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Abstract
Main conclusion This review summarizes the current understanding, future challenges and ongoing quest on sugar 
metabolic alterations that influence the outcome of plant–pathogen interactions.

Intricate cellular and molecular events occur during plant–pathogen interactions. They cause major metabolic perturbations in 
the host and alterations in sugar metabolism play a pivotal role in governing the outcome of various kinds of plant–pathogen 
interactions. Sugar metabolizing enzymes and transporters of both host and pathogen origin get differentially regulated dur-
ing the interactions. Both plant and pathogen compete for utilizing the host sugar metabolic machinery and in turn promote 
resistant or susceptible responses. However, the kind of sugar metabolism alteration that is beneficial for the host or pathogen 
is yet to be properly understood. Recently developed tools and methodologies are facilitating research to understand the 
intricate dynamics of sugar metabolism during the interactions. The present review elaborates current understanding, future 
challenges and ongoing quest on sugar metabolism, mobilization and regulation during various plant–pathogen interactions.
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Introduction

Plants are under constant exposure to various pathogens. 
Different pathogens have evolved different strategies to 
obtain nutrients and to propagate, while plants have elabo-
rate counter attack strategies to defend themselves (Nimchuk 
et al. 2003; Jones and Dangl 2006; Pieterse et al. 2012). 
During this ongoing battle, physiology and cellular metabo-
lism of both host and pathogen get perturbed. Metabolism 
is the total sum of various biochemical processes that occur 
within a living organism; therefore, manipulation of such 
machinery is an ideal battlefield during plant–pathogen 
interactions (Duan et al. 2013). Alteration in photosynthetic 
machinery is most common amongst various pathogenic 
responses (Berger et al. 2007b). Various photosynthetic 
parameters such as Fv/Fm (maximum quantum efficiency of 

photosystem II), ETR (linear electron transport rate), ØPSII 
(operating efficiency of photosystem II) and NPQ (non-pho-
tochemical quenching) are found altered during pathogenesis 
(Scholes and Rolfe 1996; Petit et al. 2006; Rolfe and Scholes 
2010). Various transcriptome studies have revealed photo-
synthesis-associated genes to be downregulated while res-
piratory processes, i.e., glycolysis, tricarboxylic acid cycle 
(TCA cycle) and mitochondrial electron transport chain to 
be upregulated in the infected tissues (Doehlemann et al. 
2008; Parker et al. 2009; Chandran et al. 2010; Voll et al. 
2011; Teixeira et al. 2014; Xu et al. 2015). Also various host 
secondary metabolites get induced during plant–pathogen 
interactions (Piasecka et al. 2015; Pusztahelyi et al. 2015). 
Interestingly, some of the plant secondary metabolites are 
known precursor of various phytohormones (such as sali-
cylic acid, jasmonates) and defense-related (including phyto-
alexins) compounds (VanEtten et al. 1994; Dixon and Paiva 
1995; Bolton 2009; Wojakowska et al. 2013; Piasecka et al. 
2015; Pusztahelyi et al. 2015). Overall, reprogramming of 
host metabolism has emerged as a common theme during 
plant–pathogen interactions.

Previously, Berger et al. (2007b) and Bolton (2009) had 
reviewed the association of host primary metabolic changes 
during pathogenesis. However, with recent technological 
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advancement, significant progress has been achieved towards 
dissecting the involvement of primary metabolic changes 
during plant–pathogen interactions. As sugars are core of 
primary metabolism, in this review we deliberate on current 
understanding, opportunities as well as available knowledge 
gaps about their dynamics and role during pathogenesis. We 
also prospect whether these changes are beneficial for the 
plant or the pathogen. For involvement of non-sugar primary 
metabolites (such as nitrogen), we refer readers to some of 
the recent reviews (Fagard et al. 2014; Rojas et al. 2014).

Changes in plant sugar metabolism: 
a common response during pathogenesis

Photosynthesis plays a vital role in management of biosyn-
thesis and mobilization of various sugars. Alterations in pho-
tosynthesis as well as sugar metabolism play an important 
role during plant interactions with various pathogens includ-
ing fungi (Table 1). For example, decreased photosynthetic 
activity is observed upon biotrophic fungal (Albugo candida, 
Golovinomyces orontii, Erysiphe cichoracearum) pathogen 
infection in Arabidopsis (Chou et al. 2000; Zimmerli et al. 
2004; Chandran et al. 2010). Similarly, severe inhibition of 
photosynthesis is observed during pathogenesis of Botry-
tis cinerea (a necrotrophic fungal pathogen) in plants like 
Arabidopsis, tomato and lettuce (Berger et al. 2004; Win-
dram et al. 2012; De Cremer et al. 2013; Smith et al. 2014). 
Moreover, the hemibiotrophic fungal pathogens like Colle-
totrichum lindemuthianum and Mycosphaerella graminicola 
are also known to inhibit photosynthesis during necrotrophic 
phase of their pathogenesis on beans and wheat, respectively 
(Lopes and Berger 2001; Meyer et al. 2001; Scholes and 
Rolfe 2009).

Besides fungal pathogens, decrease in photosynthesis is 
also observed during bacterial and viral infections in plants 
(Suppl. Table S1). For example, photosynthesis is signifi-
cantly reduced during pathogenesis of Pseudomonas syrin-
gae on different hosts (Zou et al. 2005; Bonfig et al. 2006; 
Berger et al. 2007a). In a recent study, it has been observed 
that P. syringae utilizes effector molecules to disrupt photo-
system II, inhibit photosynthetic  CO2 assimilation and repro-
gram nuclear encoded chloroplast-targeted genes (NECGs) 
expression (de Torres Zabala et al. 2015). Repression of pho-
tosynthesis-associated genes is also observed during Bean 
Common Mosaic Virus (BCMV) infection on common bean 
(Martin et al. 2016). Besides this, downregulation of pho-
tosynthesis is also observed during plant–herbivore interac-
tions (Zangerl et al. 2002; Tang et al. 2006). For example, 
repression of photosynthesis-related genes is observed in 
Nicotiana attenuate upon the attack of Manduca sexta, a 
moth (Hui et al. 2003). However, mirid bugs (Tupiocoris 
notatus) attack is found to enhance photosynthetic activity in 

N. attenuate (Halitschke et al. 2011). The authors had specu-
lated that elevated  CO2 assimilation might balance net pho-
tosynthesis in the mirid bugs affected leaves. Interestingly, 
the elevated rate of photosynthesis is also observed in the 
adjoining area of A. candida and B. cinerea infected regions 
of the leaves of Arabidopsis and tomato, respectively (Chou 
et al. 2000; Berger et al. 2004). Based on various studies, it 
has become apparent that during necrotrophic interaction, 
alteration in photosynthesis is rapid while during biotrophic 
interaction, such alterations are delayed, being observed 
after visible appearance of disease symptoms (Rolfe and 
Scholes 2010).

Besides photosynthesis, the host carbohydrate metabo-
lism is also modulated by both biotrophic and necrotrophic 
pathogens (Table 1; Suppl. Table S1). For example, bio-
trophic fungal pathogen Ustilago maydis causes alteration 
in soluble sugar content in the infected maize leaves (Doe-
hlemann et al. 2008; Horst et al. 2008). Notably, the defects 
in sugar accumulation (id1: indeterminate1; increased 
accumulation of sucrose) or starch metabolism (su1: sug-
ary1; altered starch metabolism) impart tolerance against 
U. maydis infections in maize (Kretschmer et al. 2017). The 
adjustment in concentration of various sugars seems to play 
a determinative role in plant defense during necrotrophic 
interaction of B. cinerea and Sclerotinia sclerotiorum with 
tomato (Lecompte et al. 2013). A recent study has also sug-
gested that relative proportion (but not the absolute con-
centration) of fructose amongst the pool of sugars (sucrose, 
glucose and fructose) plays a decisive role during tomato 
defense against B. cinerea (Lecompte et al. 2017). Several 
recent studies have suggested that alteration in host sugar 
metabolism is also important for the pathogenesis of soil-
borne pathogens, such as Verticillium dahlia, Fusarium 
oxysporum, Phytophthora infestans and Rhizoctonia solani 
(Gyetvai et al. 2012; Buhtz et al. 2015; Kumar et al. 2016; 
Copley et al. 2017; Ghosh et al. 2017; Witzel et al. 2017).

Sugar mobilization in the battlefield

Plant tissues self-sufficient in producing sugars are known 
as source, while other tissues are called sink. Sink tissues 
require net sugar import (predominantly in the form of 
sucrose) via phloem and they are equipped to utilize sucrose 
as energy source (Kocal et al. 2008). When a pathogen 
attacks source tissues (such as leaves), a sink-type environ-
ment is created. Whereas when a pathogen colonizes sink 
tissues (such as developing leaves, meristems, etc.), the sink 
to source transition is arrested and sink status is retained 
at the site of infections (Teixeira et al. 2014; Dhandapani 
et al. 2017). The cascade of events including downregulation 
of photosynthetic genes, upregulation of respiratory genes 
and accumulation of hexose sugars facilitates creation of 
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Table 1  Host metabolic alteration during plant–fungus interactions

Pathogen Host Metabolism effected in the infected 
region

References

Biotrophic fungi
 Puccinia coronata Oat Reduced photosynthesis in the infected 

region
Scholes and Rolfe (1996)

 Albugo candida Arabidopsis Reduced photosynthesis, decline in 
starch content and accumulation of 
soluble carbohydrates

Chou et al. (2000)

 Erysiphe cichoracearum Arabidopsis Repression of general metabolism and 
photosynthesis-related genes

Zimmerli et al. (2004)

 Blumeria graminis Barley Reduced photosynthesis in infected as 
well as adjacent cells

Swarbrick et al. (2006)

 Golovinomyces orontii Arabidopsis Reduced photosynthesis, site-specific 
upregulation of respiration and 
source to sink transition

Chandran et al. (2010)

 Ustilago maydis Maize C3–C4 photosynthesis transition and 
sink to source arrest in the develop-
ing leaf

Doehlemann et al. (2008), Horst et al. 
(2008), Kretschmer et al. (2017)

 Blumeria graminis Wheat Alteration in photosynthesis and carbo-
hydrate metabolism-related proteins

Fu et al. (2016), Li et al. (2016)

Hemibiotrophic fungi
 Colletotrichum lindemuthianum Beans Reduced photosynthesis in the lesions 

and in green areas between lesions 
during necrotrophic phase

Lopes and Berger (2001), Meyer et al. 
(2001)

 Mycosphaerella graminicola Wheat Severe damage of photosynthetic appa-
ratus in the lesions

Scholes and Rolfe (2009)

Phytophthora infestans (oomycete) Potato Alteration of genes related to photo-
synthesis and  CO2 fixation

Gyetvai et al. (2012)

 Colletotrichum higginsianum Arabidopsis Host defense response influenced by 
carbon availability

Engelsdorf et al. (2013)

 Moniliophthora perniciosa Theobroma cacao Sink to source arrest in meristematic 
tissues

Teixeira et al. (2014)

 Zymoseptoria tritici Wheat Repression of photosynthesis-related 
genes

Rudd et al. (2015)

 Fusarium oxysporum Chickpea Decrease in sucrose and fructose 
content

Kumar et al. (2016)

 Verticillium dahliae Tomato and Arabidopsis Reprogramming of carbohydrate 
metabolism

Buhtz et al. (2015), Witzel et al. (2017)

Necrotrophic fungus
 Esca Grapevines Reduced maximum fluorescence yield 

and effective photosystem II quantum 
yield

Petit et al. (2006)

 Botrytis cinerea Arabidopsis Repression of photosynthesis and 
associated process

Windram et al. (2012)

 Botrytis cinerea Lactuca sativa Reduced photosynthesis as well 
as phenylpropanoid pathway but 
induced terpenoid biosynthesis

De Cremer et al. (2013)

 Botrytis cinerea Tomato Reduced photosystem II quantum yield Berger et al. (2004), Smith et al. (2014)
 Botrytis cinerea Vitis vinifera Reprogramming of carbohydrate 

metabolism
Agudelo-Romero et al. (2015)

 Rhizoctonia solani Soyabean Strong fluctuations in glycolysis, TCA 
cycle and photosynthesis

Copley et al. (2017)

 Rhizoctonia solani Rice Reduced photosynthesis at the site of 
infection

Ghosh et al. (2017)
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sink-type environment in the infected tissues (Fig. 1). Fur-
thermore, sugar hydrolysis and uptake mechanism are mod-
ulated in the infected tissues (Fatima and Senthil-Kumar 
2015; Oliva and Quibod 2017). Besides foliar pathogens, 
there are pathogens that infect non-aerial parts of the plants 
such as roots (sink tissue). The root knot nematode (Meloi-
dogyne incognita) infection alters the primary metabolism 
during susceptible interaction but not during resistant inter-
actions with tomato roots (Shukla et al. 2017). Recently, 
Zhao and colleagues have reported that root knot nematode 
(M. incognita) upregulates sugar transport-related genes and 
increases the sugar content in both roots as well as leaves of 
the infected tomato (Zhao et al. 2018). Overall, it seems that 
root pathogens can alter sugar mobilization in both foliar and 
non-foliar (root) tissues.

Sink‑related enzymes

In most cases, sucrose is not readily available to pathogen 
and it needs to be broken down into more accessible form, 
i.e., glucose for utilization (Paul et al. 2008). Invertases 
(INVs) present in sink tissue assist in hydrolyzing sucrose 
into glucose and fructose (reviewed in Tauzin and Giardina 
2014). They influence sucrose level, sink strength as well as 
sucrose: hexose ratio. The host cell wall invertases upregu-
lated during pathogen infection are known to increase the 
hexose to sucrose ratio in the infected tissues (Chou et al. 

2000; Fotopoulos et al. 2003; Hayes et al. 2010). Also there 
are reports which suggest that some phytopathogens upreg-
ulate their own invertase(s) to promote host colonization 
(Voegele et al. 2006; Chang et al. 2017). Besides invertases, 
sucrose synthases (plant/pathogen origin) which are involved 
in breakdown of sucrose into fructose and UDP-glucose are 
also upregulated in some pathosystems (Hren et al. 2009; 
Brzin et al. 2011; Cabello et al. 2014). The upregulation of 
these sucrose synthases can also alter sucrose:hexose ratio 
in the infected tissues.

Sink‑related transporters

Generally, membrane transporters are upregulated at the site 
of infection to promote uptake of sugars from the infected 
tissues (Table 2). For example, hexose transporters (HXTs) 
of either plant or pathogen origins are upregulated in various 
pathosystems and facilitate uptake of hexoses. Recently, the 
HXT1 of U. maydis has been shown to be required for its 
pathogenesis on maize (Schuler et al. 2015). Interestingly, 
different paralogs of HXT1 transporters of C. graminicola 
are differentially regulated during different phases of its 
pathogenesis on maize (Lingner et al. 2011). The CgHXT1 
and CgHXT3 are induced during biotrophic phase while 
the CgHXT2 and CgHXT5 are induced during necrotrophic 
phase. Besides HXTs, induction of another hexose trans-
porter, i.e., mfs1 (major facilitator superfamily), has been 

Fig. 1  A simplified overview of 
source to sink transition during 
plant–pathogen interactions. 
During pathogen attack, source 
tissues (such as leaves) undergo 
extensive metabolic changes. 
The source-specific genes are 
repressed and sink-specific 
ones are induced. This leads to 
increase in hexose to sucrose 
ratio in the infected tissues and 
causes source to sink transi-
tion. Generally, sugars are 
transported from source tissues 
to various other parts of the 
plants (black arrow) while upon 
pathogen attack, sugars get 
translocated to infected zones 
(blue arrow). During patho-
genesis, hexose transporters 
are upregulated in the infected 
tissues to facilitate sugar uptake 
from the host. RbcS ribulose-
1,5-bisphosphate carboxylase, 
Cab chlorophyll a, b binding 
protein, INVs invertases, HXTs 
hexose transporters, SWEETs 
Sugars Will Eventually be 
Exported Transporters

Sink

Source Hexose/sucrose 
ratio

Hexose uptake by
various transporters
(HXTs, Srt1, SWEETs etc)

Repression source 
specific genes 

(RbcS, Cab)

 Induction of sink 
specific genes

(INVs, Sucrose synthases, 
HXTs, SWEETs etc)

(Fungus, bacteria, virus and insects)

Carbohydrate to roots 

Carbohydrate to 
infected region

Respiration 
Photosynthesis

Pathogen attack 

Uninfected leaf
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observed during necrotrophic phase of anthracnose disease 
causing fungal (C. lindemuthianum) infection in common 
bean (Pereira et al. 2013). In general, the HXTs are co-regu-
lated with cell wall invertases, suggesting that they might be 
functioning to facilitate sugar uptake in a coordinated fash-
ion (Sutton et al. 2007; Essmann et al. 2008). For example, 
both invertase (UfINV1) and hexose transporter (UfHXT1) 
are upregulated in the haustoria of Uromyces fabae (a bio-
trophic pathogen) and promote hexose uptake from the host 
during its pathogenesis on broad bean (Voegele et al. 2001, 
2006).

It is noteworthy that some host origin hexose transporters 
such as sugar transport proteins (STPs) are also modulated 
during plant–pathogen interactions. Moore and colleagues 
had reported that a mutation in the wheat STP13 (lr67) 
gene imparts resistance against multiple biotrophic patho-
gens (Moore et al. 2015). Similarly, Arabidopsis STP13 
is known to provide basal resistance against B. cinerea 
(Lemonnier et al. 2014). Upregulation of pathogen encoded 
sucrose transporters at infection site suggests that they might 

facilitate the pathogen to directly uptake sucrose from the 
host (Table 2). Srt1 is the first characterized pathogen origin 
sucrose transporter which is involved in the virulence of U. 
maydis on maize (Wahl et al. 2010). Interestingly, during the 
C. graminicola infection in maize another type of sucrose 
transporter, i.e., SUT1 has been upregulated (Vargas et al. 
2012). In recent years, new types of sugar transporters (com-
monly referred to as SWEETs) have been found to facilitate 
glucose and sucrose efflux into the plant apoplast. These host 
origin SWEET transporters are induced upon pathogen inva-
sion and it has been thought that pathogens induce them to 
promote uptake of sugars from their host (Chen et al. 2010). 
For example, Xanthomonas oryzae pv. oryzae utilizes tran-
scriptional activator-like (TAL) effectors, i.e., PthXo1 and 
PthXo2 to induce rice OsSWEET11 (sucrose uniporter) and 
OsSWEET13 genes, respectively, during infection process 
(Chen et al. 2010; Zhou et al. 2015). Similarly, the pathogen 
(X. oryzae pv. oryzae) uses AvrXa7 and PthXo3 effectors 
to induce the OsSWEET14 (Os11N3) gene to promote sus-
ceptibility (Antony et al. 2010). Cassava sugar transporter 

Table 2  Modulation of sink-related transporters during plant–pathogen interactions

Fungus Host Gene/protein References

Hexose transporters
 Uromyces fabae Broad bean Pathogen UfHXT1 Voegele et al. (2001)
 Erysiphe cichoracearum Arabidopsis AtSTP4 (monosaccharide transporter 

gene)
Fotopoulos et al. (2003)

 Botrytis cinerea Pathogen BcFRT1 Doehlemann et al. (2005)
 Erysiphe necator and Plasmopara 

viticola
grapevine Host-VvHT5 Hayes et al. (2010)

 Colletotrichum graminicola Maize CgHXTs Lingner et al. (2011)
 Colletotrichum lindemuthianum Common bean mfs1 gene Pereira et al. (2013)
 Botrytis cinerea Arabidopsis STP13 Lemonnier et al. (2014)
 Multiple pathogens Wheat Mutation in the host STP13 (lr67) exerts 

resistance to multiple pathogens in 
wheat

Moore et al. (2015)

 Ustilago maydis Maize Pathogen HXT1 Schuler et al. (2015)
Sucrose transporters
 Ustilago maydis Maize Pathogen Srt1 Wahl et al. (2010)
 Colletotrichum graminicola Maize Host SUT1 Vargas et al. (2012)

SWEET transporters
 Xanthomonas oryzae pv. oryzae Rice OsSWEET11/Xa13 Chu et al. (2006), Yang et al. (2006), 

Yuan et al. (2009), Chen et al. 
(2010)

 Xanthomonas oryzae pv. oryzae Rice OsSWEET14 Antony et al. (2010), Yu et al. (2011), 
Streubel et al. (2013)

 Botrytis cinerea Grapevine VvSWEET4 Chong et al. (2014)
 Xanthomonas citri ssp. citri Citrus SWEET1 Hu et al. (2014)
 Xanthomonas axonopodis pv. manihotis Cassava MeSWEET10a Cohn et al. (2014)
 Pythium irregulare Arabidopsis SWEET2 Chen et al. (2015)
 Xanthomonas oryzae pv. oryzae Rice OsSWEET13 Liu et al. (2011), Zhou et al. (2015)
 Fusarium oxysporum Sweet potato IbSWEET10 Li et al. (2017)
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MeSWEET10a is also induced by TAL20Xam668 effector 
from causal agent of bacterial blight disease, i.e., X. axono-
podis (Cohn et al. 2014). Similarly, the X. citri ssp. citri was 
found to modulate the CsSWEET1 gene in citrus by TAL 
effectors (PthA4 and PthAw) (Hu et al. 2014).

Besides bacterial pathogens, fungal pathogens such as 
Golovinomyces cichoracearum and B. cinerea are also 
known to modulate host SWEET genes to promote patho-
genesis (Ferrari et al. 2007; Chen et al. 2010). The host 
sweet gene (VvSWEET4) has been found upregulated dur-
ing pathogenesis of B. cinerea in Vitis vinifera (Chong et al. 
2014). Overall it seems that most of the foliar pathogens 
induce host SWEET transporters to facilitate infections 
(Chen et al. 2010; Cohn et al. 2014). However, the SWEET 
transporters seem to have different role during pathogenesis 
of soil-borne pathogens. For example, loss of host vacu-
olar SWEET2 transporter promotes enhanced susceptibility 
against a common root pathogen, Pythium irregulare infec-
tion in Arabidopsis (Chen et al. 2015). Similarly, overex-
pression of IbSWEET10 gene of sweet potato enhances host 
resistance to F. oxysporum infections (Li et al. 2017).

Sugars as regulators of plant defense—a 
stone unturned

In recent years, a pivotal role of various sugars like glucose, 
sucrose and trehalose in regulating the defense-related meta-
bolic pathways has become apparent (Fig. 2) (Rolland et al. 
2006; Wind et al. 2010; Bolouri Moghaddam and Van den 
Ende 2012). Glucose-mediated induction of defense-related 
secondary metabolites such as chalcone synthase and pheny-
lalanine ammonia-lyase (Dao et al. 2011; Kim and Hwang 
2014; Tonnessen et al. 2014) has been demonstrated (Xiao 
et al. 2000). Furthermore, sucrose can promote host defense 
response by enhancing the expression of anthocyanin bio-
synthesis genes and stimulating accumulation of isoflavo-
noids (Morkunas et al. 2005; Solfanelli et al. 2006).

In addition, various sugar-related enzymes, transporters 
and signaling molecules that are induced during pathogen 
invasion can regulate the plant defense processes. For exam-
ple, cell wall invertases can play a pivotal role in integrating 
sugar and defense signaling (Proels and Hückelhoven 2014). 
An increased invertase activity in the infected host tissue 
causes generation of sugar signals via modulation of sucrose/
hexose ratio. Some sucrose transporters such as SUC2 and 
SUT1 might also function as sugar sensors (Lalonde et al. 
1999). It is possible that sugar transporters that are upreg-
ulated during formation of secondary sink in the infected 
tissue might also be participating in defense response asso-
ciated signaling processes (Sutton et al. 2007; Bezrutczyk 
et al. 2018). Similarly, various sugar signaling molecules 
such as hexokinase (HXK) and trehalose-6-phosphate 

(T6P) can also potentially regulate plant defense (Moore 
et al. 2003; Rolland et al. 2006; Paul et al. 2008; Sheen 
2014). The HXKs are the best studied sugar sensors which 
are ascribed to be associated with glucose-mediated repres-
sion of photosynthetic genes (chlorophyll a/b binding pro-
tein and plastocyanin) (Sheen 1990; Moore et al. 2003; Cho 
et al. 2006). Also, HSKs potentially promote degradation 
of ETHYLENE-INSENSITIVE3 (EIN3), a key transcrip-
tional regulator in ethylene signaling (Yanagisawa et al. 
2003; Karve et al. 2012). The transcriptional de-repression 
of EIN3 is known to facilitate synergy between various 
plant defense hormone (jasmonate and ethylene) signaling 
pathways (Zhu et al. 2011). In addition, ethylene can also 
influence the photosynthesis and sugar partitioning (recently 
reviewed in Ceusters and Van de Poel 2018). Several other 
studies have also revealed interconnection between sugar 
and phytohormone signaling (León and Sheen 2003; Heil 
et al. 2012; Bolouri Moghaddam and Van den Ende 2012). 
Arabidopsis G-signaling protein AtRGS1 (regulator of 
G-protein signaling protein 1) has also been proven as a glu-
cose sensor and it is known to influence the sugar-mediated 
gene regulation (Chen and Jones 2004; Grigston et al. 2008). 
Although the G-protein signaling has been known to play a 
pivotal role during plant–pathogen interactions (Urano et al. 
2013), still the role of AtRGS1 in plant disease susceptibility 
or resistance remains to be analyzed. Establishing the links 
of sugar-hormone and sugar-G-protein signaling with plant 
pathogenesis is naive areas of research and largely remains 
unexplored.

Sucrose is known to translationally inhibit the expression 
of a particular group (S) of bZIP (basic region leucine zip-
per) transcription factor, i.e., ATB2/AtbZIP11 (Rook et al. 
1998; Wiese et al. 2004, 2005). During sugar limiting con-
dition, the bZIP11 is regulated by SnRK1 (SNF1-related 
kinase 1), a Ser/Thr kinase which acts as a metabolite sen-
sor to regulate sugar and energy metabolism. Interestingly, 
the role of SnRK1 and bZIP transcription factors during 
plant–pathogen interactions has also been established (Alves 
et al. 2013; Morkunas and Ratajczak 2014; Hulsmans et al. 
2016). Another sugar sensor, i.e., trehalose-6-phosphate 
(T6P, an intermediate of trehalose metabolism) is known 
to inhibit SnRK1 and influence bZIP11-SnRK1 regulatory 
pathway (Delatte et al. 2011; O’Hara et al. 2013; Nunes 
et al. 2013). T6P can also promote redox activation of ADP-
glucose pyrophosphorylase (AGPase), which is involved 
in starch synthesis (Kolbe et al. 2005). Interestingly, the 
alterations of host starch metabolism (turnover) can also 
influence the outcome of the interaction (Engelsdorf et al. 
2013). Besides host, trehalose biosynthetic pathway of the 
pathogens do play an important role during pathogenesis. 
For example, the T6P synthase (Tps1) deletion mutant of 
Magnaporthe oryzae exhibits reduced pathogenicity in 
rice (Foster et al. 2003; Wilson et al. 2007). The trehalose 
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produced by X. citri subsp. citri acts as an important viru-
lence determinant during pathogenesis in citrus (Piazza et al. 
2015). Overall, it is being envisaged that by altering host 
SnRK1 activity, the pathogen origin trehalose as well as T6P 
modulates host metabolism and defense responses. In sum-
mary, the notion that sugars play a crucial role during plant 
defense response is emerging (Bolouri Moghaddam and 
Van den Ende 2012; Morkunas and Ratajczak 2014). A new 
term, sweet immunity has been coined to describe sugar-
mediated induction of plant immune responses (Bolouri 
Moghaddam and Van Den Ende 2013). Various sugars like 
fructans and sucrose can also serve as damage-associated 
molecular patterns (DAMPs) which hallmark the pathogen 

infection (Duran-Flores and Heil 2016; Versluys et al. 2017) 
and are known to prime plant defense response against vari-
ous pathogens (Duran-Flores and Heil 2016).

Metabolic shift—favoring plant or pathogen

It is apparent that metabolic shift occurs during both sus-
ceptible (compatible) and resistant (incompatible) interac-
tions. The downregulation of photosynthesis and alteration 
in carbohydrate metabolism have been a common response 
during both types of interactions (Swarbrick et al. 2006; Fu 
et al. 2016; Li et al. 2016). However, the dynamics of gene 
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expression has been found to be qualitatively similar but 
quantitatively different during compatible and incompat-
ible interactions (Tao et al. 2003; Wang et al. 2010). For 
example, the photosynthesis and  CO2 fixation-related genes 
are highly abundant amongst differentially regulated genes 
during compatible compared to incompatible interactions 
of P. infestans with potato (Gyetvai et al. 2012). The pres-
ence of high level of extracellular sugar at infection site 
is another common response during both susceptible and 
resistant interactions (Essmann et al. 2008; Siemens et al. 
2011; Sun et al. 2014). However, a recent report has shown 
that bidirectional sugar transporters are upregulated only 
during colonization of a pathogenic isolate of F. oxysporum 
(Lanubile et al. 2015).

Interestingly, the timing of modulation of photosynthesis 
and sugar metabolism-related genes do vary between com-
patible and incompatible interactions (Fofana et al. 2007; 
Pérez-Bueno et al. 2015; Stare et al. 2015). The photosyn-
thesis-related genes are transiently upregulated at early stage 
(before viral multiplication) of Potato Virus Y (PVY) infec-
tion in tolerant potato but subsequently they get downregu-
lated (Stare et al. 2015). However, in case of the sensitive 
tomato (SA-deficient transgenic plants) the photosynthesis-
related genes are consistently downregulated. How such 
temporal regulation of sugar metabolism as well as photo-
synthesis, influences the outcome of susceptible or resistant 
interaction, remain largely unanswered.

Recent updates and ongoing quest

With recent advent of transcriptomics, metabolomics, or 
proteomics-based approaches, exploring the complexity of 
metabolic alterations during plant–pathogen interactions 
has become feasible (Aliferis and Jabaji 2012; Hong et al. 
2012; Yang et al. 2013; Teixeira et al. 2014; Aliferis et al. 
2014). Nowadays, dual omics approaches are being adopted 
to solve this unfolded mystery. Studying interactions of M. 
oryzae and Oryza sativa (Kawahara et al. 2012), Hemileia 
vastatrix and Coffea arabica (Fernandez et al. 2012), Lepto-
sphaeria maculans and Brassica napus (Lowe et al. 2014), 
Moniliophthora perniciosa and Theobroma cacao (Teix-
eira et al. 2014) are some of the recent examples wherein 
dual transcriptomics approach has been explored to under-
stand the intricacies of plant–pathogen interactions. Also 
metabolomics/proteomics techniques, such as gas chroma-
tography–mass spectrometry (GC–MS), liquid chromatogra-
phy–mass spectrometry (LC–MS), and NMR spectroscopy, 

are being used to understand metabolic perturbations during 
pathogen infections (Botanga et al. 2012; Cevallos-Cevallos 
et al. 2012; Hong et al. 2012; Prezelj et al. 2016). In addi-
tion, targeted (having prior knowledge of the compounds of 
interest) or non-targeted MS analysis is also being explored 
(Heuberger et al. 2014). The limitation of distinguishing the 
plant or pathogen origin metabolites/proteins from the mixed 
pool is being resolved by in vitro co-culturing of the plant 
and pathogen cells and thereafter separating them to pre-
cisely identify the origin of metabolites/proteins (Allwood 
et al. 2010, 2012). However, such methodology is unsuit-
able for most of the pathosystems, as it is performed under 
in vitro condition and only partially mimics the changes that 
occur during pathogenesis in plants. The uses of the laser 
microdissection (LMD) to separate the host/pathogen cells 
in the infected tissues are a good alternative to understand 
the spatio-temporal regulation (Chandran et al. 2010). How-
ever, intimate association of the invading pathogen with the 
plant and presence of pathogen origin secreted proteins/
metabolites in the host apoplast adds further complexity in 
data analysis. Considering such limitations, in recent years 
integrative approaches by combining more than one omics 
tools are being explored to unravel the complexity (Fig. 3). 
For example, simultaneous measurement of transcripts and/
or proteins has been attempted to identify secreted effectors 
of Acyrthosiphon pisum (aphid) and P. infestans (fungus) 
during pathogenesis on pea and potato, respectively (Carolan 
et al. 2011; Ali et al. 2014). Similarly combined genome-
wide RNAseq and global LC–MS and/or GC–MS-based 
metabolome analysis are being conducted to understand the 
metabolic alterations during plant–pathogen interactions 
(Rudd et al. 2015; Copley et al. 2017; Ghosh et al. 2017).

In conclusion, with the advent of new technologies, sys-
tematic and holistic understanding of metabolic perturba-
tion during host–pathogen interactions is becoming possi-
ble. Sugar metabolism and mobilization have emerged as 
important players, which decide the fate of ongoing battle 
between plant and pathogen during infection process. How-
ever, in spite of various recent advancements, the metabolic 
signatures and their regulatory nodes, which decide the sus-
ceptible or resistant responses, remain poorly understood. 
The host metabolic signature that favors plant or pathogen 
remains a major ongoing quest for future research. In addi-
tion, metabolic signatures that are associated with diverse 
lifestyle (biotrophic, necrotrophic and hemibiotrophic) 
as well as different modes of colonization (foliar, soil-
borne, etc.) of the pathogen are yet to be established. We 
have summarized the current understanding and important 
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unanswered quests about sugar metabolic alterations during 
plant–pathogen interactions in Fig. 4.
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