accumulation of osmoprotectants 
in important crop plants. These strategies include: conven-
tional breeding, a time consuming process, or exogenous 
application of osmoprotectants, a costly and laborious task. 
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As an alternative to these strategies, new technologies for 
introgression of stress resistant or enhanced accumulator 
genes into the desired non- or low-accumulator crop plants 
in order to engineer transgenic plants with durable resistance 
are increasingly being used to overcome the challenges asso-
ciated with the conventional breeding strategies. Researchers 
have successfully developed a number of transgenic crop 
plants (Table 1) with enhanced osmoprotectant accumula-
tion that not only assists crops in enduring harsh environ-
mental stresses but also enhances their yield. Future research 
needs to assess the performance of these genetically modi-
fied crops in farmers’ fields in order to evaluate their prac-
tical and economic value. Furthermore, plants at the field 
level usually have to face more than one abiotic stress, thus 
introgression and overexpression of multiple genes must be 
the ultimate research objective.
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