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Abstract
Main conclusion For the subsequent assessment of the genetic mechanisms responsible for the resistance of plants to 
chronic irradiation, the analysis of RAPD-cDNA with the subsequent isolation, cloning, and sequencing of expressed 
polymorphic sequences is a promising technique.

 A study was conducted on Bromopsis inermis populations that have been growing for a long time in the EURT area. Using 
RAPD primers, we studied the genetic spectra of plants. In analysing the UPGMA algorithm, we identified two well-dis-
tinguishable clusters with a high level of bootstrap support (> 85%): background samples hit the first, and impact samples 
hit the second. Our data indicate a decrease in diversity in the most polluted population, as well as the appearance of new 
alleles in chronically irradiated samples of the B. inermis. Smooth brome seedlings were characterised by the content of 
anthocyanins, comparable with other types of cereals. In the gradient of chronic irradiation, the relative content of antho-
cyanins was not significantly changed. For the first time, the partial nucleotide sequences of the key genes of anthocyanin 
biosynthesis (Chi and F3h) in the brome were determined, these sequences were found to be 191 and 356 bp in length, 
respectively, and were cloned and sequenced. Three copies of the Chi gene were identified in the B. inermis genome. One 
copy (BiChi-1) clustered with the sequences of the Aegilops tauschii gene (D genome), and the other two copies (BiChi-2 
and BiChi-3) formed a separate cluster in the Pooideae subfamily adjacent to Hordeum vulgare. In the copy of BiChi-1, a 
complete deletion of intron 1 was detected. For the F3h gene, one copy of the B. inermis gene was obtained, which forms a 
separate branch in the subfamily Pooideae.

Keywords Bromopsis inermis (= Bromus inermis) · Ionising radiation · Low-level doses · Polymorphism · RAPD · 
Anthocyanins · Chi · F3h

Abbreviations
cDNA  Complementary DNA
CHI  Halcone isomerase
EURT   East Ural Radioactive Trace
F3H  Flavanone-3-hydroxylase
RAPD  Random amplified polymorphic DNA
UPGMA  Unweighted pair-group method using arithme-

tic averages

Introduction

Random amplified polymorphic DNA (RAPD) markers are 
widely used to conduct research in radiobiology (Danyl-
chenko and Sorochinsky 2005; Atak et al. 2004; Dhak-
shanamoorthy et al. 2011; Lu et al. 2007; Turuspekov et al. 
2002; Roy et al. 2006) and ecotoxicology (Conte et al. 1998; 
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Mengoni et al. 2000; Penner et al. 1995; Yap et al. 2007). 
Variability of RAPD loci in Bromopsis inermis (= Bromus 
inermis Leyss.) populations has been extensively studied 
(Joachimiak et al. 2001; Sutkowska and Mitka 2008; Zhang 
et al. 2011; Diaby and Casler 2003).

Anthocyanins are water-soluble pigments of the flavo-
noid family with high biological importance. They play a 
key role in the adaptation of plants to biotic (Kordali et al. 
2005; Franklin et al. 2009; Diaz-Vivancos et al. 2006) and 
abiotic (Chalker-Scott 1999; Treutter 2005; Khlestkina 
2013; Gordeeva et al. 2013; Bandy and Bechara 2001) stress. 
After irradiation, the role of anthocyanins is particularly rel-
evant (Treutter 2005), since with their help, peroxides and 
free radicals are partially utilised. The key enzymes of the 
early stages of flavonoid biosynthesis are chalcone isomer-
ase (CHI, EC 5.5.1.6) and flavanone-3-hydroxylase (F3H, 
EC 1.14.11.9). The nucleotide sequences of these genes 
are well-studied in different plant species (Jez et al. 2000; 
Khlestkina et al. 2013; Shoeva et al. 2014; Winkel-Shirley 
2001). A series of studies has shown a relationship between 
changes in the activity of these genes, the intensity of the 
colour of various plant organs, and the action of environ-
mental factors (Andre et al. 2009; Lovdal et al. 2010; Lillo 
et al. 2008; Shoeva and Khlestkina 2015).

Previously, we studied the 7-year dynamics (Antonova 
et  al. 2014) and the intra-annual variability (Antonova 
et al. 2015) of the viability, mutability, and radiosensitivity 
of seeds and the content of low-molecular antioxidants in 
seedlings of the smooth brome (B. inermis Leyss.) that has 
grown for a long time in the most impact area of the East 
Ural Radioactive Trace (EURT) and beyond.

The purpose of the current study was to analyse bio-
chemical (anthocyanin content) and genetic (variability 
of non-specific loci) parameters in B. inermis populations, 
both growing under chronic radiation conditions and from 
background areas. Sequence analysis of key genes for the 
anthocyanin biosynthesis pathway in B. inermis is relevant 
since these compounds play an important role in the adapta-
tion of plants to adverse environments, including man-made.

Materials and methods

Plant material

Seeds of the awnless brome (ITIS no. 40502, B. inermis 
Leyss. = B. inermis Leyss.) were harvested along the cen-
tral axis of the EURT: impact area (10–12 km, 55°46′N, 
60°51′E) and on the periphery of the trace: buffer (17 km, 
55°50′N, 60°52′E). Two background plots were located out-
side the EURT: background-1 (112 km, 56°42′N, 61°02′E) 
and background-2 (125 km, 56°47′N, 61°18′E). Vegetation 
of the most impact area of the EURT is represented by a 

complex of synanthropic and semi-natural communities at 
various stages of degradation and restorative successions 
(Pozolotina et al. 2012). In all studied phytocenoses, the 
B. inermis is dominant or subdominant. The investigated 
B. inermis populations are represented by octoploid forms 
(2n = 56) (Antonova et al. unpublished).

RAPD analysis

DNA was isolated by standard methods (Plaschke et al. 
1995). For the RAPD analysis, 15 random primers (length 
of 10–11 nucleotides) were used, which were selected ear-
lier for studying representatives of the Poaceae family, in 
particular, wheat (Khlestkina et al. 1999). The PCR condi-
tions are identical to those described previously (Röder et al. 
1998), except for using 2.5 mM  MgCl2. All experiments 
were repeated twice. A total of 19 plants were investigated. 
Cluster analysis was performed using TFPGA v.1.3 (Miller 
1997) based on the UPGMA algorithm. The bootstrap test 
used 1000 replicates.

Anthocyanin extraction

Seeds of 15–20 plants were collected from each populations 
and germinated for 3 weeks in a climate cell using a roll 
culture in distilled water at a temperature of + 23 °C and 
a regimen day/night for 12 h. For anthocyanin extraction, 
fresh coleoptile (N = 4–6, m = 150 mg) was homogenised in 
1 ml of a 1% mixture of HCl + CH3OH at room temperature 
and incubated for 2 h at + 4 °C (Christie et al. 1994). The 
extract was centrifuged at 10,000g for 10 min. The rela-
tive content of anthocyanins was measured at λ = 530 nm on 
SmartSpec™Plus spectrophotometer (BioRad) in triplicate. 
Statistical hypotheses were tested by non-parametric U-tests 
(Mann and Whitney 1947) and z-tests for normally distrib-
uted data using Statistica v.10 (StatSoft Inc. 2011).

Cloning the Chi and F3h genes

The partial nucleotide sequences of the Chi and F3h genes 
of B. inermis were amplified using primers selected previ-
ously for the conserved regions of the corresponding Triti-
cum aestivum genes (Himi et al. 2005; Shoeva et al. 2014). 
The PCR conditions have been described in detail previously 
(Röder et al. 1998). The obtained PCR fragments were sepa-
rated on a 2% agarose gel, excised, and purified using the 
QIAquick Gel Extraction Kit (QIAGEN, Hilden, Germany). 
Purified PCR fragments were sequenced or ligated into the 
pDrive vector from the QIAGEN PCR Cloning Kit (QIA-
GEN, Hilden, Germany). Transformation of Escherichia coli 
(strain XL-blue) by the resulting plasmids was performed 
using calcium and rubidium chlorides (Maniatis et al. 1982).
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Recombinant plasmid DNA was isolated by the alkaline 
lysis method (Maniatis et al. 1982). Sequencing was per-
formed at the SB RAS Genomics Core Facility (http://www.
niboc h.nsc.ru/doku.php/seque st). Multiple alignments of 
cloned sequences were carried out in the program Multalin 
5.4.1 (Corpet 1988). The search for homologous nucleotide 
sequences was performed using the BLAST algorithm (Alts-
chul et al. 1990) in the NCBI database (https ://www.ncbi.
nlm.nih.gov/). Cluster analysis was performed in MEGA 7 
(Kumar et al. 2016). The sequences have been submitted to 
the NCBI database (MK052712, MK052713, MK052714, 
MK052715).

Results and discussion

Detailed radioecological descriptions of the investigated 
sites and dose calculations for mother plants and seed germs 
have been provided in our previous articles (Karimullina 
et al. 2018; Molchanova et al. 2014; Antonova et al. 2014, 
2015). Note that the absorbed dose rate for brome under 
the pollution gradient is 1.5–19 times higher than the back-
ground level. These values do not exceed the limits of low-
level doses for plants. We assessed the effects of low-level 
radiation on B. inermis according to the variability of the 
population genetic structure and the level of anthocyanins, 
and furthermore determined the relationship of the Chi and 
F3h B. inermis sequences to cultural cereals.

Hypothesis 1: genetic variability in chronically 
irradiated B. inermis populations is higher 
than in background samples

Using RAPD analysis, the most polymorphic spectra with 
primers R_057 (1722-05) and R_160 (311-04) were iden-
tified. The remaining primers gave monomorphic spectra 
or PCR reactions with their participation completely inhib-
ited. The PIC values (with the Bayes correction) charac-
terising the level of informativeness of polymorphism at 
the locus R_057 varied from 0.869 to 0.889 in background 
samples and from 0.897 to 0.873 in impact samples. For 
the locus R_160, the values were higher (0.931–0.939 and 
0.943–0.893, respectively). This indicates that these loci are 
highly informative for population studies, but the variability 
in the most polluted population was minimal. In total, 137 
alleles were found in the background populations, and 92 
alleles were found in the chronically irradiated population.

Cluster analysis using the UPGMA method (Nei 1972) 
identified two groups. Both background samples were in the 
first cluster, and impact samples were in the second (Fig. 1). 
Since the bootstrap support levels were high (> 0.85%), 
unexposed samples (DN = 0.093) were genetically closer to 
each other than to impact plants (DN = 0.241), also with high 

affinity within the cluster (DN = 0.092). This is probably due 
to the fact that the locus R_160 has a 230 bp allele found 
only in background samples, while the 203 bp and 176 bp 
alleles were found only in impact populations.

The level of genetic variation in each population may 
equally be associated with neutral mutations, isolation, 
migration, gene drift, and the founder effect (Hedrick 2011). 
High levels of variability may be due to the wide variation 
of the ecological niche (Babbel and Selander 1974; Prentice 
et al. 1995). Under environmental pollution, an increase in 
variability may be associated with an increase in the inci-
dence of rare alleles, as was shown in Centaurea scabiosa 
(Lysenko et al. 1999), Stellaria graminea (Pozolotina et al. 
2010), and Pinus sylvestris (Geras’kin and Volkova 2014); 
with the advent of unique alleles (Karimullina et al. 2016) 
that were absent in unexposed samples of Silene latifolia; 
and in the case of RAPD, with the formation of new bands 
(Roy et al. 2006; Conte et al. 1998). An increase in genetic 
diversity has also been noted in chronically irradiated pop-
ulations of Hordeum bogdanii and Agropyron pectinatum 
growing on the Semipalatinsk nuclear test site (Turuspekov 
et al. 2002). However, the reasons for increased diversity are 
often not provided by the authors. In some studies, RAPD 
markers associated with a low level of Cd accumulation of 
plants have been identified (Penner et al. 1995).

Our data indicate a decrease in diversity in the most pol-
luted sample from the EURT, which disproves our hypoth-
esis. This may be due to low migration and gene drift (Soule 
1973; Hoffmann and Blows 1994), as well as the bottle-
neck effect (Nei et al. 1975). Similar results were obtained 
in Lychnis flos-cuculi populations (Dulya and Mikryukov 
2016), Sedum alfredii (Deng et al. 2007), and Deschamp-
sia cespitosa (Bush and Barrett 1993), which grow under 
chronic chemical pollution, and also Plantago major from a 
radioactive contamination area (Pozolotina et al. 2005). The 
loss of genetic diversity under anthropogenic stress is called 
“genetic erosion” (van Straalen and Timmermans 2002). In 
addition, our data indicate the emergence of new alleles in 
chronically irradiated samples of B. inermis. Similar data 

Fig. 1  UPGMA dendrogram of genetic distance constructed for Bro-
mus inermis populations from the EURT area and from unexposed 
samples. 1000 permutations were performed. The bootstrap values 
are located above the axes

http://www.niboch.nsc.ru/doku.php/sequest
http://www.niboch.nsc.ru/doku.php/sequest
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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were obtained earlier in Cu-resistant Silene paradoxa popu-
lations (Mengoni et al. 2000), as well as using the model spe-
cies Arabidopsis thaliana (Conte et al. 1998). Such changes 
may be the result of structural changes in DNA (mutations), 
such as breaks, translocations, or deletions (Danylchenko 
and Sorochinsky 2005; Atienzar and Jha 2006).

Hypothesis 2: the intensity of the anthocyanin 
synthesis increases under chronic irradiation

The B. inermis seedlings had an average content of anthocya-
nins in different populations, which varied from 0.52 to 1.62 
(Fig. 2). These data are located in the range of values typical 
for T. aestivum “Pyrothrix 28” (Hordeum marinum) of the 
substituted chromosome line 7Hm(7D) and Secale cereale 
of the variety Onokhoyskaya (Khlestkina et al. 2011). Along 
the gradient of chronic irradiation, the relative content of 
anthocyanins in the seedlings was not significantly different 
(Kruskal–Wallis test, H3; 21 = 3.85; p = 0.278). The greatest 
variability of this parameter was seen in background sam-
ples (CV= 24.2–39.2%; with CV= 12.0–16.9% in EURT 
populations).

Anthocyanins (belonging to the group of flavonoids) are 
considered to be non-specific protectors, the synthesis of 
which increases under abiotic and biotic stress (Chalker-
Scott 1999; Diaz-Vivancos et al. 2006; Franklin et al. 2009; 
Kordali et al. 2005; Treutter 2005; Gordeeva et al. 2013; 
Khlestkina 2013; Bandy and Bechara 2001). A series of 
investigations has shown that the content of flavonoids 
increases at low temperatures (Carrao-Panizzi et al. 1999; 
Gordeeva et al. 2013), under water (Shoeva et al. 2017) and 
salt stress (Shoeva and Khlestkina 2015), as well as after 
acute gamma irradiation (Gordeeva et al. 2018). When using 
exact genetic models such as wheat near-isogenic lines, dif-
fering in alleles of the genes that determine the accumula-
tion of anthocyanins in the grain and coleoptile, the role of 

pigments has been demonstrated under the action of vari-
ous types of stress of low or moderately intensity. However, 
under severe stress, anthocyanins are apparently not effective 
protective molecules (Gordeeva et al. 2013, 2018; Shoeva 
et al. 2017; Shoeva and Khlestkina 2018). The content of 
low molecular weight antioxidants has been positively cor-
related with the parameters of growth and development of 
smooth brome seedlings and negatively with the proportion 
of seedlings that have any developmental anomalies (necro-
sis of various organs, changes in the shape of cotyledons, 
etc.) (Antonova et al. 2015). It has been shown that, under 
salt stress, T. aestivum changes the expression of key flavo-
noid biosynthesis genes (Chi and F3h) (Shoeva and Khlest-
kina 2015). In Lemna minor, low radiation doses trigger 
altered flavonoid biosynthesis gene expression (COMT1, 
PAL, CHS) (Van Hoeck et al. 2017).

Our data on the anthocyanin content in smooth brome 
seedlings indicate the absence of differences between back-
ground and chronically irradiated populations. This may be 
due, on the one hand, to the fact that cyclicity is character-
istic of any biological system (Nagata et al. 2003; Antonova 
et al. 2015). On the other hand, alternative ways of main-
taining homeostasis in cells under stress are possible, for 
example, due to the intensive synthesis of other types of 
low molecular weight antioxidants (Antonova et al. 2014) 
or the activation of enzyme systems (Shimalina et al. 2018).

Hypothesis 3: the sequences of the key genes 
of anthocyanin biosynthesis (Chi, F3h) are conserved 
and correspond to cultural cereals in the smooth 
brome

For PCR in B. inermis, primers selected for amplification of 
T. aestivum genes were effective. For the first time, partial 
sequences of the genes Chi and F3h in B. inermis (191 and 
356 bp, respectively) were cloned and sequenced (Fig. 3).

Analysis of the nucleotide sequences of the Chi gene, 
obtained by sequencing the plasmid DNA of nine individual 
colonies, revealed three individual copies corresponding to 
different subgenomes combined in the polyploid genome of 
the B. inermis. In the copy of BiChi-1, a complete deletion 

Fig. 2  The content of anthocyanins in the B. inermis coleoptile from 
the EURT and unexposed (background) populations. Black dots in 
the figure indicate average values, white squares are the standard 
errors of mean, bars are the standard deviations

Fig. 3  A scheme for structure of the Chi and F3h genes and corre-
sponding fragments isolated from Bromus inermis genome (the red 
line below each scheme)



1981Planta (2019) 249:1977–1985 

1 3

of intron 1 was noted. The nucleotide sequences of BiChi-2 
and BiChi-3 differed from each other by one substitution in 
the coding region and 15 substitutions and insertions/dele-
tions of 9 nucleotides in the intron. The differences between 
BiChi-2 and BiChi-3 versus BiChi-1 amounted to 10–11 
substitutions in the coding region (Fig. 4).

Comparison of the isolated sequences of the Chi gene of 
the B. inermis with the plants represented in GenBank (cul-
tivated cereals and A. thaliana) revealed two clades: the first 
includes members of the subfamily Panicoideae (Sorghum 
bicolor and Zea mays) and Oryzoideae (Oryza sativa), and 
the second includes representatives of the subfamily Poo-
ideae (Fig. 5; Supplementary Materials, Fig. S1). At the 
bootstrap level of 63%, the closeness of BiChi-1 of the B. 

inermis to A. tauschii (D genome) is shown. The second 
and third copies of the Chi gene of the B. inermis form a 
separate cluster in the subfamily Pooideae. Thus, none of 
the Chi sequences is related to maize, sorghum, rice, or A. 
thaliana. At the same time, due to the low bootstrap sup-
port, it is not possible to determine the relationship of the 
nucleotide sequences BiChi-2 and BiChi-3 to any member of 
the Pooideae subfamily (for example, to the rye or barley).

One copy of the F3h gene was obtained for the B. iner-
mis. Comparison of the F3h coding sequences of B. inermis 
with cultivated cereals and A. thaliana (Fig. 6) showed that 
Bromus forms a separate branch in the subfamily Pooideae, 
which is localised with Hordeum vulgare (31% of bootstrap 
replicates). These sequences differ from each other by at 

Fig. 4  Nucleotide sequences of 
three partial copies of the Chi 
gene of the B. inermis. In the 
copy of BiChi-1, the intron is 
absent, for BiChi-2 and BiChi-3 
the intron is underlined. Blue 
highlighting indicates substitu-
tions and insertions

Fig. 5  Comparison of the partial nucleotide sequences of the B. 
inermis Chi gene obtained in the current study with the sequences 
of other plant species identified in the NCBI database: Aegilops 
speltoides (S genome) KF826811.1, Aegilops tauschii (D genome) 
XM_020323671.1, Arabidopsis thaliana NM_126020.2 (outgroup), 
Hordeum vulgare AK374952.1, Oryza sativa AF474922.1, Secale 
cereale (R genome) KC788192.1, S. bicolor XM_002463586.2, 
Triticum aestivum (A genome) JN039037.1, Triticum aestivum (B 

genome) JN039038.1, Triticum aestivum (D genome) JN039039.1, 
Triticum timopheevii (G genome) KJ000522.1, Triticum urartu (A 
genome) KF826812.1, and Zea mays NM_001150530.2. The den-
drogram was inferred using the neighbour-joining method and two-
parameter Kimura model nucleotide substitutions. The bootstrap 
consensus tree was inferred from 10,000 replicates. Branches corre-
sponding to partitions reproduced in fewer than 50% bootstrap repli-
cates are collapsed
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least nine substitutions (Supplementary Materials, Fig. S2). 
Thus, the smooth brome does not belong to the Triticinae 
subtribe cluster, which includes various species of Triti-
cum and Aegilops, as well as the subfamily Panicoideae (S. 
bicolor and Z. mays), Oryzoideae (O. sativa), and the dicoty-
ledon A. thaliana. However, B. inermis is related to members 
of the Hordeinae subtribe (H. vulgare and Secale sereale).

Thus, based on phylogenetic trees using the nucleotide 
sequences of the Chi and F3h genes, the B. inermis is 
close to A. tauschii. The other two copies (BiChi-2 and 
BiChi-3) form a separate cluster in the Pooideae subfam-
ily, to which H. vulgare is adjacent. A copy of the F3h 
gene together with H. vulgare forms a separate branch in 
the subfamily Pooideae. The results of our investigation 
are consistent with the data obtained when comparing the 
restriction sites of chloroplast DNA (cpDNA). It has been 
shown that the B. inermis (Bromeae tribe) is closer to the 
Triticeae tribe (Döring et al. 2007; Soreng et al. 1990; 
Kellogg 1992a), than to Aveneae (Pillay 1995). Within the 
Triticeae tribe, it is closer to H. vulgare (both species are 
members of the Triticodae supertribe) than to S. cereale 
(Pillay 1995), or to T. aestivum (Davis and Soreng 1993). 
The phylogenetic tree based on the nucleotide substitu-
tion data of DNA sequences (NFFA150) revealed simi-
lar results as obtained from SSR marker data. The genera 
Bromus and Oryza were placed in separate nodes, and B. 
inermis was placed close to Triticeae (Mian et al. 2005). 
At the same time, an analysis of 841 EST-SSR markers 
showed the proximity of barley and brome (Zeid et al. 

2010). Thus, the tribe Bromeae is the sister group (closest 
relative) of Triticeae (Soreng et al. 1990; Kellogg 1992a, 
b). Most likely, the subgenomes of the B. inermis have dif-
ferent origins, with one of the genomes based on one copy 
of the Chi gene close to A. tauschii (D genome); while the 
other copies of the Chi gene form a separate cluster in the 
subfamily Pooideae.

In connection with the data presented above and the 
data obtained by us, the problem of the origin of the octop-
loid B. inermis again becomes important. Taking into 
account the genomic formula (AAAAB1B1B2B2), octaploid 
B. inermis is probably not a doubled form of the tetra-
ploid B. inermis (Tuna et al. 2004). Most likely, it formed 
initially by the hybridisation of two species AAB1B1 and 
AAB2B2, followed by spontaneous doubling. One of the 
ancestors of B. inermis could be B. pumpellianus Scribn. 
(Armstrong 1980), and the second possible precursor can-
didate is B. riparius (2x = 28) (Armstrong 1991). Interspe-
cific hybrids indicate that the A genome can come from B. 
erectus or B. variegatus (2n = 4x = 28), but their chromo-
somes are very different (Armstrong 1991; Walton 1980). 
If either species is a progenitor of B. inermis, significant 
chromosomal change should have occurred post-hybridisa-
tion and polyploidisation (Tuna et al. 2006). In general, the 
range of ribosomal DNA length phenotypes appearing in 
diploid, tetraploid, and octoploid B. inermis suggests that 
these plants share a common ancestry (Pillay 1996), while 
the tetraploid B. inermis is not an autopolyploid.

Fig. 6  Comparison of partial sequences of the B. inermis F3h gene 
obtained in the current study with the sequences of other plant spe-
cies identified in the NCBI database: Aegilops speltoides (S genome) 
EU402963.1, Aegilops tauschii (D genome) DQ233637.1, Arabidop-
sis thaliana AF064064.1 (outgroup), Hordeum vulgare EU921438.1, 
Oryza sativa AK072222.1, Secale cereale (R genome) EU815625.1, 
Sorghum bicolor GU320740.1, Triticum aestivum (A genome) 
AB223024.1, Triticum aestivum (B genome) AB223025.1, Triticum 

aestivum (D genome) DQ233636.1, Triticum timopheevii (G genome) 
EU402960.1, Triticum urartu (A genome) EU402961.1, and Zea mays 
U04434.1. The dendrogram was inferred using the neighbour-joining 
method and two-parameter Kimura model nucleotide substitutions. 
The bootstrap consensus tree was inferred from 10,000 replicates. 
Branches corresponding to partitions reproduced in fewer than 50% 
bootstrap replicates are collapsed
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Conclusions

Thus, the analysis of genetic and biochemical diversity of 
the B. inermis showed a decrease in variability in the antho-
cyanin content and in the RAPD allele number in the impact 
population compared with background samples. At the same 
time, anthocyanin compounds, apparently, do not have a 
pronounced protective effect in brome under conditions of 
chronic irradiation, since interpopulation differences in their 
content were not found. For the subsequent assessment of 
the genetic mechanisms responsible for the resistance of 
plants to chronic irradiation, the analysis of RAPD-cDNA 
with the subsequent isolation, cloning, and sequencing of 
expressed polymorphic sequences is a promising technique.
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