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Abstract
Main conclusion  The elucidation of the molecular mechanisms of starch synthesis and mobilization in perennial 
woody tissues is of the utmost scientific and agricultural importance.

Starch is the main carbohydrate reserve in plants and is fundamental in human nutrition and several industrial processes. In 
leaves, starch accumulated during the day is degraded throughout the night and the resulting sugars, glucose and maltose, are 
exported to the cytosol by the specialized transmembrane translocators pGT and MEX, respectively. Nevertheless, the degrada-
tion of the starch granule is a complex process not completely elucidated. While the mechanisms of starch mobilization during 
germination in the dead endosperm of cereal seeds are well described, the molecular and biochemical mechanisms involved in 
starch storage in the heterotrophic tissues of woody plants and its utilization in spring and winter are still puzzling. It is known 
that some biochemical steps of starch synthesis are conserved in heterotrophic tissues and in the leaves, but some aspects are 
particular to sink organs. From an agronomic standpoint, the knowledge on starch storage and mobilization in woody tissues 
is pivotal to understand (and to optimize) some common practices in the field that modify source–sink relationships, such as 
pruning and defoliation. Soluble sugars resulting from starch are also pivotal to cold adaptation, and in several fruits, such as 
banana and kiwifruit, starch may provide soluble sugars during ripening. In this review, we explore the recent advances on the 
molecular mechanisms and regulations involved in starch synthesis and mobilization, with a focus on perennial woody tissues.
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Introduction

The transition from hunter-gathering to sedentary agri-
culture, also called the “Neolithic revolution”, occurred 
in different locations around the world. This revolution, 

that preceded the development of large and complex civi-
lizations, was characterized by the cultivation of starchy 
staples, such as cereals (Hillman et al. 2001; Gepts 2004; 
Tanno and Willcox 2006). Nowadays, starch-accumu-
lating crops, besides remaining a major food source for 
humans, are widely used as animal feedstock and in sev-
eral industrial processes, including paper, textile and 
pharmaceutical industries (Zeeman et al. 2010). Also, 
starch is the main source of carbon accumulation in fruits 
such as banana (Zhang et al. 2005) and kiwifruit (Nar-
dozza et al. 2013), but is also present in considerable 
amounts during the development and ripening of fruits 
that mainly store soluble sugars, such as tomato (Bias 
et al. 2014), apple (Li et al. 2012), pear (Mesa et al. 2016) 
and strawberry (Moing et al. 2001). Starch in crops such 
as maize has also been used to produce bioethanol in an 
effort to increase the bio-sustainability of fuel production 
(Smith 2008).
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Starch is synthesized in both autotrophic and hetero-
trophic tissues. In leaves, starch is synthesized in the chlo-
roplast from the sugars produced by photosynthesis, and 
in sink tissues, including fruits, woody tissues and roots, 
starch is synthesized in the amyloplast after long-distance 
sugar transport via the phloem (Fig. 1). Several membrane 
proteins play pivotal roles in phloem loading and unloading 
with a major impact in plant development and productivity 
(Davies et al. 2012).

Starch is composed of two polymers of glucose, amy-
lopectin and amylose, with the same type of glucosidic 
linkages that differ in their length and degree of branching. 
Amylopectin consists of chains of α-1,4-linked glucose 
units, branched by α-1,6-linkages (Smith et al. 1997), and 
has evolved from the ancestral capacity to make glycogen, 
the storage polysaccharide of animals, fungi, and bacteria 
that is a polymer much more branched than amylopec-
tin (Copeland et al. 2009; Zeeman et al. 2010). Amylose 
is smaller than amylopectin and a linear polymer with 
α -1,4-linked glucose units (Slattery et  al. 2000). The 
granule is organized in a layered structure of concentric 

lamellae, generally called growth rings that correspond to 
periodic depositions of starch (Smith 2001). In the granule 
matrix, amylopectin forms the amorphous and crystalline 
lamellae and amylose is thought to be mainly present in 
the amorphous lamellae (Buléon et al. 1998).

While the biochemical pathways involved in the synthe-
sis of transient starch in the chloroplast are relatively well 
known, some aspects of its metabolism still remain elu-
sive. For instance, the biochemical mechanisms involved 
in starch accumulation in the heterotrophic tissues of 
woody plants and its subsequent utilization in spring, and 
in winter in response to low-temperature, are far from 
being understood. Furthermore, some of this knowledge 
is pivotal to understand and optimize common agricul-
tural practices that modify source–sink relationships and 
impact the amount of carbohydrate reserves in hetero-
trophic tissues.

In this review, the topic of starch synthesis and mobiliza-
tion in auto- and heterotrophic tissues is approached from 
a molecular perspective, paying special attention to current 
knowledge in perennial woody tissues.

Fig. 1   Long-distance transport of photoassimilates and starch synthe-
sis in woody plants. Starch is synthesized in leaves inside chloroplasts 
from photosynthetic sugars. Following long-distance phloem trans-

port, carbohydrates are accumulated as starch in the amyloplast of 
woody tissues and roots and as mono- or disaccharides in the vacuole 
Adapted from Lemoine et al. (2013)
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Starch synthesis and mobilization in leaves

During the day, the Calvin–Benson cycle depends on the 
products of the photosynthetic light reactions, ATP and 
NADPH, to fix atmospheric CO2 into the form of triose-
phosphate (triose-P; for a review see Raines (2003) and 
Bauwe et al. (2010)). These intermediates are mainly used 
for transient starch synthesis but are also translocated to 
the cytosol, via a triose-phosphate/phosphate translocator 
(TPT), and used as precursors for sucrose formation to fuel 
the metabolism during the day (Fig. 2). Inside the chloro-
plast, triose-P are converted into ADP-glucose and added to 
the starch granule by the coordinated action of several starch 
synthases (SS).

The degradation of the starch granule is a complex pro-
cess that still is not completely elucidated (for a review 
see Zeeman et al. 2010; Andriotis et al. 2016a). In Arabi-
dopsis, approximately 50% of carbon assimilated during 
the day is stored in the chloroplast in the form of starch, 
which is degraded during the night to feed the metabolism 

(Fig. 2; Zeeman and Rees 1999; Zeeman et  al. 2007). 
β-amylases (BAM) hydrolyze the linear chains and release 
maltose from exposed non-reducing ends but are unable 
to hydrolyze amylopectin branching points, which are 
cleaved by debranching enzymes (DBE) (Zeeman et al. 
2010). The role of BAM in starch degradation was eluci-
dated in starch excess (sex) potato mutant where a plastidic 
BAM is downregulated (Scheidig et al. 2002). Further-
more, in Arabidopsis thaliana, DBEs, isoamylase (ISA) 
and limit dextrinase (LDA), are also involved in starch 
degradation because isa3 and isa3/lda knock-out mutants 
display sex phenotypes. The role of α-amylases (AMY) in 
starch degradation in the leaves is still unclear and seems 
to vary between species. For instance, the Arabidopsis 
mutant amy3 does not display any sex phenotype (Yu et al. 
2005) but rice α-amylase I-1 knock-out plants accumulate 
low levels of starch in the leaves (Asatsuma et al. 2005).

One important factor regulating starch degradation is the 
reversible phosphorylation of the glucans at the surface of 
the granule (Zeeman et al. 2010; MacNeill et al. 2017). The 
action of glucan, water dikinase (GWD) and phosphoglucan, 

Fig. 2   Starch synthesis and mobilization in autotrophic tissues. a 
During the day, carbon from atmospheric CO2 is assimilated in the 
Calvin–Benson cycle producing triose-phosphate, which are used to 
synthesize starch in the chloroplast and sucrose in the cytosol, after 
translocation through TPT. b During the night, starch is degraded 
by the coordinated action of α- and β-amylases, and the debranching 
enzymes (isoamylase and limit dextrinase), and the resulting glucose 
and maltose are exported to the cytosol by the MEX and pGT. In the 
cytosol, sucrose is synthesized to sustain heterotrophic tissues. F16bP 

fructose 1,6-bisphosphate, F6P fructose-6-phosphate, G1P glucose-
1-phosphate, G6P glucose-6-phosphate, Gluc glucose, MEX maltose 
transporter, pGT plastidic glucose transporter, Pi inorganic phos-
phate, TPT triose-phosphate/phosphate translocator, UDP-Glc uridine 
diphosphate-glucose, ADP-Glc adenosine diphosphate-glucose, GAP 
Glyceraldehyde-3-phosphate, ATP Adenosine triphosphate, 3-PGA 
3-phosphoglyceric acid, 1,3-bPG 1,3-bisphosphoglyceric acid, Ru-
1,5-bP ribulose 1,5-bisphosphate
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water dikinase (PWD), which add phosphate groups from 
ATP to the glucosyl residues, and of phosphoglucan phos-
phatases, which remove the phosphate groups, allow the 
solubilization of the granule surface, facilitating the activity 
of the amylolytic enzymes. These enzymes are fundamental 
for starch degradation as shown in the Arabidopsis mutants 
sex1 (loss of GWD; Yu et al. 2001) and pwd (loss of PWD; 
Baunsgaard et al. 2005). Also, it has been shown that the 
removal of the phosphate groups, by SEX4 and LSF1 (like 
SEX FOUR), is necessary for complete starch degradation 
(Zeeman et al. 2010). For instance, the loss of AtSEX4 phos-
phatase reduces starch degradation in Arabidopsis leaves 
(Niittylä et al. 2006) and lsf1 mutants show a starch excess 
phenotype and reduced rates of starch degradation (Comp-
arot-Moss et al. 2010).

The final products of starch degradation in the chloro-
plasts during the night are mainly maltose with some glu-
cose (Weise et al. 2004) that must be exported to the cytosol 
to allow a continuous supply of carbon (Fig. 2). Maltose is 
exported to the cytosol by the plastidic maltose transporter 
(MEX; Niittylä et al. 2004), which was identified following 
the characterization of Arabidopsis thaliana maltose excess 
mutant that displays an increased accumulation of maltose 
in leaves during the night. Furthermore, evidence of glucose 
transport across the chloroplast envelope was obtained by 

Schäfer et al. (1977) several years before the identification 
of the plastidic glucose translocator (pGT) (Weber et al. 
2000). In the cytosol, maltose and glucose are converted to 
sucrose, the most common carbohydrate for long-distance 
sugar transport.

Starch synthesis in sink tissues

In contrast to chloroplasts, the synthesis and accumulation of 
reserve starch in heterotrophic plastids (amyloplast), found 
in roots, woody tissues, fruits, seeds, tubers, and pollen 
grains, relies on carbon obtained from long-distance sugar 
transport through the phloem (Figs. 1, 3; Lalonde et al. 
2004; Lemoine et al. 2013). Although several biochemical 
steps of starch synthesis operating in leaves are conserved 
in heterotrophic tissues, some are particular to sink organs. 
For instance, in heterotrophic tissues, starch is synthesized in 
amyloplasts following the incorporation of glucose-6-phos-
phate (G6P) from the cytosol by a glucose-6-phosphate/
phosphate translocator (GPT; Kammerer et al. 1998). This 
transmembrane protein was initially purified from the plas-
tidial envelope membranes isolated from maize endosperm 
and, since then, several cDNAs have been isolated from 
different plant species (Kammerer et al. 1998). Functional 

Fig. 3   Starch metabolism and accumulation in heterotrophic tissues. 
a In heterotrophic tissues, G6P is translocated into the amyloplast by 
the GPT and converted into G1P by PGM. Following this reaction, 
G1P and ATP are combined into ADP-Glc, which is incorporated into 
the starch granule by starch synthases. In cereals, ADP-Glc is syn-
thesized in the cytosol and is incorporated into the amyloplast by the 
BT1 protein. Starch accumulation in heterotrophic tissues of grape-
vine after iodine staining. b Starch accumulation in well-defined amy-

loplasts in xylem-ray cells, and in the outer layers of the mesocarp 
of green berries (c). ADP adenosine diphosphate, ADP-Glc adenosine 
diphosphate glucose, AGPase ADP-glucopyrophosphorylase, ATP 
adenosine triphosphate, G1P glucose-1-phosphate, G6P glucose-
6-phosphate, GPT glucose-6-phosphate/phosphate translocator, NTT 
plastidic nucleotide transporter, PGM phosphoglucomutase, Pi inor-
ganic phosphate, Glc glucose, Suc sucrose, BT1 brittle 1
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studies in planta confirmed that GPT proteins are G6P 
transporters in Arabidopsis (Niewiadomski et al. 2005) and 
Vitis vinifera (Noronha et al. 2015). In grapevine, VvGPT2 
is more expressed in leaves and VvGPT1 in heterotrophic 
tissues such as berries, canes and flowers. In cultured grape 
cells, VvGPT1 expression was increased by ABA, light and 
galactinol, and VvGPT2 by sucrose (Noronha et al. 2015). 
Some plants such as Solanum tuberosum may also incorpo-
rate glucose-1-phosphate (G1P) into the plastid to synthesize 
starch (Fettke et al. 2010).

ADP-glucopyrophosphorylase (AGPase) is present in 
both source and sink tissues and it is exclusively local-
ized inside the plastid in all tissues except in the cereal 
endosperm, which despite possessing the plastic form most 
of its activity is cytosolic (Denyer et al. 1996; Burton et al. 
2002). In cereals, adenosine diphosphate glucose (ADP-
Glc) synthesized in the cytosol is translocated to the amy-
loplast by the inner envelope protein BT1 that, in maize, is 
encoded by the Brittle1 gene (Fig. 3; Denyer et al. 1996; 
Beckles et al. 2001). In maize endosperm, this protein trans-
ports cytosolic ADP-Glc into the plastid in exchange for 
ADP (Sullivan and Kaneko 1995; Möhlmann et al. 1997; 
Kirchberger et al. 2007). Interestingly, in potato (Leroch 
et al. 2005) and Arabidopsis (Kirchberger et al. 2008) the 
BT protein is involved in the efflux of adenine nucleotides 
synthesized in the plastids. Also, GUS assays showed that 
in Arabidopsis AtBT1 is mainly expressed in developing 
anthers, in the central cylinder of young roots and root tips 
(Kirchberger et al. 2008).

In cereal seeds α‑amylase plays a pivotal role 
in starch mobilization

Starch degradation in heterotrophic tissues has been most 
studied during the mobilization of reserves from the 
starchy endosperm during seed germination, although 
this process differs substantially from the one that occurs 
in autotrophic tissues (Zeeman et al. 2010). In mature 
cereal seeds, the starchy endosperm is essentially a dead 
tissue at the time of germination and is composed mainly 
of starch, cell wall polymers and storage proteins sur-
rounded by the aleurone layer that is essential for starch 
mobilization. Starch is degraded primarily to glucose, fol-
lowing the action of AMYs, BAMs, LDA and maltases 
secreted by the scutellum and/or the aleurone layer, which 
is subsequently taken up by the embryo (Fig. 4; Andriotis 
et al. 2016b). Contrarily to what occurs in chloroplasts, 
in cereal seeds AMY plays a pivotal role in starch deg-
radation (Zeeman et al. 2010). It initiates its degradation 
by releasing linear and branched glucose polymers from 
the granule, the latter being converted to linear glucans 
by LDA. The action of AMY and BAM on linear chains 
produces maltose and glucose. Finally, maltose is hydro-
lyzed by the action of maltases, which are specialized 
α-glucosidases that produce glucose for embryo growth. 
Inactive BAMs are deposited in the endosperm prior to the 
dehydration phase and are activated by proteases released 
by the aleurone (Radchuk et al. 2009). Interestingly, high 
BAM activity was likely selected during cereal domesti-
cation, because it is not necessary for starch degradation 
and germination of developing seeds, as shown by cereal 
mutants with low BAM activity (Daussant et al. 1981; Sun 
and Henson 1991; Kihara et al. 1999).

Fig. 4   Starch mobilization in the cereal seed during germination. 
As the starchy endosperm is a dead tissue at the time of germina-
tion degrading enzymes are secreted by the embryo. The coopera-
tive action of α- and β-amylases and limit dextrinase releases malt-

ose units from the starch grain, which are hydrolyzed by maltases 
into glucose monomers and absorbed through the scutellum. BAM 
β-amylase, AMY α-amylase, LDA limit dextrinase Adapted from 
Andriotis et al. (2016)
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Starch mobilization in woody tissues 
in winter for cold tolerance and in spring 
for bud burst

Woody perennial trees must store carbon reserves to allow 
their survival during winter and for vegetative growth in 
the following spring (Fig. 5). Studies have shown two main 
periods of starch degradation in woody tissues—in the fall 
and spring before bud burst (Ashworth et al. 1993; Sau-
ter and van Cleve 1994; von Fircks and Sennerby-Forsse 
1998). The woody tissues function essentially as vegeta-
tive storage tissues in which starch accumulates season-
ally in well-defined amyloplasts in the ray parenchyma 
cells (Sauter and van Cleve 1994). The localization of 
these starch-accumulating cells can be easily observed in 
a cross-section of a grapevine woody cane stained with 
Lugol’s iodine solution, as shown in Fig. 3.

During winter, the degradation of starch in woody tis-
sues plays a crucial role in cold tolerance. The accumula-
tion of sucrose and raffinose in response to cold stress has 
been described in several species, such as poplar (Sauter 
and van Cleve 1991, 1994), Pinus strobus L. (Hinesley 
et al. 1992), birch (Kasuga et al. 2007), and willow (Ögren 
1999), which occurs concomitantly with the degradation 
of starch reserves (Sauter 1988; Witt and Sauter 1994a; 
Ögren 1999; Ashworth et al. 1993; Palonen et al. 2000). 

During spring, starch is mobilized to sustain plant growth, 
and in poplar woody tissues starch is completely hydro-
lyzed at the time of bud burst (Sauter and van Cleve 1994; 
Witt and Sauter 1994b).

Accordingly, an increase in the biochemical activ-
ity of starch-degrading enzymes has been reported in the 
period of starch–sugar conversion in woody tissues (Elle 
and Sauter 2000). The total amylolytic activity in poplar 
tissues is higher during the spring (Witt and Sauter 1994a) 
and autumn (Witt and Sauter 1994b), providing the carbon 
needed for sugar synthesis in the cytosol. Thus, sucrose or 
raffinose synthesis in the cytosol of woody tissues during 
cold adaptation and during spring depends of the transport 
of sugars from amyloplasts following starch breakdown. For 
instance, in Ajuga reptans, a species that accumulates large 
amounts of raffinose family oligosaccharides (RFOs) and 
translocates stachyose, most of the enzymes involved in raf-
finose synthesis are localized in the cytosol (Bachmann and 
Keller 1995), and similar results were obtained in spinach 
and Arabidopsis leaves exposed to cold treatment (Schnei-
der and Keller 2009). Interestingly, the chestnut CsDSP4, a 
homolog of the Arabidopsis SEX4 phosphatase associated 
with starch degradation in leaves (Zeeman and Rees 1999; 
Niittylä et al. 2006), is induced in woody tissues during 
autumn starch catabolism to promote the accumulation of 
sugars (Berrocal-Lobo et al. 2011). Also, an increase in the 
activity of sucrose phosphate synthase, a cytosolic enzyme 

Fig. 5   Starch mobilization in 
woody tissues during spring and 
in winter in response to cold. 
Starch reserves accumulated 
in woody tissues amyloplasts 
may be mobilized during spring 
to sustain plant growth and 
metabolism or during winter to 
allow the production of compat-
ible solutes, mainly sucrose and 
raffinose, in response to cold 
temperatures. UDP-Glc uridine 
diphosphate-glucose, UDP-Gal 
uridine diphosphate-galactose, 
Gols Galactinol synthase, RFS 
raffinose synthase, STS stachy-
ose synthase
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that synthesizes sucrose-6-phosphate from UDP-glucose and 
fructose-6-phosphate (Ito et al. 2011), has been reported in 
several plant species in response to cold treatments (Guy 
et al. 1992; Holaday et al. 1992; Hurry et al. 1995).

Thus, considering that the amyloplast maintains its integ-
rity during starch degradation in the winter and spring (Sau-
ter and van Cleve 1990; Sauter and van Cleve 1991), it is 
very likely that this process is different from the one that 
occurs in cereal seeds but similar to the one described in 
leaves at night. Therefore, during periods of starch mobi-
lization, the sugars released by amylolytic enzymes inside 
the amyloplast must be translocated into the cytosol by the 
action of specific plastidic membrane proteins. It is tempt-
ing to speculate that the proteins involved in sugar export 
from the chloroplast, such as MEX and pGT, could also 
play a role in transporting maltose and glucose from the 
amyloplast. In fact, it has been reported that a MEX from 
apple is expressed not only in autotrophic tissues but also in 
immature leaves, roots and fruits (Reidel et al. 2008), and 
in grapevine, VvMEX is expressed in several heterotrophic 
tissues such as berries, flowers and canes (Noronha et al. 
unpublished). Also, a pGT from rice is highly expressed in 
the seeds during development (Toyota et al. 2006) and in 
olive tree it was found that a pGT is expressed and local-
ized in tissues that do not accumulate starch (Butowt et al. 
2003), suggesting broader physiological roles for these pro-
teins than previously thought. Still, numerous physiological 
aspects of starch storage in woody plants and of its metaboli-
zation in spring and during winter are far from being under-
stood (Geisler-Lee et al. 2006).

Also, the root system of woody plants is an important site 
of starch accumulation and its interplay with stem reserves 
is not yet fully understood, particularly under stress condi-
tions that limit photosynthesis, where these reserves could 
be used to provide energy and carbon to the plant (Loescher 
et al. 1990; Zapata et al. 2004; Dovis et al. 2014; Thalmann 
and Santelia 2017). In grapevine potted plants, it was shown 
that the remobilization of root starch supplies sugars to the 
fruits in response to drought stress (Rossouw et al. 2017).

Agronomical practices affect starch 
metabolism in woody plants

As shown above, in woody plants, each growing season 
merges with the previous and following ones through the 
carbohydrate reserves accumulated in woody tissues, mak-
ing this topic of the outmost agronomical and scientific 
importance. In grapevine, delaying pruning after bud burst 
could deplete reserve carbohydrates and the reiteration of 
this practice may cause carry-over effects on vine vigor 
and yield (Moran et al. 2017; Petrie et al. 2017). Simi-
larly, trunk girdling, a practice that limits phloem transport 

of photoassimilates to the roots while maintaining xylem 
water flow, affects the replenishment and mobilization of 
carbohydrate reserves (Roper and Williams 1989; Mei et al. 
2015). Also, defoliation reduces the accumulation of carbo-
hydrate reserves in woody organs, with early ones having 
the largest impact (Bennett et al. 2005; Smith and Holzap-
fel 2009; Zufferey et al. 2012). For example, in grapevine, 
source–sink ratio that may be decreased by partial defolia-
tion or increased by cluster thinning, are normally associated 
with several modifications of vineyard efficiency and grape 
and wine quality. With the aim to decipher the underlying 
mechanisms, we have recently evaluated how the common 
agricultural practice of leaf removal may modulate at the 
molecular level the storage of starch in grapevine woody 
canes. Our results (Silva et al. 2017) showed that severe leaf 
removal promotes a consistent decrease in starch, sucrose 
and phenolics that accumulate in 1-year-old canes. At the 
molecular level, alterations of source–sink ratios resulted 
in a transcriptional adjustment of genes involved in starch 
metabolism, including and upregulation of VvGPT1 and 
VvNTT (plastidic ATP/ADP translocator) for higher cluster/
leaf ratios (Silva et al. 2017). Recently, it was shown that 
under reduced water supply during berry ripening, starch 
remobilization from roots is concurrent with rapid berry 
sugar accumulation and intensified by defoliation (Rossouw 
et al. 2017). Manipulation of source–sink relationship by 
fruit thinning can contribute to maintain high levels of car-
bohydrate reserve in woody organs. In grapevine, fruit thin-
ning at the onset of ripening increases total non-structural 
carbohydrate concentration in the roots in subsequent sea-
sons (Smith and Holzapfel 2009). Furthermore, fertilization 
may have an impact in the accumulation of starch reserves, 
as mineral nitrogen (N) supply was shown to decrease non-
structural carbohydrates in apple trees (Cheng and Fuch-
igami 2002). It has been reported that starch accumulated 
higher in woody tissues of apple trees growing in water cul-
ture without N supply and amylase, sucrose-6P synthase and 
sucrose synthase activities of wood and bark tissues were 
suppressed by N deprivation (Yoshioka et al. 1989).

Conclusion

Food scarcity due to an increase in the global population is 
a problem that is a challenge for scientists and policy mak-
ers, thus, unraveling the mechanisms of starch synthesis in 
both auto- and heterotrophic tissues is of the utmost sci-
entific and societal importance. As shown in this review, 
several enzymes and plastidic proteins, such as MEX and 
pGT, modulate carbon allocation in plant tissues, but their 
role in starch mobilization in sink organs, such as woody 
tissues, deserves further investigation. Several experimental 
constrains, including the lack of model plants amenable for 
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transformation and the absence of mutants, limit the study of 
these processes in woody tissues. Nevertheless, the advances 
that have been made in the understanding of starch metabo-
lism in Arabidopsis and maize, together with the increasing 
availability of next-generation sequencing tools, will allow 
researchers to obtain a better picture of the molecular pro-
cesses that occur in woody tissues.
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