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Abstract
Main conclusion  This study shows that NgRBP suppresses both local and systemic RNA silencing induced by sense- 
or double-stranded RNA, and the RNA binding activity is essential for its function.

To counteract host defence, many plant viruses encode viral suppressors of RNA silencing targeting various stages of RNA 
silencing. There is increasing evidence that the plants also encode endogenous suppressors of RNA silencing (ESR) to 
regulate this pathway. In this study, using Agrobacterium infiltration assays, we characterized NgRBP, a glycine-rich RNA-
binding protein from Nicotiana glutinosa, as an ESR. Our results indicated that NgRBP suppressed both local and systemic 
RNA silencing induced by sense- or double-stranded RNA. We also demonstrated that NgRBP could promote Potato Virus 
X (PVX) infection in N. benthamiana. NgRBP knockdown by virus-induced gene silencing enhanced PVX and Cucumber 
mosaic virus resistance in N. glutinosa. RNA immunoprecipitation and electrophoretic mobility shift assays showed that 
NgRBP bound to GFP mRNA, dsRNA rather than siRNA. These findings provide the evidence that NgRBP acts as an ESR 
and the RNA affinity of NgRBP plays the key role in its ESR activity. NgRBP responds to multiple signals such as ABA, 
MeJA, SA, and Tobacco mosaic virus infection. Therefore, it could participate in the regulation of gene expression under 
specific conditions.
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Introduction

RNA silencing is a conserved surveillance mechanism 
that plays a key role in defending plants against invasive 
nucleic acids (Hannon 2002; Himber et al. 2003). Repli-
cation intermediates or folded viral RNAs activate RNA 
silencing. They are then cleaved by Dicer-like proteins 
(DCL) into small interfering RNAs (siRNAs) (Lichner 
et al. 2003; Baulcombe 2004; Susi et al. 2004). These 
siRNAs are incorporated into the AGO-containing RNA-
induced silencing complex (RISC). Sequence-specific 
cleavage of target RNAs then follows (Schwarz et al. 2003; 
Tomari and Zamore 2005). In higher plants, RNA silenc-
ing plays a critical role in antiviral defence. To counteract 
RNA silencing, viruses encode RNA silencing suppressors 
(Baulcombe 2002). To date, RNA-silencing suppressors 
(RSSs) have been reported which target various effector 
molecules in RNA silencing (Moissiard and Voinnet 2004; 
Csorba et al. 2015; Daròs 2017; Yang and Li 2018). For 
instance, the p19 protein encoded by Tomato bushy stunt 
virus is a potent viral suppressor of RNA silencing (VSR) 
preventing the spread of the silencing signal by binding 
21–25 nt siRNA duplexes (Vargason et al. 2003; Ye et al. 
2003). In this way, it inhibits a downstream step involving 
the cleavage of cognate RNAs (Silhavy et al. 2002). P6, 
a VSR encoded by Cauliflower mosaic virus, interferes 
with viral siRNA production by interacting with double-
stranded RNA-binding protein 4 (DRB4), an essential 
partner of DCL4 (Haas et al. 2008). Plants also encode 
endogenous RNA-silencing suppressors (ESRs) which 
function in the defence–counterdefence arm race between 
host plants and viruses. The first-characterized ESR, 
Ntrgs-CaM, was proven to interact with HC-Pro, a VSR 
encoded by Tobacco etch virus, using the yeast two-hybrid 
system (Anandalakshmi et al. 2000). Over the following 
decade, several plant ESRs were identified, including 
RLI2, FIERY1, XRN2, XRN3 and XRN4 from Arabidop-
sis thaliana (Gazzani et al. 2004; Sarmiento et al. 2006; 
Gy et al. 2007), and rgs-CaM from Nicotiana benthamiana 
(Li et al. 2014). Nevertheless, little is known about their 
modes of action.

Certain RSSs bind siRNA duplexes or double-stranded 
RNA (dsRNA) (Lakatos et al. 2006; Mérai et al. 2006). 
This process probably can be regulated by RNA-binding 
proteins (RBPs). RBPs are commonly referred to as RNA 
chaperones (Lorsch 2002). They have multiple members 
and are ubiquitous among various plant species. They 
directly or indirectly guide various aspects of post-tran-
scriptional modification by interacting with specific tar-
geted mRNAs. These interactions always require several 
conserved RNA-binding domains such as the RNA recog-
nition motif (RRM), the K homology domain (KH), and 

the double-stranded RNA-binding domain (dsRBD) (Burd 
and Dreyfuss 1994). Glycine-rich RNA-binding proteins 
(GRPs) have two distinct conserved domains: RRM and 
glycine-rich domain (GD) (Gómez et al. 1988). The RRM 
has an octamer, ribonucleoprotein domain I (RNPI), and a 
hexamer, RNPII. Both of these are highly homologous. GD 
typically contains 2–5 glycine repeats bordered by tyros-
ine and/or arginine. It has been reported to be involved 
in protein–protein interactions (Steinert et al. 1991). The 
first GRP was found in maize (Gómez et al. 1988). Since 
then, the genes encoding homologous proteins have been 
consecutively isolated from a broad range of plant species 
such as Medicago sativa (Ferullo et al. 1997), A. thali-
ana (Carpenter et al. 1994) and Sorghum bicolor (Aneeta 
et al. 2002). Studies show that the circadian clock regu-
lating RNA-binding protein AtGRP7, feedback regulates 
the expression of itself and its homologous gene AtGRP8. 
The binding of AtGRP7 with its own precursor mRNA 
(pre-mRNA) promotes its alternative splicing, and the 
alternative transcripts are degraded by nonsense-mediated 
mRNA decay (NMD). It is believed that AtGRP7 also acts 
on other target genes through a similar mechanism (Staiger 
et al. 2003; Schöning et al. 2008). In addition, AtGRP7 
also participates in cold response as an RNA chaperone, 
and the mutant plants are more sensitive to cold. OsGRP1 
and OsGRP4 can restore the growth defects of Atgrp7 
under cold stress, while OsGRP6 can enhance the frost 
resistance of Atgrp7. This indicates that the function of 
GRPs is somewhat conserved in dicotyledon and mono-
cotyledon (Kim et al. 2010).

Compelling evidence indicates that GRPs mediate post-
transcriptional regulation of RNA metabolism, including 
pre-mRNA splicing, mRNA transport, and mRNA transla-
tion. These findings present new regulatory strategies for 
both pathogen infection and plant defence (Fu et al. 2007; 
Qi et al. 2010; Jeong et al. 2011). Naqvi et al. (1998) discov-
ered that Tobacco mosaic virus (TMV) induced the glycine-
rich RNA-binding protein gene from N. glutinosa NgRBP 
at 24 h post-inoculation. Therefore, NgRBP may partici-
pate in plant-virus interactions. In this study, we showed 
that NgRBP could suppress the RNA silencing induced by 
sense RNA or dsRNA and prevent silencing from spreading 
systemically. We revealed that the RSS activity of NgRBP 
is associated with its RNA binding ability, and the 47th argi-
nine residue is essential for its function.

Materials and methods

Plant materials and plasmid constructs

Wild-type Nicotiana glutinosa, N. benthamiana, and 
GFP-transgenic N. benthamiana 16c line (from Dr. David 
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Baulcombe, University of Cambridge, UK) (Voinnet et al. 
1998) were raised in a greenhouse at 24 °C under a 16-h 
light/8-h dark photoperiod. The full-length open reading 
frame (ORF) 471-bp segment of NgRBP (Accession no. 
AF005359) was amplified from N. glutinosa total RNA 
by RT-PCR using DNA Polymerase High Fidelity (HiFi) 
(TransGen, Beijing, China). The PCR product was ligated 
to a pMD-18T vector to generate pMD-NgRBP. All NgRBP 
mutants including ΔRNPI, ΔRNPII and R47A were pro-
duced by reverse PCR from the entire plasmid pMD-NgRBP, 
using the primer pairs that contained the corresponding 
nucleotide substitution or deletion (Table S1). The con-
structs were cloned into the binary vector pBI121 between 
the 35S promoter and the Nos terminator (Chen et al. 2003). 
For transient expression in 16c plants, 35S-p19, 35S-GFP, 
and 35S-dsGFP were constructed as previously described 
(Jing et al. 2011). To generate NgRBP carrying Potato Virus 
X (PVX) vector, NgRBP was inserted into the Cla I/Not I 
site in the PVX vector (pGR106) (Voinnet et al. 2000). 
All fragments generated by PCR were confirmed by DNA 
sequencing. The recombined plasmids were transformed by 
the freeze–thaw method into Agrobacterium strain GV3101 
which contains the helper plasmid pJIC SA Rep (Höfgen 
and Willmitzer 1988).

Co‑infiltration and GFP imaging

The 16c plants expressing GFP were infiltrated at five- or 
six-leaf stage with Agrobacterium GV3101 carrying the 
aforementioned constructs using the previously described 
method (Brigneti et al. 1998). Each Agrobacterium cul-
ture (OD600 = 1.0) was incubated for 3 h and then mixed 
with other culture (s) in a 1:1 (v/v) ratio prior to infiltra-
tion. Local and systemic RNA silencing were determined by 
observing GFP fluorescence both in the infiltrated and newly 
emerging leaves under long-wavelength (365 nm) UV light 
(Spectroline Model SB-100P/A; Spectronics Corporation, 
Lexington, KY, USA) and photographed with a Fujifilm 
FinePix S8000fd digital camera (Fujifilm Holdings Corpo-
ration). More than five plants were tested per experimental 
condition.

Virus‑induced gene silencing (VIGS)

For the NgRBP VIGS, TRV-based vectors were used as pre-
viously described (Chung et al. 2004). To ensure specific 
silencing of NgRBP, the full-length CDS was inserted into 
the TRV2 vector to generate the pTRV2:NgRBP, and there 
is no homologous gene in N. glutinosa by NCBI Blast. The 
pTRV1, pTRV2:00 (empty vector), and pTRV2:NgRBP 
constructs were transformed into Agrobacterium GV3101. 
The Agrobacterium cultures were resuspended in infiltra-
tion buffer containing 10 mM MgCl2, 10 mM Mes, and 

200 mM acetosyringone (pH 5.6; OD600 = 0.8). Agrobacte-
rium culture harbouring pTRV1 was mixed with pTRV2:00 
or pTRV2:NgRBP in a 1:1 ratio and then infiltrated into the 
lower leaves of 3-week-old N. glutinosa plants. The infil-
trated plants were then placed in an illuminated incubator at 
24 °C and 70% RH under a long-day (16-h light/8-h dark) 
photoperiod. After 15 days post-inoculation (dpi), the empty 
vector control plants and the NgRBP-silenced plants were 
used in Real-time quantitative polymerase chain reaction 
(RT-qPCR) and PVX or CMV inoculation assays.

For virus inoculation, 1 g of PVX (PVX-HM isolate, 
GenBank GQ863228) or CMV (CMV-SD1 isolate, Gen-
Bank AY792596)-infected N. tabacum leaves were ground 
in 1 mL of 5 mM phosphate buffer, pH 7.2. Control plants 
and the NgRBP-silenced plants at six-leaf stage were inocu-
lated by rubbing leaves with freshly prepared sap. Inoculated 
plants were grown in an insect-free greenhouse at 24 °C and 
the viral symptom was monitored. Each experiment was rep-
licated three times and each experiment included five inde-
pendent plants.

RT‑qPCR analysis

Total RNAs were isolated from leaves using Trizol reagent 
(TaKaRa, Shiga, Japan) according to the manufacturer′s 
instructions and treated with DNase I at 37 °C for 30 min 
prior to reverse transcription. cDNA was synthesized from 
1 μg of total RNA using TIANScript RT Kit (Tiangen, Bei-
jing, China). RT-qPCR was performed using Talent SYBR 
Green Kit (Tiangen, Beijing, China). The ssRUBP gene was 
used as the internal reference. Each reaction was conducted 
in triplicate and repeated three times. The results were ana-
lysed by Bio-Rad CFX Manager software (Bio-Rad, Cali-
fornia, USA).

Total RNA and siRNA Northern blot analysis

Total and low molecular weight RNAs were extracted from 
leaves as described previously (Jing et al. 2011). 20 µg total 
RNA aliquot of each sample was separated on 1% formal-
dehyde agarose gels and transferred to Hybond-N+ mem-
branes (GE Healthcare, Marborough, USA) by upward 
capillary transfer in 20 × SSC buffer. The membranes were 
hybridized with digoxigenin (DIG)-labelled probes corre-
sponding to the full-length ORFs of GFP, NgRBP, PVX-
CP and CMV-2b, respectively. For siRNA detection, 15 µg 
low molecular weight RNAs were separated on 15% poly-
acrylamide–7 M urea gel and transferred to a Hybond-N+ 
membrane in 0.5 × TBE at 0.8 mA cm−2 for 1 h. After being 
UV-crosslinked and incubated at 80 °C for 2 h, the mem-
brane was hybridized with DIG-labelled probe GFP mRNA. 
Chemiluminescent detection was conducted using a DIG 
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Northern Starter Kit (Roche, Basel, Switzerland) according 
to the manufacturer′s instructions.

Electrophoretic mobility shift assay (EMSA)

His-tagged NgRBP, R47A, NS1 and p19 proteins were 
expressed in Escherichia coli strain BL21 and purified 
by His-Tagged Protein Purification Kit (CwBio, Beijing, 
China). The GFP mRNA and dsRNA were created by T7 
RiboMAXTM Express RNAi System (Promega, Wosconsin, 
USA) using specific primers GFP sense RNA F/R and GFP 
anti-sense RNA F/R in Table S1. Two complementary 21 nt 
GFP siRNAs with 2-nt 3′ overhangs (GFP siRNA-F, CUG​
UCC​ACA​CAA​UCU​GCC​CUU; GFP siRNA-R, GGG​CAG​
AUU​GUG​UGG​ACA​GUU) were synthesized by Takara. 
GFP siRNAs were annealed to obtain double-stranded 
siRNAs. EMSA assay was performed using a Light Shift 
RNA EMSA Optimization and Control Kit (Thermo, Mas-
sachusetts, USA) according to the manufacturer’s instruc-
tions. The binding reactions were incubated for 30 min at 
room temperature. The products were separated on an 8% 
polyacrylamide gel and transferred to a nylon membrane. 
The membrane was then hybridized with DIG-labelled GFP 
mRNA probes. Chemiluminescent detection was conducted 
using a DIG Northern Starter Kit (Roche, Basel, Switzer-
land) according to the manufacturer’s instructions.

RNA immunoprecipitation assay (RIP)

Three grams of leaves co-infiltrated with Agrobacterium 
carrying 35S-GFP with 35S-His-NgRBP, 35S-His-R47A 
or empty vector were put in 50-mL conical centrifuge 
tubes containing 37 mL of 1% formaldehyde and 2.5 mL 
of 2 M glycine separately, and vacuumed for 15 min in a 
closed container attached to a vacuum pump. Then the 
samples were ground and 30 mL extraction buffer 1 was 
added (0.4 M sucrose, 10 mM Tris–HCl, 5 mM BME, 
0.1 mM PMSF). Solutions were filtered through two layers 
of 200 mesh stainless steel filter screen, and centrifuged 
at 1252g for 20 min at 4 °C. Pellets were resuspended 
in 1  mL extraction buffer 2 (0.25  M sucrose, 10  mM 
Tris–HCl, 10 mM MgCl2, 1% Triton X-100, 5 mM BME, 
0.1 mM PMSF), and centrifuged at 9469g for 10 min at 
4 °C. Then pellets were resuspended in 600 μL extraction 
buffer 3 (1.7 M sucrose, 10 mM Tris–HCl, 0.15% Tri-
ton X-100, 2 mM MgCl2, 5 mM BME, 0.1 mM PMSF), 
spined at the top speed in for 1 h at 4 °C, and resuspended 
in 500 μL nuclear lysis buffer (50 mM Tris–HCl, 10 mM 
EDTA, 1% SDS, 0.1 mM PMSF). Sample solutions were 
ultrasonicated on ice for 30 min. 60 μL supernatants are 
added to 540 μL RIP dilution buffer (1.1% Triton X-100, 
1.2 mM EDTA, 16.7 mM Tris–HCl, 167 mM NaCl) and 
25 μL equilibrated protein A beads and mixed on a shaker 

at 4 °C for 1 h. Then 5 μL His antibody (TransGen, Bei-
jing, China) was added to each tube, and incubated on a 
shaker rotating mixer for 4 h at 4 °C. Immune complexes 
were eluted with 500 μL elution buffer (100 mM NaHCO3, 
1% SDS) for 30 min at 65 °C. Crosslinking was reversed at 
65 °C for 1 h with 20 μg proteinase K (Invitrogen, Califor-
nia, USA). RNA was purified by acidic phenol, chloroform 
and ethanol precipitation. RT-qPCR was used to detect the 
enriched levels of each segment of GFP mRNAs using the 
primers in Table S1.

Results

Expression profiles of NgRBP gene in N. glutinosa

NgRBP gene encodes a GRP harbouring a single copy of 
RRM which comprising highly conserved RNPI (R-G-F-G-
F-V-T-F) and RNPII (C-F-V-G-G-L) at the N terminus and 
a GD at the C terminus. Sequence alignment indicated that 
a high level of amino acid similarity spanning the whole 
protein sequence exists among NgRBP homologs, suggest-
ing that these proteins are evolutionarily conserved (Fig. 1a). 
Several GRPs were also isolated in other plant species, 
including A. thaliana, N. tabacum and Solanum lycoper-
sicum. Phylogenetic analysis indicated that NgRBP shared 
a high amino acid similarity (94.3%) to NtGRP1 (Acces-
sion no. ACD03270) (Fig. 1b), a negative regulator of gene 
expression through binding to DNA or RNA under flooding 
stress (Lee et al. 2009). A well-studied glycine-rich RNA-
binding protein AtGRP7 (Accession no. Q03250) shows 
76% similarity to NgRBP (Fig. 1b), having an RRM in N 
terminal and a GD in C-terminal.

The tissue-specific expression of NgRBP gene was ana-
lysed by Northern blot. As shown in Fig. 2a, NgRBP gene is 
constitutively expressed in all examined organs, and clearly 
expressed at higher levels in root and stem compared with 
leaf and flower. To further study the expression regula-
tion of NgRBP gene, a 982-bp fragment of its 5′-flanking 
region was isolated from N. glutinosa genomic DNA using 
inverse PCR technique. Three types of cis-acting element 
were predicted to be related to environment response: ABA-
responsive element, methyl jasmonate (MeJA)-responsive 
element and light-responsive element. In addition, the cis-
acting element required for endosperm expression was also 
predicted within the promoter region of NgRBP (Fig. S1). 
Expression profiles by Northern blot analysis proved that the 
NgRBP expression was indeed induced by ABA and MeJA 
in N. glutinosa leaves. The NgRBP transcripts were detect-
able at 4 h, reached peak level at 8 h and gradually decreased 
by 12 h after ABA treatment (Fig. 2b), while the NgRBP 
expression gradually increased from 4 to 24 h after MeJA 
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Fig. 1   Structure and conservation of NgRBP. a Pairwise alignment 
of GRBPs from N. glutinosa (NgRBP, AF005359), N. tabacum 
(NtGRP1, EU569289), S. lycopersicum (SlGRP1b, JQ613216), A. 
thaliana (AtGRP7, Q03250 and AtGRP8, Q03251) using DNAStar. 
Identical and similar regions were indicated by a black background. 
The N-terminal RRM harbouring two highly conserved regions, 
RNPI and RNPII, was denoted by a solid line above its sequences. 
The C-terminal GD was represented by dotted lines. The 47th amino 

acid was marked with an asterisk. b Phylogenetic analysis showed the 
relationship of NgRBP and its homologues from various plant spe-
cies. The tree was generated in MEGA with the neighbour-joining 
algorithm (1000 replicates) using nucleotide sequences (see sup-
porting information). Bootstrap values were shown near the internal 
nodes. AtRBP1, a glycine-rich RNA-binding protein from Arabidop-
sis unrelated to NgRBP in sequence, was used as an out group
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treatment (Fig. 2b). In addition, Naqvi et al. (1998) showed 
that NgRBP was also induced by salicylic acid (SA; Naqvi 
et al. 1998). It suggests NgRBP might be involved in the 
responses to biotic and abiotic stresses.

NgRBP blocks both local and systemic RNA silencing 
triggered by GFP sense RNA or dsRNA

The effect of NgRBP gene on RNA silencing was investi-
gated using Agrobacterium-mediated transient expression 
system in GFP-transgenic N. benthamiana line 16c plants. 
Agrobacterium strain harbouring NgRBP was mixed with the 
Agrobacterium carrying GFP, and infiltrated into the leaves 
of 16c plants. The co-infiltrations of GFP with an empty 
vector or with p19 were performed as negative and positive 
controls. GFP fluorescence was hardly observed in the infil-
trated leaves with empty vector at 6 dpi under UV light, but 
the patches infiltrated with NgRBP displayed high-intensity 
GFP fluorescence at that time, similar to the infiltration of 
p19 (Fig. 3a). Northern blot analysis revealed that, both at 3 
dpi and 6 dpi, the GFP mRNA levels of the leaves infiltrated 
with NgRBP plus GFP or p19 plus GFP were obviously 
higher than the leaves infiltrated with GFP plus empty vec-
tor. The siRNA blots also confirmed that NgRBP drastically 
reduced the GFP-specific siRNAs both at 3 dpi and 6 dpi, 
similar to p19 (Fig. 3b).

Furthermore, the effect of NgRBP on systemic spread of 
RNA silencing was studied. 16c plants infiltrated with above 
Agrobacterium combinations were further observed to moni-
tor GFP expression in the newly emerged leaves at 12 dpi. As 
previously reported, systemic GFP silencing was visualized 
as the disappearance of the GFP fluorescence in the GFP-
infiltrated plants (Voinnet et al. 1998; Silhavy et al. 2002). 

Fig. 2   NgRBP expression profiles in N. glutinosa. a Tissue-specific 
NgRBP expression was detected by Northern blot analysis using total 
RNAs extracted from the roots, stems, leaves, and flowers of N. glu-
tinosa plants. Ethidium bromide-stained rRNA was used as a loading 
control. b Northern blot analysis of the NgRBP expression induced 
by ABA and MeJA. Total RNAs were extracted from leaves at the 
indicated time after treatment with 100 µM ABA and 1 mM MeJA, 
respectively. Control plants were sprayed with water. Ethidium bro-
mide-stained rRNA was used as a loading control

Fig. 3   NgRBP blocks both local and systemic RNA silencing trig-
gered by sense GFP RNA. a Suppression of local GFP silencing in 
GFP-transgenic N. benthamiana line 16c. Leaf patches were co-infil-
trated with Agrobacterium cultures expressing GFP (35S-GFP) and a 
vector control, NgRBP or TBSV p19. Photographs of 16c leaves were 
taken at 3 dpi and 6 dpi under handheld long-wave ultraviolet lamp. 
b Northern blot analysis of GFP mRNA and siRNA extracted at 3 
dpi and 6 dpi from patches co-infiltrated with the various strains indi-

cated above each lane. Ethidium bromide-stained rRNA and tRNA 
were used as loading controls for mRNA and siRNA, respectively. c 
Photographs of 16c plants infiltrated with Agrobacterium harbouring 
35S-GFP and a vector control, NgRBP or TBSV p19 under handheld 
long-wave ultraviolet lamp at 12 dpi. d Northern-blot analysis of 
GFP mRNA isolated from systemic leaves of plants with the different 
strains indicated above each lane at 12 dpi. Ethidium bromide-stained 
rRNA was used as a loading control
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Most of the newly emerged leaves of plants infiltrated with 
NgRBP plus GFP still maintained GFP fluorescence, simi-
lar to that of p19 (Fig. 3c). The levels of steady-state GFP 
mRNA in the newly emerged leaves were consistent with the 
GFP fluorescence observed under UV light (Fig. 3d). Taken 
together, these results demonstrate that NgRBP has a bona 
fide ESR activity and inhibits RNA silencing induced by 
sense GFP RNA both at local and systemic levels.

RNA silencing is a multi-step process (Lichner et al. 
2003; Baulcombe 2004; Susi et al. 2004). To determine in 
which step NgRBP targets RNA silencing, we tested the 
effect of NgRBP on GFP dsRNA-triggered silencing. Leaves 
of 16c plants were co-infiltrated with the Agrobacterium car-
rying NgRBP, GFP plus dsGFP. We found that the patches 
co-infiltrated with GFP plus dsGFP showed red fluorescence 
under UV light at 6 dpi. But GFP fluorescence still sustained 
when NgRBP was added (Fig. 4a). High GFP mRNA lev-
els and negligible GFP-specific siRNA were detected by 
Northern blot analysis in the infiltrated leaves with NgRBP 
(or p19) addition (Fig. 4b). To further demonstrate whether 
NgRBP interferes with systemic RNA silencing triggered 
by dsGFP, we co-infiltrated 16c leaves with GFP and dsGFP 
plus NgRBP. Our results showed that, at 12 dpi, systemic 
RNA silencing occurred in the dsGFP infiltrated plants with 
trace amounts of GFP mRNA accumulated. But GFP fluo-
rescence was maintained in the newly emerged leaves of 
the infiltrated plants with NgRBP or p19 addition (Fig. 4c), 

which was consistent with the levels of GFP mRNA detected 
by Northern blot analysis (Fig. 4d). This indicated that 
NgRBP also suppressed local and systemic RNA silencing 
triggered by dsRNA.

NgRBP increases the pathogenicity of PVX 
and NgRBP silencing confers enhanced resistance 
to PVX and CMV

To investigate whether NgRBP increases viral pathogenicity, 
the PVX vector pGR106 was utilized to express NgRBP in 
N. benthamiana plants (Fig. 5a). At 10 dpi, plants infected 
with PVX-NgRBP showed more severe disease symptoms 
along the veins than those receiving PVX vector alone 
(Fig. 5b). Viral RNAs accumulated to a higher level in 
PVX-NgRBP-inoculated plants than those infected with 
PVX (Fig. 5c).

We investigated the role of NgRBP in plant defence 
responses using the Tobacco rattle virus (TRV)-based VIGS 
technique. NgRBP silencing resulted in milder symptoms 
than that of the controls (Fig. 6a). The RT-qPCR showed that 
the NgRBP mRNA level in TRV:NgRBP plants was ~ 70% 
lower than that of the empty vector controls (TRV:00) at 
15 dpi (Fig. 6b), indicating that NgRBP was effectively 
silenced in N. glutinosa plants. Systematically NgRBP-
silenced plants were then inoculated with PVX and CMV, 
respectively. Symptoms were visibly different between the 

Fig. 4   NgRBP suppresses local and systemic RNA silencing trig-
gered by dsGFP RNA. a 16c leaves were co-infiltrated with three 
strains of Agrobacterium carrying 35S-GFP, 35S-dsGFP, and either 
empty vector, NgRBP or TBSV p19. The GFP expression in the infil-
trated tissue was monitored at 3 dpi and 6 dpi under handheld long-
wave ultraviolet lamp. b Northern-blot analysis of GFP mRNA and 
siRNA extracted from the patches with the different strains indicated 
above each lane at 3 dpi and 6 dpi. Ethidium bromide-stained rRNA 

and tRNA were used as the loading controls for mRNA and siRNA, 
respectively. c Photographs of 16c leaves infiltrated with Agrobac-
terium harbouring 35S-GFP, 35S-dsGFP and either vector control 
NgRBP or TBSV p19 under handheld long-wave ultraviolet lamp at 
12 dpi. d Northern blot analysis of GFP mRNA isolated from sys-
temic leaves of the plants with the different strains indicated above 
each lane at 12 dpi. Ethidium bromide-stained rRNA was used as a 
loading control
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NgRBP-silenced plants and the controls. The latter were 
relatively more susceptible to PVX and CMV infection 
than the former. Only slight mosaicism and downward leaf 
curling were observed in the NgRBP-silenced plants. UV 
illumination revealed that the control plants infected with 
PVX and CMV accumulated more phenolic compounds 
than the NgRBP-silenced plants did (Fig. 6c). Northern blot 

analysis showed that the levels of PVX genomic RNA and 
CMV RNA2 were higher in the control plants than in the 
NgRBP-silenced plants at 10 dpi (Fig. 6d). These results 
indicate that NgRBP interferes with antiviral RNA silencing 
in host plants.

Fig. 5   NgRBP enhances the 
pathogenicity of chimeric PVX. 
a Schematic representation of 
recombinant PVX variants car-
rying NgRBP. b Symptoms in 
N. benthamiana plants infected 
with the recombinant PVX 
variants. More than 5 plants 
that were tested. Mock plants 
were infiltrated with buffer only. 
Systemic leaves (bottom panels) 
were photographed at 10 dpi. 
c Northern blot analysis of the 
accumulation of PVX genomic 
RNA in the systemic leaves at 
10 dpi. The bottom panels show 
rRNA with ethidium bromide 
staining as a loading control

Fig. 6   NgRBP silencing in N. 
glutinosa plants with enhanced 
resistance to PVX and CMV. a 
Phenotype of NgRBP-silenced 
and empty vector control plants. 
Photographs were taken at 
10 dpi. b RT-qPCR analysis 
of NgRBP expression in the 
empty vector control (TRV: 
00) and the NgRBP-silenced 
(TRV:NgRBP) plants. c Visible- 
and ultraviolet lamp-illuminated 
disease symptoms developed on 
the empty vector control and the 
NgRBP-silenced plants infected 
with PVX (left panel) and CMV 
(right panel). Photographs were 
taken at 10 dpi. d Northern blot 
analysis of the accumulation of 
PVX genome RNA and CMV 
RNA2 at 10 dpi. Ethidium 
bromide-stained rRNAs were 
used as loading controls
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The RNA binding activity of NgRBP is essential 
for its RNA silencing suppressor function

Much evidences support the idea that the silencing sup-
pression activity of RSSs commonly requires the ability of 
RNA binding (Lakatos et al. 2006; Mérai et al. 2006). Two 
conserved RNA-binding motifs in RRM domain of GRPs, 
RNPI and RNPII, particularly the R47 residue of RNPI, play 
the key role in RNA recognition and binding (Khan et al. 
2014). Therefore, two deletion mutants ΔRNPI and ΔRNPII, 
and a point mutant R47A in which the 47th arginine being 
substituted by alanine were constructed to explore the func-
tional domain and loci of NgRBP using Agrobacterium 
transient expression system. Strong GFP fluorescence was 
observed in the tissues co-infiltrated with 35S-GFP and 
ΔRNPII constructs at 3 dpi, similar to that of NgRBP co-
infiltration. The ΔRNPI and R47A constructs yielded weak 
fluorescence at 3 dpi (Fig. 7a). Then, to explore whether 
the RSS function of NgRBP is related to its RNA binding 
activity, NgRBP and R47A proteins were purified (Fig. S2) 
and incubated with GFP mRNA. EMSA assays showed that 

NgRBP rather than R47A bound to GFP mRNA (Fig. 7b). 
To study dsRNA binding ability of NgRBP, NS1 was used 
as a positive control in the EMSA assay, which is an Avian 
influenza virus-encoded RSS with siRNA and longer dsRNA 
affinity (Lin et al. 2007; Yu et al. 2018). The result showed 
that NgRBP could bind to GFP dsRNA, but R47A could 
not. Furthermore, RIP assays showed that NgRBP protein 
could enrich about fivefold 3′ end fragments of GFP mRNA 
compared with the control and the R47A protein (Fig. 7c). 
siRNA affinity of NgRBP was also detected by EMSA with 
p19 as a positive control (Silhavy et al. 2002). The result 
showed that NgRBP does not bind to siRNA which usually 
was taken as target by many VSRs (Fig. 7d). These results 
suggested that RNA binding activity of NgRBP is essential 
for its RSS function, and the 47th arginine located in RNPI 
motif is the key functional site.

Fig. 7   NgRBP binds to the 3′ end of GFP mRNA and dsRNA but 
not siRNA. a Co-infiltration in N. benthamiana leaves with GFP and 
empty vector, NgRBP, △RNPI, △RNPII, R47A or p19, respectively. 
Images were obtained under handheld long-wave ultraviolet lamp at 
3 dpi. b EMSA analysis of samples contained 1 μM GFP mRNA or 
GFP dsRNA and in addition 0, 130, 390, 650, 1300, and 2600 μM 
His-NgRBP and His- R47A protein, respectively. 390 μM NS1 was 

used as a positive control. c RIP analysis of GFP mRNA extracted 
from patches co-infiltrated GFP with His-NgRBP, His-R47A or 
empty vector at 3 dpi. d EMSA assay of samples contained 1  μM 
GFP siRNA and in addition 0, 390, 1300, and 2600 μM His-NgRBP, 
respectively. The free probe bands correspond to the siRNA duplexes. 
390 μM p19 was used as a positive control
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Discussion

A study on N. tabacum rgs-CaM provided the earliest 
clue that host genes served as negative regulators of RNA 
silencing (Anandalakshmi et al. 2000). Later, several ESRs 
or endogenous negative factors involved in RNA silencing 
have been discovered by genetic screening. It is believed that 
ESRs always induce the expression of certain silenced genes 
depending on developmental requirements. They may also 
be subverted by viruses in counterattacks against host antivi-
ral responses (Trinks et al. 2005; Sarmiento et al. 2006; Gy 
et al. 2007; Endres et al. 2010). Recent studies showed that 
rgs-CaM had opposite effect on RNA silencing-mediated 
antiviral defence compared with its ESR function. So rgs-
CaM was proposed as a counter-VSR factor that quenched 
certain VSRs containing dsRBD (Nakahara et al. 2012). HC-
Pro was proved to upregulate the antiviral silencing poten-
tially antagonists, such as Arabidopsis FRY1 and CML38 (a 
homologue of rgs-CaM) which both being defined as ESRs. 
rgs-CaM, FRY1, and CML38 are thought to be the down-
stream mediators of HC-Pro (Anandalakshmi et al. 2000; 
Gy et al. 2007; Endres et al. 2010). These findings suggested 
that the endogenous silencing pathway was subject to nega-
tive feedback regulation in certain cases. VSRs may require 
an ESR either to activate their components or to be able to 
work together to block silencing.

In this study, we characterized NgRBP, an RNA-binding 
protein from N. glutinosa, as a novel ESR. NgRBP could 
suppress local and systemic RNA silencing induced by sense 
RNA or dsRNA. NgRBP belongs to the class IVa of GRPs 
with the typical structure including an RRM in N terminal 
and a GD in C-terminal. Our data showed that when RNPI, 
one of the conserved motifs of RRM in NgRBP, was deleted, 
NgRBP lost its RSS activity. R47 mutation in RNPI motif 
brought the same effect on its function, and the mutant pro-
tein no longer bound to GFP mRNA. It is suggested that 
RNA binding ability of NgRBP effectively contributes to its 
RSS activity. A recent report revealed that in Arabidopsis 
both 5′-3′ and 3′-5′ cytoplasmic RNA decay pathways act as 
repressors of transgene and endogenous PTGS to safeguard 
plant transcriptome and development (Zhang et al. 2015; 
Zhang and Guo 2017). AtXRN4 which being in charge of 
5′-3′ mRNA degradation antagonizes RNA silencing pos-
sibly by degrading the template for RdRp or interacting 
with HC-Pro (Gazzani et al. 2004; Li and Wang 2018). Our 
results showed that NgRBP could bind to the 3′ end of GFP 
mRNA and dsRNA, it is speculated that NgRBP might pre-
vent RdRp from dsRNA synthesis at the early stage of RNA 
silencing and, therefore, impede the formation of RISC com-
plex, or inhibit the step of Dicer processing by competitive 
dsRNA binding, respectively. Similar strategies are adopted 

by some viral RNA silencing repressors, such as Infectious 
bursal disease virus (IBDV) VP3 (Valli et al. 2012), Turnip 
crinkle virus (TCV) p38 (Iki et al. 2017), and Flock house 
virus (FHV) B2 (Lingel et al. 2005).

Why would a host plant have evolved proteins to thwart 
its own defence mechanisms? The ESR regulatory mecha-
nism is required to prevent exaggerated RNA silencing, 
ensuring that appropriate PTGS in the plants. ESRs may 
potentially impair the host silencing machinery controlling 
cellular RNA levels so that they are normally suppressed 
until required. This postulate is supported by the observa-
tion that viral infection or wounding induces certain ESRs 
(Naqvi et al. 1998; Tadamura et al. 2012). Plants GRPs 
have been identified in a variety of plant species, and have 
been demonstrated to be regulated by a number of external 
stimuli including hormones and pathogens (Kang et al. 
2013). As a TMV-induced GRP, NgRBP was induced by 
ABA, MeJA, SA as well (Naqvi et al. 1998; Czolpinska 
and Rurek 2018). Therefore, the suppressor function of 
NgRBP is most likely closely associated with the defence 
or multiple stress responses. Previous researches showed 
that virus attack induced GRPs expression in tobacco, 
petunia and rice, and some of them contributed to virus 
resistance (van Kan et al. 1988; Linthorst et al. 1990; 
Fang et al. 1991; Ueki and Citovsky 2002). AtGRP7, a 
typical GRP with 76% similarity to NgRBP, plays a posi-
tive role in the defence against TMV (Lee et al. 2012) 
and is described to preferentially bind to 3′UTR of target 
genes (Staiger et al. 2003; Meyer et al. 2017). It is simi-
lar to our findings that NgRBP could bind to the 3′ end 
of GFP mRNA. Both AtGRP7 and AtGRP8, the NgRBP 
homologs, were proved to be involved in an interlocked 
feedback loop through which they could autoregulate and 
reciprocally cross-regulate by coupling unproductive splic-
ing to nonsense-mediated mRNA decay (NMD; Schöning 
et al. 2008). NMD is a host RNA control pathway that 
removes aberrant transcripts due to premature termination 
of codons that always arises through defective splicing. 
RNA viruses often contain internally located stop codons 
that should also be prime targets for NMD (May et al. 
2018). We observed that NgRBP transient overexpression 
in N. glutinosa enhanced TMV resistance. Further studies 
need to explore the exact mechanisms of NgRBP involved 
in viral defence and stress response.
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