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Abstract
Main conclusion  A comprehensive network of the Arabidopsis transcriptome was analyzed and may serve as a valu-
able resource for candidate gene function investigations. A web tool to explore module information was also provided.

Arabidopsis thaliana is a widely studied model plant whose transcriptome has been substantially profiled in various tissues, 
development stages and other conditions. These data can be reused for research on gene function through a systematic analy-
sis of gene co-expression relationships. We collected microarray data from National Center for Biotechnology Information 
Gene Expression Omnibus, identified modules of co-expressed genes and annotated module functions. These modules were 
associated with experiments/traits, which provided potential signature modules for phenotypes. Novel heat shock proteins 
were implicated according to guilt by association. A higher-order module networks analysis suggested that the Arabidopsis 
network can be further organized into 15 meta-modules and that a chloroplast meta-module has a distinct gene expression 
pattern from the other 14 meta-modules. A comparison with the rice transcriptome revealed preserved modules and KEGG 
pathways. All the module gene information was available from an online tool at http://bioin​forma​tics.fafu.edu.cn/arabi​/. Our 
findings provide a new source for future gene discovery in Arabidopsis.
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Abbreviations
GCN	� Gene co-expression network
WGCNA	� Weighted gene co-expression network analysis
NCBI	� National Centre for Biotechnology Information
GEO	� Gene Expression Omnibus
RSD	� Relative standard deviation
GO	� Gene ontology
KEGG	� Kyoto Encyclopedia of Genes and Genomes

Introduction

Microarray-based high-throughput technology has been 
extensively applied to profile genome-wide gene expression 
under diverse conditions (Aoki et al. 2007). Using advanced 
bioinformatics tools, researchers can find candidate genes 
for a specific phenotype, infer gene functions and regulations 
(Usadel et al. 2009; Li et al. 2015; Ficklin and Feltus 2011), 
and perform comparative co-expression analysis (Mova-
hedi et al. 2012; Ruprecht et al. 2017). As a robust system, 
living beings could response to biotic and abiotic stresses 
(Amrine et al. 2015; Nishiyama et al. 2018). Complex life 
activity relies not only on individual genes but also on a 
dynamic and complex gene network. To identify the gene 
network, a large-scale analysis of the transcriptome data can 
be performed.

The gene co-expression network (GCN) method has been 
used to explore global, temporal and spatial expression of 
Arabidopsis (Schmid et al. 2005). For example, Mao con-
structed Arabidopsis GCN using 1094 arrays from AtGen-
Express and functionally annotated 46 modules of the 382 
identified modules (Mao et al. 2009). Furthermore, Mutwil 
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used 351 microarray data points and identified 181 gene 
clusters as well as 27 of the 34 significant clusters; then 
validated 6 genes predicted to be essential genes (Mutwil 
et al. 2010). Zheng used 1388 microarrays from ATTED-
II to construct GCN and predicted motifs in the promoter 
regions of co-expressed genes (Zheng et al. 2011). Giorgi 
used a modification of RMA to normalize 3707 Arabidop-
sis microarrays for correlation analysis (Giorgi et al. 2010). 
Feltus maximized gene co-expression relationships through 
pre-clustering of 7105 Arabidopsis expression samples (Fel-
tus et al. 2013). There are also several targeted or condition-
dependent network analyses (Ficklin et al. 2017). Targeted 
network analyses focus on GCN of a subset of genes, while 
condition-dependent analyses emphasize GCN under a lim-
ited number of biotic and abiotic conditions. For example, 
Peng constructed GCN for organelles in Arabidopsis based 
on Gene Ontology Cellular Component information (Penga 
et al. 2016). Wang identified 2438 cell wall-related genes 
in Arabidopsis under 351 conditions based on GCN (Wang 
et al. 2012b). Boruc constructed a dynamic interaction net-
work on core cell cycle genes through a combination of 
GCN and protein–protein interaction information (Boruc 
et al. 2010). Amrine analyzed 272 microarrays that involved 
microbial infections of Arabidopsis with a wide array of fun-
gal and bacterial pathogens with biotrophic, hemibiotrophic, 
and necrotrophic lifestyles as well as constructed GCN of 
core biotic stress-responsive genes (Amrine et al. 2015). 
Prasch applied triple-stress conditions with heat, drought 
and virus exposure to Arabidopsis, and they revealed sig-
nificant shifts in signaling networks by GCN (Prasch and 
Sonnewald 2013). Rasmussen constructed GCN in 10 Arabi-
dopsis ecotypes using cold, heat, light, salt and flagellin 
treatment as single-stress factors as well as their combina-
tions (Rasmussen et al. 2013). Veen used GCN to compare 8 
Arabidopsis accessions under compound stress imposed by 
submergence, and they revealed a core of conserved, geno-
type- and organ-specific responses to flooding stress (van 
Veen et al. 2016). Furthermore, a major task for scientists 
is to transfer acquired knowledge from the model organ-
ism Arabidopsis to crop species. The emerging comparative 
GCN has become a powerful tool for cross-species analy-
sis. The PlaNet combines sequence and comparative GCN 
to help in identifying homologs in valuable crop species 
(Mutwil et al. 2011). Ficklin used GCN to find conserved 
gene modules between maize and rice (Ficklin and Feltus 
2011), while Shaik used GCN to identify common modules 
for drought and bacterial stress responses between Arabi-
dopsis and rice (Shaik and Ramakrishna 2013). Finally, 
researchers have developed web tools for gene co-expression 
exploration. These tools have different features, for exam-
ple, AraNet focuses on functional annotation by combing 
multiple data sources (Lee et al. 2015); ATTED-II and Cres-
sExpress emphasize gene–gene co-expression query (Aoki 

et al. 2016); and PLANEX also provides Cohen’s Kappa 
statistics for cross-species co-expression gene comparison 
(Yim et al. 2013).

One of the widely used GCN methods is weighted gene 
co-expression network analysis (WGCNA) (Zhang and Hor-
vath 2005). It groups genes with similar expression patterns 
across biological samples, which may be members of the 
same pathway or biological process. The whole transcrip-
tome can be simplified to several modules, which allows 
us to look into bio-system components easily. The relation-
ships between genes within modules can be delineated. The 
higher-order module network can also be described. These 
network properties can further be correlated with other bio-
logical traits to find functional genes or modules. However, 
the inherent gene–gene connections that exist within a tran-
scriptome can only be detected when enough perturbations 
viz. biological replications are pooled.

In this study, we applied WGCNA to publicly available 
microarray data covering several conditions for Arabidop-
sis. Genome-scale modules of co-expressed genes with clear 
functional annotations were identified. The module asso-
ciation with traits was inferred. Five potential heat shock-
responsive genes were found. A higher-order module net-
work analysis indicated the distinct expression pattern of 
chloroplast genes. Module preservation analysis suggested 
that there was a similarity between Arabidopsis and rice.

Materials and methods

Microarray data acquisition and processing

Microarray datasets were obtained from the National Cen-
tre for Biotechnology Information (NCBI) Gene Expres-
sion Omnibus (GEO) database under the platform numbers 
GPL198 for Arabidopsis and GPL2025 for rice. The two 
platforms consist of experimental samples from assays using 
the Affymetrix Arabidopsis ATH1 Genome Array and Affy-
metrix Rice Genome Array (http://www.affym​etrix​.com). 
The Arabidopsis array contains 22,810 probesets, and the 
rice array contains 57,381 probesets. Briefly, 931 Arabidop-
sis datasets with 12,112 samples and 191 rice datasets with 
2043 samples were analyzed. Raw gene chip data were ana-
lyzed with Expression Console (v1.4.1.46) using the MAS5 
method (Pepper et al. 2007). Probe-level gene expression 
data were retrieved. The duplicated samples were detected 
by the R (v3.3.1) duplicated function. After removing dupli-
cated and disrupted samples, 11,896 Arabidopsis and 2025 
rice samples were found. Control probes were removed 
before quantile normalization in R using the normalize.
quantiles function (Bolstad et al. 2003). The probesets were 
mapped to Entrez gene IDs according to the array annotation 
table provided by NCBI GEO. The genes labeled with more 

http://www.affymetrix.com
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than one probeset were filtered by their relative standard 
deviation (RSD). The probeset with the highest RSD was 
retained, which guaranteed the useful information. For con-
venience, we referred to the probeset as the corresponding 
gene throughout the manuscript. Finally, 21,275 genes from 
Arabidopsis and 19,449 genes from rice were included for 
downstream analysis. Detailed information for these datasets 
is provided in Supplementary Tables S1–4.

Weighted gene co‑expression network analysis 
(WGCNA)

Network analysis was performed using the Bioconductor 
WGCNA package (v1.63) on a Dell PowerEdge R930 Server 
with the following parameters: networkType = ‘signed’, 
softPower = 10 or 14, minModuleSize = 30, deepSplit = 4 
(Huber et al. 2015; Langfelder and Horvath 2008). Briefly, 
signed co-expression networks were constructed for Arabi-
dopsis and rice separately. For each gene in the gene expres-
sion matrix, a pairwise Pearson correlation coefficient was 
computed, and an adjacency matrix was calculated by rais-
ing the correlation matrix to a power (Zhang and Horvath 
2005). A power of 10 and 14 was chosen for Arabidopsis and 
rice, respectively, using the scale-free topology criterion. 
Then, the adjacency matrix was transformed into a network 
of topological overlap (TO), which measures not only the 
correlation of two genes but also the extent of their shared 
correlations across the weighted network (Zhang and Hor-
vath 2005). The TO matrix was then hierarchically clustered 
to identify highly co-expressed genes. Finally, co-expression 
gene modules were identified by the Dynamic Tree Cut algo-
rithm (Oldham et al. 2008). Each module was summarized 
by a module eigengene (ME) through singular value decom-
position, so that each module expression profile was repre-
sented by its first principal component (Zhang and Horvath 
2005). Thus, ME explains the maximum amount of variation 
of the module expression levels and is considered the most 
representative gene expression in a module. To construct the 
network of modules and identify modules, the same process 
was applied to the results discussed above. The parameters 
were power = 6, minModuleSize = 2. The clustering was 
conducted with the hclust function in the WGCNA package.

Module stability was tested as the average correlation 
between the original connectivity and the connectivity from 
half samples that were randomly sampled 1000 times. The 
process was run for every module. The module preserva-
tion of rice compared to Arabidopsis was analyzed with the 
WGCNA modulePreservation function using the following 
parameters: referenceNetworks = Arabidopsis and network-
Type = ”signed”, nPermutations = 100. The analysis provides 
quantitative statistics of module preservation, which pro-
vides a rigorous argument that a module is not preserved 
(Langfelder et al. 2011). Through permutations, the analysis 

provides a Zsummary value, which summarizes the evi-
dence that a module is preserved and indicative of module 
robustness and reproducibility. The Zsummary threshold for 
strongly preserved modules is 10. Zsummary scores between 
2 and 10 are for weak to moderately preserved modules, and 
Zsummary scores < 2 are for modules that are not preserved.

Functional annotation of the modules

Gene ontology (GO) enrichment for network modules was 
performed using the Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID 6.8) (Huang et al. 
2009) with the background list from the Arabidopsis ATH1-
121501 Genome Array genome. DAVID provides not only 
enrichment results for GO but also information for the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway and 
Pfam motif and chromosome enrichment. The overrepre-
sentation of a term is defined as a modified Fisher’s exact 
P value with an adjustment for multiple tests using the 
Benjamini method. For simplicity, the top significant term 
was recorded. Modular genes enriched within chromosome 
regions were analyzed with the Positional Gene Enrichment 
analysis tool (De Preter et al. 2008). Statistical significance 
was set at a P value of 3E−7. The overrepresented chromo-
somal regions were visualized using the Ensembl Genome 
browser.

For gene expression variation analysis, the gene expres-
sion relative standard deviation for each gene in a module 
was calculated, and the average values for each module were 
provided.

Comparison with rice transcriptome data

Overall, 1094 rice microarray data points from the NCBI 
GEO database under the platform GPL2025 were collected 
and processed as mentioned in “Microarray data acquisition 
and processing”. The orthologs between Arabidopsis and 
rice were downloaded through the EnsemblPlants BioMart 
tool. Orthologs were subjected to module preservation anal-
ysis using the R WGCNA package (R Development Core 
Team 2013). KEGG pathway-based analysis and visuali-
zation were also performed in R according to the package 
tutorial.

Results

A gene co‑expression network of Arabidopsis 
was successfully constructed

A total of 11,896 Arabidopsis samples were used to con-
struct a scale-free gene co-expression network, which is a 
property of natural biological networks, by choosing a power 
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of 10 (Fig. 1a, b). As described in the methods, the hierarchi-
cally clustered genes were detected iteratively by dynamic 
tree cut method to find stable gene clusters (Fig. 1c). Similar 
clusters were merged to form 52 co-expressed gene modules 
(Table 1). The module stability was tested by examining the 
correlation between the original connectivity and the val-
ues calculated from the 1000 sampled connectivity values 
for each module (Fig. 1d). All the modules had an average 
connectivity correlation larger than 0.9, except for M42 (for 
simplicity, the modules are presented as M plus the module 
number, such as M42). M42 has the lowest module stability, 
while M2 has the highest module stability.

Functional enrichment shows that these modules, except 
for M50 and M51, are associated with various biological 
processes (only the top one is shown) (Table 1). Most of the 
modules are enriched with a specific biological term, which 
suggests the network analysis is valid. The most significant 
module is M2 enriched with chloroplast genes, while M50 
and M51 had no significant annotation. Some of the modules 

reflect the co-expression of protein complexes in biologi-
cal processes, such as the M4 ribosome genes in translation 
and M6 chloroplast genes in photosynthesis. Modules M17, 
M24, M28, M34 and M37 are biotic stress responsive, that 
are involved in response to microorganism; while, M25 and 
M32 are involved in abiotic stresses, such as light and heat. 
Modules M15, M16, M23, M35 and M41 are associated 
with protective tissues, such as cell wall, phloem, Casparian 
strip and seed coat. Modules M3, M18 and M30 are asso-
ciated with reproduction, such as pollen tube growth and 
cell division. These modules are also enriched with specific 
Pfam terms (Supplementary Table S5). For example, M34 
is enriched with a Leucine-Rich Repeat (1.1E−6), and M1 
is enriched with a PPR repeat family (8.8E−56).

Connectivity‑based analysis

In a network, hubs usually include genes with higher con-
nectivity, so hubs are more important (Batada et al. 2006). 

Fig. 1   A scale-free gene co-expression network for Arabidopsis was 
successfully constructed. a A signed R2 against power plot shows 
the threshold (red line) for a scale-free network. b The Arabidopsis 
network obeys the power law when a power of 10 is chosen. The 
regression line (diagonal) shows a good model fits index R2 = 0.99. c 
Dendrograms produced by average linkage of hierarchical clustering 

of Arabidopsis genes, which is based on a topological overlap matrix 
(TOM). The modules were assigned colors as indicated in the hori-
zontal bar beneath the dendrogram. d Bar plots present the correla-
tion of intramodule connectivity for each module by half-sampling 
1000 times with the original one (mean ± SD)
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First, the most highly connected genes with the highest 
intramodule connectivity for each module are summarized 
in Supplementary Table S5. Second, to find highly con-
nected genes in the whole network, all genes were sorted 
in descending order according to their global connectivity, 
which represents how densely a gene is connected with oth-
ers. The top 100 highly connected genes are from either M1 
or M3, and they are enriched with kinases (4E−7), which 
indicates the important role of kinase in the network. To 
check if these genes are date or party hubs, the proportion of 
connections within or outside of their own module, which is 
the intramodule connectivity divided by global connectivity, 
was calculated (Chang et al. 2013). The average intermod-
ule connectivity proportion for the 100 genes is 8%, which 
is significantly lower compared to 100 random genes with 
1000 times sampling (P < 0.01), which suggests that M1- or 
M3-associated kinases serve as party hubs. However, party 
hubs interact with most of their partners simultaneously, 
whereas date hubs bind different partners at different loca-
tions and times. A yeast data analysis revealed that kinases 
fall largely into the date hub category (Agarwal et al. 2010). 
Recently, it was proposed that a party hub might undergo 
a rapid transition to a date hub (or vice versa) as expres-
sion levels/post‐translational modifications changed (Dietz 
et al. 2010). In our network, a total of 9 modules are anno-
tated with kinase-related terms. To examine if kinases in 
other modules are party hubs, kinases were extracted and 
intermodule connectivity proportions were calculated. Com-
pared to whole network genes, kinases in M1, M2 and M3 
are party hubs (P < 1E−8, P < 0.01 and P < 1E−9), but not 
kinases in M11 and M17. The conclusion also stands when 
compared to all the kinases.

When incorporating current lethal gene information 
(Lloyd et al. 2015), a permutation test shows that the lethal 
genes have a higher connectivity at the P < 0.05 level but are 
not significantly higher at the P < 0.01 level (60 tests with 
P > 0.01 in 1000 permutations). A hypergeometric test sug-
gests there are 4 modules enriched with lethal genes, includ-
ing M6 (P = 0), M5 (P = 1E−10), M18 (P = 1E−5), and M4 
(P = 1E−4). Another trait is that seed pigment-associated 
genes are also enriched in M2 (P = 1E−9) and M6 (P = 0). 
Interestingly, those modules are all preserved in the rice 
transcriptome, as discussed in the following section.

Gene expression variation in modules

We have reduced the transcriptome data complexity by gene 
co-expression modules. We suppose that these modules can 
be treated as function modules. The modular gene expres-
sion variation may infer whether the function is more basal 
or conditional. The relative gene variation (relative standard 
deviation of gene expression) was calculated for each gene 
and then averaged across modules. The top 3 highly stable Ta
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modules include M48 (photorespiration), M20 (glycolysis) 
and M4 (translation). The top 3 highly variable modules 
include M28 (proteolysis), M49 (cytidine deamination), and 
M30 (pollen exine formation) (Supplementary Table S6).

The correlation between gene expression and connectivity 
was calculated to observe the relationship for each module 
(Supplementary Table S6). Two types of correlation were 
found. One was positive correlation, such as M2, M4, M5, 
M6 and M15, and most of those modules are involved in 
synthesis biological processes. Another type was negative 
correlation, such as M23, M40, M49 and M50, and most 
of those modules are involved in biological degradation 
processes.

Correlating modules with experimental conditions/
traits

After co-expressed gene module identification, we checked 
the expression status of a specific module from experiments. 
Linking the modular gene expression with experimental con-
ditions may help to discover modules functioning under a 
specific condition (Supplementary Table S6). If a module 
has a high ME, then the module could be a signature for 
that trait or experiment. For example, combined heat and 
anoxia treatment leads to the highest modular expression in 
M32, which is enriched with gene responses to heat. A sig-
nificant overlap between the anoxic and the heat responses 
was reported. The transcription factor heat shock factor 
A2 (HsfA2) is induced by both heat and anoxia, and it was 

strongly induced by anoxia (Banti et al. 2010). On the other 
side, the lowest M32 expression is presented in arrested 
development 3 (add3) mutant Arabidopsis. It has been 
shown that add3 mutation prevents the expansion of leaf 
blades at high temperature, which suggests that add3 affects 
genes involved in inherently temperature-sensitive develop-
mental processes (Pickett et al. 1996). The hub genes include 
AT5G37670, AT1G30070 and HSP23.6-MITO (Fig. 2a). Our 
results confirm these studies from a module-based perspec-
tive. The module genes can serve as signatures or candidates 
for thermo-tolerance.

Although M51 has no significant functional annotation, it 
is highly expressed in the seed coat at the bending cotyledon 
stage, which was inferred from the transcriptome atlas of the 
Arabidopsis maternal seed subregions (Khan et al. 2015) 
and indicates the potential role of high expression of M51 
in germination. On the other hand, the lowest M51 expres-
sion is induced when seedlings were treated with MG132 
to block proteasome function and to increase TOC1 protein 
levels, which is an essential component of the Arabidopsis 
circadian system (Gendron et al. 2012). It has been dem-
onstrated that MG132 treatment completely inhibited seed-
ling growth from dissected embryos, which suggests that 
proteasome activity is required for germination (Chiu et al. 
2016). Eight out of 36 M51 genes have been reported to be 
seed coat epidermal-specific genes (Esfandiari et al. 2013). 
The hubs include AtMES esterase family genes MES6 and 
MES4 (Fig. 2b), while the MES family has been implicated 
in hormone homeostasis and germination (Vlot et al. 2008; 

Fig. 2   Representative module network visualization for M32 and M51. a Network visualization for M32. b Network visualization for M51
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Rajjou et al. 2006; Yang et al. 2008). Therefore, M51 may 
play roles in germination. Similarly, two other modules that 
have functional annotations, but that were not significant 
after P value adjustment, include M50, which may perform 
nectar secretion, and M42, which may perform manganese 
ion transmembrane transport, as indicated by their expres-
sion in lateral nectaries and embryo roots.

Genomic positional gene enrichment analysis

To check whether the 52 modules were associated with spe-
cific chromosome regions, modular genes were tested with 
the Positional Gene Enrichment analysis tool. At a stringent 
P value (7E−7) and using “more than 3 gene hits” criteria, 

5 modules, including M9, M24, M30, M36, and M49, were 
identified as enriched within a specific chromosome region 
(Supplementary Table S7).

Genes function prediction

M32, which contains 98 genes, was selected to demonstrate 
the application of a gene co-expression module in gene 
function prediction. Only 3 genes were annotated as hypo-
thetical protein coding genes, and the other 95 genes have 
unambiguous functional annotations. To confirm their role 
in heat shock, these 98 genes were submitted to NCBI Pub-
Med, NCBI Gene and GoogleScholar to check their asso-
ciation with heat shock. We found 25 HSPs, 6 HSFs, 14 

Fig. 3   Higher-order network and its relationships. a A network shows the connections between modules. b Hierarchical clustering shows the 52 
modules organize into 15 meta-modules, which are denoted with colors and module numbers at corresponding leaves



1496	 Planta (2019) 249:1487–1501

1 3

chaperones, 48 heat shock response genes (Supplementary 
Table S8). However, some of the 48 heat shock response 
genes are from microarray studies and have no functional 
experiment support. The remaining 5 genes (AT2G41170, 
AT4G02550, AT1G44414, AT1G55530, and AT3G56250) 
have not been reported to be associated with heat shock in 
any previous studies. So, these 5 genes could be potential 
heat shock-responsive genes based on guilt by association, 
which merits functional verification.

Higher‑order module organization

To observe the organization between these modules, the 
networks of the 52 identified modules were also analyzed. 
These 52 modules are organized into 15 interconnecting 
meta-modules. A global connectivity analysis shows that 
the top 3 highly connected modules were M13, M8, and 
M4, which have annotations that include biosynthesis of 
secondary metabolites, oxidation reduction, and transla-
tion, respectively (Fig. 3a, Supporting Table S9). The results 
may indicate the importance and complexity of secondary 
metabolites (Kliebenstein 2004).

To check the relationships between these meta-modules, 
a clustering diagram was plotted, which showed that these 
15 meta-modules can be divided into 6 major branches. The 
two orphan branches are meta-modules in green–yellow and 
tan, which correspond to chloroplast and valine, and leucine 
and isoleucine degradation (Fig. 3b). From these results, it 
can be inferred that chloroplast genes have a distinct tran-
scriptional pattern compared to the other 14 meta-modules.

Comparison with previous Arabidopsis networks

To confirm our results, multiple publications results were 
compared. Mao and colleagues constructed a gene expres-
sion map from 1094 Arabidopsis microarrays and identified 
382 sets of highly correlated genes (Mao et al. 2009). They 
identified 46 modules with significantly enriched GO terms, 
and 38 of those terms share common GO terms with our 
modules. However, their modules are small, and the analysis 
was limited to annotated genes. For example, they identified 
just 6 genes that respond to heat. Mutwil used 351 microar-
ray data and identified 181 gene clusters, and 27 of the 34 
significant clusters share common functional annotations in 
our results (Mutwil et al. 2010).

Comparison with rice transcriptome

To test if the identified modules were also present in rice, we 
further collected 2043 rice microarray data points and pro-
jected the transcriptomes to Arabidopsis modules using the 
R function modulePreservation in the WGCNA package. The 
analysis showed that only 4 modules (M2, M4, M5 and M6) 
were highly preserved, 11 modules (M1, M3, M10, M16, 
M18, M20, M26, M27, M33, M39 and M48) were weak to 
moderately preserved, and the other 37 modules had lower 
preservation Zsummary than the former 15 modules (Fig. 4). 
M4 showed the strongest preservation, while M21 showed 
the lowest (Supplementary Table S10). The well-preserved 
modules include modules associated with translation, rRNA 
processing, photosynthesis and chloroplast organization. An 
example of not preserved module is M7 (rank = 47), which 
involves lipid storage. Evidence suggested that the lipid change 
patterns in rice are different from those in Arabidopsis (Wang 
et al. 2012a). To provide more details about preservation 
between Arabidopsis and rice, 8 KEGG pathways, includ-
ing Photosynthesis, Ribosome, Ubiquitin-mediated proteoly-
sis, Endocytosis, Plant–pathogen interaction, Porphyrin and 
chlorophyll metabolism, Plant hormone signal transduction, 
and Phenylpropanoid biosynthesis were analyzed. These path-
ways were identified in both the Arabidopsis and rice data-
sets. Module preservation statistics and module membership 
correlation analysis show that the Photosynthesis, Ribosome, 
Endocytosis, Porphyrin and chlorophyll metabolism, and Phe-
nylpropanoid biosynthesis pathways were preserved, while 
preservation Zsummary was low for Ubiquitin-mediated pro-
teolysis, Plant–pathogen interaction and Plant hormone signal 
transduction (Fig. 5). Networks demonstrated the similarity 
between the Photosynthesis and Ribosome pathways as well 
as differences in hormone signaling between Arabidopsis and 
rice (Fig. 6). The unique complexities of hormone-mediated 
defence networking have been summarized in recent publica-
tions (De Vleesschauwer et al. 2014; Ma et al. 2010). For a 
better exploration of the KEGG pathways between the two 

Fig. 4   Rice transcriptome preservation in Arabidopsis. Dashed green 
and blue lines represent the Zsummary threshold for strong (Z > 10) 
and weak–moderate (2 < Z < 10) module preservation. Numbers along 
with coloured dots represent the identified modules. Module size is 
the number of rice orthologs for Arabidopsis 
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species, a shiny-based web viewer was developed (Chang et al. 
2015). The tool is available here: http://bioin​forma​tics.fafu.
edu.cn/arabi​/.

Discussion

With the development of high-throughput technologies, 
large-scale data-based network analysis has become 
a robust method to discover the gene function, cellular 

machinery, modularity, conservation or tissue differ-
ences (Boruc et al. 2010; He and Maslov 2016; Ruprecht 
et al. 2017; He et al. 2016). WGCNA has been widely 
used in biomedical research; however, its application 
in plants has lagged due to small sample sizes in indi-
vidual experiments, which is an important factor in GCN 
analysis. Although the state-of-the-art RNA-Seq data of 
Arabidopsis have accumulated over the years, the diver-
sity in library type, sequencing depth, and instrument type 
makes it hard to conduct integrative analysis. Studies have 

Fig. 5   KEGG pathway-based analysis of the preservation between 
Arabidopsis and rice. a, b and c show the preservation statistics, and 
Z > 10 indicates strong preservation, whereas 2 < Z < 10 indicates 
weak–moderate preservation. The dot labels are extracted from the 
first four letters for each pathway name. d, e, f, g, h, i, j and k plot 

the kME correlation for orthologs in the 8 pathways, including the 
Porphyrin and chlorophyll metabolism, Endocytosis, Photosynthesis, 
Ubiquitin-mediated proteolysis, Phenylpropanoid biosynthesis, Plant–
pathogen interaction, Plant hormone signal transduction, and Ribo-
some pathways

http://bioinformatics.fafu.edu.cn/arabi/
http://bioinformatics.fafu.edu.cn/arabi/
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showed that microarray data seem more suited for gene 
network analysis (Giorgi et al. 2013), and a larger sam-
ple size may help to more robustly detect the gene co-
expression modules (Oldham et al. 2008). In this study, 
we collected a compendium of Arabidopsis transcriptome 
data and identified 52 co-expressed gene modules. All the 
sample data were pooled together to construct a pan net-
work that was non-targeted, which is different from many 
previous works that were targeted at one or more specific 
biological conditions, as mentioned in the Introduction. 
Thus, we can identify pan modules that are a compilation 
of nearly all possible co-expressed modules under various 
conditions. We believe that gene–gene connections exist 
underlying any transcriptome even if those connections 
cannot be detected when all the samples have the same sta-
tus (e.g., a static transcriptome). The inherent gene–gene 
connections can be detected when perturbation occurs 
within the network, such as the biomedical project Con-
nectivity Map in which cell line transcriptomes were per-
turbed by drug treatments to find gene signatures (Lamb 
et al. 2006). Therefore, the tissue origin or experimental 
treatment can both be considered as a perturbation, which 
is the reason for our cross-studies data integration. Fortu-
nately, the standardized microarray platform data provide 
a possibility for integration.

Although early studies have constructed non-targeted 
GCNs for Arabidopsis (Mao et al. 2009; Mutwil et al. 2010; 
He and Maslov 2016), our analysis improves power and 
has a different perspective that is more concentrated on 
biological meanings. First, after identifying the gene mod-
ules, module stability was tested by half-sampling. Second, 
connectivity-based analysis shows the important genes in the 
global network, and module-based gene variation analysis 
may infer potential basal and responsive modules. Third, 
we further analyzed the associations between modules and 
experimental conditions (phenotype annotation), which 
may help to identify important modules under specific con-
ditions/traits. These modules could be potential signatures 
for a trait. Finally, as an important crop, rice gene func-
tion research often starts from Arabidopsis orthologs. A 
comparative network analysis of relevant KEGG pathways 
shows network-based transcriptional conservation of some 
basal cellular machinery and divergence of some responsive 
modules between Arabidopsis and rice. The divergent com-
ponents may reflect species diversity, but conserved compo-
nents define preserved gene models across species that may 
facilitate standardization of experimental models (Mueller 
et al. 2017). Although the rank of preservation statistics can 
reflect the pathway preservation between Arabidopsis and 
rice, the statistics should be interpreted with caution due 

Fig. 6   KEGG pathways-based network visualization for Arabidop-
sis and rice. KEGG pathway-based network for a Photosynthesis; b 
Ribosome; c Hormone signal transduction. The size of the black dot 

denotes gene connectivity in Arabidopsis and its orthologs in rice. 
The red line connecting two dots represents the connection strength 
between them
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to the imbalanced tissues/conditions representation in the 
datasets analyzed.

Overall, our results provide a comprehensive network 
view for the Arabidopsis transcriptome and may serve as a 
valuable resource for candidate gene function investigation.
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