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Abstract
Main conclusion Present review addresses the advances made in the understanding of biogenesis of plant small RNAs 
and their role in plant development. We discuss the elaborate role of microRNAs (miRNAs) and trans-acting small 
interfering RNAs (ta-siRNAs) in various aspects of plant growth and development and highlight relevance of small 
RNA mobility.

Small non-coding RNAs regulate various aspects of plant development. Small RNAs (sRNAs) of 21–24 nucleotide length are 
derived from double-stranded RNAs through the combined activity of several biogenesis and processing components. These 
sRNAs function by negatively regulating the expression of target genes. miRNAs and ta-siRNAs constitute two important 
classes of endogenous small RNAs in plants, which play important roles in plant growth and developmental processes like 
embryogenesis, organ formation and patterning, shoot and root growth, and reproductive development. Biogenesis of miR-
NAs is a multistep process which includes transcription, processing and modification, and their loading onto RNA-induced 
silencing complex (RISC). RISC-loaded miRNAs carry out post-transcriptional silencing of their target(s). Recent studies 
identified orthologues of different biogenesis components of novel and conserved small RNAs from different model plants. 
Although many small RNAs have been identified from diverse plant species, only a handful of them have been functionally 
characterized. In this review, we discuss the advances made in understanding the biogenesis, functional conservation/diver-
gence in miRNA-mediated gene regulation, and the developmental role of small RNAs in different plant species.
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Introduction

Small RNAs (sRNAs) are non-coding RNA (ncRNA) frag-
ments, which regulate the post-transcriptional silencing of 
target genes either through transcript cleavage or by trans-
lational inhibition (Axtell 2013). Various classes of sRNAs 

have been reported which differ from each other on the basis 
of biogenesis pathways (Chen 2009). Based on the precursor 
sequence, sRNAs can be classified as: miRNAs, ta-siRNAs 
and heterochromatin-associated (hc-siRNAs) (Axtell 2013). 
miRNAs and ta-siRNAs are two important classes of plant 
sRNAs, which control plant growth and development by 
negatively regulating the expression of their target genes, 
mostly through transcriptional cleavage (Chen 2012). On 
the other hand, hc-siRNAs are involved in carrying out the 
epigenetic modifications of chromatin in the target loci, thus 
leading to transcriptional gene silencing (Axtell 2013).

miRNAs are well-studied subset of hairpin RNAs defined 
by the highly precise excision of one or more functional 
products, which are called as mature miRNAs. miRNAs 
were first discovered as regulators of developmental timing 
in Caenorhabditis elegans (Lim et al. 2003). miRNAs are 
conserved over long evolutionary distances suggesting the 
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role of an evolutionarily conserved mechanism of miRNA-
mediated gene regulation (Molnar et al. 2007). Another class 
of endogenous sRNA is ta-siRNAs, which cleaves the targets 
that are non-identical to them and are therefore referred as 
trans-acting siRNAs. ta-siRNAs are 21-nucleotide phased 
sRNAs that are processed from TAS genes (Chen 2009).

With the advent of next-generation sequencing technol-
ogy, a large number of conserved and novel miRNAs, and 
siRNAs have been identified in various plant species during 
the last decade (Sunkar et al. 2012; Sun 2012; Jover-Gil et al. 
2005). However, only a limited number of developmental 
roles pertaining to these sRNAs have been characterized. 
There are reports on functional divergence of conserved 
miRNAs, which could be a result of critical sequence varia-
tion in the mature miRNA and/or its complementary target 
sequence occurring during the coevolution of miRNAs and 
their targets (Barik et al. 2014, 2015).

Biogenesis of sRNAs (miRNA and ta-siRNA) is a multi-
step process involving various components specific for each 
type. Biogenesis of miRNA differs from that of ta-siRNA 
due to the formation of the stem loop precursor. In con-
trast, ta-siRNA biogenesis itself involves miRNA-mediated 
cleavage of TAS locus (Allen et al. 2005). A wide number 

of studies have been carried out in Arabidopsis thaliana to 
address the role of sRNAs and various other biogenesis com-
ponents in plant growth and development. However, with 
the advent of new technologies and availability of genome 
sequences, orthologues of sRNA biogenesis pathway com-
ponents have also been identified in rice, maize, soybean, 
poplar, etc. (Nagasaki et al. 2007; Chitwood et al. 2009; 
Husbands et al. 2009). In this review, we summarize the bio-
genesis and developmental roles of sRNAs, mainly miRNA 
and ta-siRNA in plants, and the recent advancements made 
in this area.

miRNA biogenesis

The biogenesis of miRNA is a multistep process involving its 
transcription, processing and modification and loading onto 
RISC (Fig. 1a). Similar to protein-coding genes, MIRNA 
genes are also transcribed by RNA polymerase II, which 
generates primary transcripts of miRNAs (pri-miRNAs) 
containing both 5′ cap and 3′ poly A tail (Xie et al. 2005). 
The presence of TATA box in the promoter of miRNA genes 
suggests that transcriptional regulation of miRNAs is similar 
to that of protein-coding genes (Zhao et al. 2013; Barik et al. 
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Fig. 1  Biogenesis of sRNAs.  a Biogenesis of miRNA. RNA Pol 
II transcribes a MIRNA gene into a capped and polyadenylated pri-
miRNA. pri-miRNA is further processed into a stem–loop  (hairpin) 
precursor known as pre-miRNA by DCL1 protein in Arabidopsis. The 
pre-miRNA is later processed into a duplex of miRNA–miRNA* by 
DCL1. During miRNA biogenesis, DCL1 works along with HYL1, 
which is a double-stranded RNA binding protein. Another protein, 
HEN1 methylate the 2′ OH of the 3′ terminal nucleotides of miRNA–
miRNA* duplex. One strand of the miRNA–miRNA* duplex is 
loaded into an AGO1 having miRISC. b Biogenesis of ta-siRNA. ta-
siRNA biogenesis starts from TAS1, TAS2, TAS3 and TAS4 loci. At 
the TAS1, TAS2, TAS4 loci, long noncoding transcripts are cleaved 

by miR173 or miR828 loaded AGO1. The 3′ cleaved products are 
bounded by SGS3/LBL1, which stabilizes ssRNA and prevents its 
degradation. ssRNA is copied into the dsRNA by RDR6/SHL2. The 
dsRNA is further processed into ~ 22 nt long siRNAs by the activity 
of DCL4/SHO1. At TAS3 locus, miR390 along with AGO7/SHO2/
RGD2 recognizes noncoding transcripts at 5′ and 3′ site. miR390/
AGO7 complex cleaves the transcripts only at 3′ end. The 5′ cleaved 
products are channeled into ta-siRNA production by the activity of 
SGS3, RDR6, and DCL4, which targets ARF2, ARF3, and ARF4 
transcripts in Arabidopsis (Chen 2009, 2012; Nagasaki et  al. 2007; 
Nogueira and Timmermans 2007)
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2014). miRNA biogenesis involves processing of primary 
miRNA (pri-miRNA) to precursor miRNA (pre-miRNA) by 
DICER-LIKE1 (DCL1) protein. DCL1 along with HYPO-
NASTY LEAVES1 (HYL1) and SERRATE (SE) further 
processes pre-miRNA to produce 21 nt miRNA/miRNA* 
duplex (Vazquez et al. 2004). In vitro assays showed that 
HYL1 and DCL1 are required for accurate excision of 
pri-miRNA during miRNA biogenesis (Dong et al. 2008). 
Mutation in any of these three genes results in drastic reduc-
tion in the level of mature miRNAs also due to an impaired 
processing the amount of pri-miRNA is increased (Yang 
et al. 2006; Han et al. 2004; Vazquez et al. 2004). Next 
step in miRNA/miRNA* processing is the methylation of 
a duplex on 2´OH of the 3´ terminal nucleotides by HUA 
ENHANCER1 (HEN1), a miRNA methyltransferase which 
acts in a sequence–independent and structure-dependent 
manner (Yu et al. 2005). The final step in miRNA bio-
genesis is the loading of one miRNA (21–24 nt) strand 
from the duplex on ARGONAUTE 1 (AGO1), forming 
miRNA–RISC. Since AGO1 has endonucleolytic activity, 
it cleaves mRNA–miRNA duplex nearly in the middle of the 
strand (Baumberger and Baulcombe 2005; Qi et al. 2005).

ta‑siRNA biogenesis

In Arabidopsis, four TAS gene families namely TAS1, TAS2, 
TAS3, and TAS4 have been identified which are present 
at eight genetic loci (Allen et al. 2005; Rajagopalan et al. 
2006). ta-siRNA biogenesis is initiated by the cleavage 
of the TAS transcripts by miRNAs and further processing 
involves the action of various proteins specific to ta-siRNA 
biogenesis (Fig. 1b). Based on the number of miRNA bind-
ing target sites, TAS families are divided into two categories: 
one hit and two hit. The “one hit” targets which include 
TAS1, TAS2 and TAS4 have only one miRNA binding site in 
the primary-TAS transcript, whereas “two hit” target TAS3 
has two miRNA binding sites (Yoshikawa 2013). ta-siRNA 
is derived from 3´ and 5´ fragment after miRNA cleavage in 
“one hit” and “two hit” category, respectively. The polarity 
of fragments derived after miRNA cleavage, which gener-
ates ta-siRNA, also differs among these categories. TAS1 
and TAS2 derived ta-siRNAs are generated by the activity 
of 22-nt miR173-AGO1 complex and they target members 
of penta-tricopeptide repeats (Montgomery et al. 2008b; 
Felippes and Weigel 2009), whereas in case of TAS3, the 
21-nt miR390 uniquely associates with AGO7 leading to 
the processing of precursor TAS3 and finally the formation 
of functional ta-siRNA. These ta-siRNAs target members 
of the AUXIN RESPONSE FACTORs (ARF) gene family 
(ARF2, ARF3, and ARF4), and therefore are known as tasiR-
ARFs (Fahlgren et al. 2006; Garcia et al. 2006; Marin et al. 
2010). The biogenesis of TAS4-derived ta-siRNAs requires 
22-nt miR828. TAS4 targets MYB transcription factors 

PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1), 
PAP2 and MYB113 which regulate anthocyanin biosynthesis 
(Luo et al. 2012). ta-siRNA biogenesis requires SUPPRES-
SOR OF GENE SILENCING3 (SGS3), RNA-DEPENDENT 
RNA POLYMERASE6 (RDR6), AGO1, DICER LIKE4 
(DCL4), HYL1, and HEN1 (Allen et al. 2005; Peragine 
et al. 2004; Rajagopalan et al. 2006; Vazquez et al. 2004; 
Yoshikawa et al. 2005). SGS3 stabilizes the single-stranded 
cleaved RNA transcript, and RDR6 converts it to double-
stranded RNA. This double-stranded RNA is converted into 
21-nt ta-siRNA by DCL4 (Gasciolli et al. 2005; Xie et al. 
2005; Yoshikawa et al. 2005). One of the two strands of 
the phased ta-siRNA is loaded on AGO1 effector complex 
(Baumberger and Baulcombe 2005). The role of different 
sRNA biogenesis components across the various plant spe-
cies is summarized in Table 1.

Role of sRNAs in plant development

Initial genetic screening and loss of function or mis-expres-
sion analysis of various sRNA genes and their biogenesis 
components shed light into the developmental roles of 
several miRNAs and ta-siRNAs. A wide range of devel-
opmental processes are regulated by sRNAs starting from 
lower plants like moss to the higher plants like Arabidopsis, 
Oryza sativa and Zea mays (Nagasaki et al. 2007; Cho et al. 
2012; Marin et al. 2010; Yoon et al. 2010; Talmor-Neiman 
et al. 2006; Juarez et al. 2004b). The roles of miRNA and 
ta-siRNA in various plant developmental processes are sum-
marized in Table 1.

sRNAs in seed development and germination

Seed is an evolutionary adaptation of land plants which 
facilitates dispersal and allows germination when the envi-
ronmental conditions turn favorable (Willmann et al. 2011; 
Das et al. 2015). Seeds contain miniature new plants as 
dormant embryos. Studies have shown that miRNA and ta-
siRNA pathways regulate seed germination in Arabidopsis 
(Sarkar Das et al. 2018). Mutation in sRNA biogenesis path-
way genes, such as DCL1 leads to severe embryogenesis and 
seed development defects (Willmann et al. 2011; Das et al. 
2015). Overexpression of miR160 is reported to cause hypo-
sensitivity to abscisic acid (ABA) during the seed germina-
tion process (Liu et al. 2007). miR160 is known to target 
ARF10/16/17 and mutation in ARF10 leads to defect in seed 
development (Liu et al. 2007). Both miR156 and miR172 
are the master regulators of phase transition and seed ger-
mination in plants (Li and Zhang 2015). It was reported that 
several miRNAs, such as miR165/166, miR160, miR159, 
miR395, miR417 and miR402 play important roles in seed 
development, maturation and seed germination processes 
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(Das et  al. 2015). Overexpression of miR402 enhances 
seed germination in Arabidopsis under salt, osmotic and 
cold stress conditions (Kim et al. 2010a). Under abiotic 
stress conditions, miR395 acts as both positive as well as 
negative regulator of seed germination. miR417 is found 
to negatively regulate seed germination under salt stress 
condition in Arabidopsis (Jung and Kang 2007; Kim et al. 
2010b). The short tandem target mimicry of miR165/166 
(STTM165/166) plants is hypersensitive to ABA during 
seed germination and early seedling development (Yan et al. 
2016). Auxin homeostasis is vital for embryo development 
and is mediated by the action of miR165/166, miR167, 
miR164, miR158 and miR160 (Martin et al. 2010). The role 
of different miRNAs in seed development is shown in Fig. 2.

sRNAs in root development

Several sRNAs are known to regulate root growth and pat-
terning by targeting different transcription factors or genes 
involved in root development (Fig. 3a) (Gautam et al. 2017). 
For example, miR160 is essential for root growth, branching 
by negative regulation of its target genes ARF10, ARF16 and 
ARF17 (Wang et al. 2005; Mallory et al. 2005). miR164 reg-
ulates lateral root (LR) emergence and branching through the 
regulation of NAM/ATAF/CUC1 (NAC1) transcription factor 
(Guo et al. 2005). ARF6 and ARF8 are positive regulators 
of adventitious root growth and both are under tight regu-
lation by miR167 (Gutierrez et al. 2009). miR393 cleaves 
TRANSPORT INHIBITOR RESPONSE1 (TIR1) and AUXIN 
SIGNALING F-BOX2 (AFB2) subsequently regulating 

LR growth (Chen et al. 2012). miR165/166 and its target 
genes are involved in vasculature differentiation and root 
growth (Carlsbecker et al. 2010). A recent study shows that 
miR165/166 regulates root growth through phytohormonal 
crosstalk (Singh et al. 2017). Like morphogens in animals, 
some mobile sRNAs also form a gradient and define cell 
fate boundaries in plants (Benkovics and Timmermans 
2014). In Arabidopsis root, SHORT-ROOT (SHR) protein 
moves from stele to endodermis and activates SCARECROW 
(SCR) expression. In situ hybridization and miRNA sensor 
experiments have shown that SCR and SHR transcription-
ally activate the expression of MIR165a and MIR166b in the 
endodermis. Mature miR165/166 moves radially from endo-
dermis in both inward and outward direction and degrades 
Class III HOMEODOMAIN-LEUCINE ZIPPER (HD–ZIP 
III) transcripts resulting in differential accumulation of target 
mRNA in the root vasculature (Fig. 3b) (Carlsbecker et al. 
2010).

In Arabidopsis, miR396 has been found to regulate stem 
cell niche (SCN) by targeting GROWTH RESPONSE FAC-
TORS (GRFs) and thus regulate cell division (Bazin et al. 
2013; Rodriguez et al. 2015). Recently, it has been reported 
that miR171 cleaves HAIRY MERISTEM (HAM) (Llave et al. 
2002; Engstrom et al. 2011). Ectopic expression of miR171 
affects  primary root  (PR) length, a mutation in HAMs 
causes defective quiescent centre (QC) and stunted root 
growth (Wang et al. 2010; Zhou et al. 2015). In Arabidopsis, 
miR847 is important for LR development by regulating the 
expression of INDOLE ACETIC ACID 28 (IAA28). Down-
regulation of IAA28 leads to increase LR number (Wang and 

Table 1  Role of the small RNA biogenesis component in various species across the plant kingdom

ta-siRNA 
components

Mutant Plant species Role in plant development References

SGS3 lbl1 Zea mays Maize leaf polarity establishment Dotto et al. (2014)
Ppsgs3 Physcomitrella patens Gametophyte development Plavskin et al. (2016)
sgs3 Arabidopsis thaliana Vegetative phase change Peragine et al. (2004)

RDR6 Zmrdr6 Zea mays Maize leaf and shoot development Petsch et al. (2015)
shl2 Oryza sativa SAM maintenance in rice Nagasaki et al. (2007)
rdr6 Arabidopsis thaliana Gynoecium development, leaf development Peragine et al. (2004)

AGO7 ago7 Arabidopsis thaliana Defense response to virus, vegetative phase change Montgomery et al. (2008a)
rgd2 Zea mays Dorsiventral patterning of maize leaves Douglas et al. (2010)
sho2 Oryza sativa SAM maintenance in rice Nagasaki et al. (2007)

DCL4 dcl4 Arabidopsis thaliana Vegetative phase change Gasciolli et al. (2005)
sho1 Oryza sativa SAM formation during embryogenesis in rice Nagasaki et al. (2007)
Zmdcl4 Zea mays Maize leaf and shoot development Petsch et al. (2015)
Ppdcl4 Physcomitrella patens Regulate sporophyte formation Plavskin et al. (2016)

HEN1 hen1 Arabidopsis thaliana Leaf proximal/distal pattern formation Chen et al. (2002)
waf1 Oryza sativa Shoot development in rice Abe et al. (2010)

AG01 ago1 Arabidopsis thaliana Leaf proximal/distal pattern formation Baumberger and Baulcombe (2005)
ago1a-d Oryza sativa Pleiotropic developmental phenotype Wu et al. (2009)
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Guo 2015). miR408 and miR528 target CUPREDOXIN and 
subsequently regulate root cap formation, LR development 
and root elongation (Liu et al. 2012).

Components of the ta-siRNA pathway are also known 
to play an important role in Arabidopsis root develop-
ment (Fig. 3a). Studies show that tasiR-ARF regulates LR 
growth and development by negatively regulating ARF3 and 
ARF4 (Marin et al. 2010; Yoon et al. 2010). Overexpression 
of TAS3a results in increased LR length, whereas mutation 
in TAS3a leads to reduced LR length (Marin et al. 2010). It 
was found that targets of the tasiR-ARF, ARF3 and ARF4 
regulate the expression of auxin-induced miR390 by feed-
back mechanism (Yoon et al. 2010). Thus, LR growth is reg-
ulated by the quantitative action of miR390, ta-siRNA, auxin 
and ARFs (Marin et al. 2010). LR density has also been 
reported to be reduced in rdr6-11 and arf4-2 mutants (Yoon 
et al. 2010). Additionally, a negative feedback loop between 
tasiR-ARF and ARF4, mediates the spatiotemporal expres-
sion of ARF4 (Yoon et al. 2010). miR390 senses the auxin 
maxima and TAS3 derived ta-siRNA inhibits expression 
of ARF4, mediating the LR growth in Arabidopsis (Yoon 
et al. 2010; Marin et al. 2010). The miR390 expression is 
restricted to the lower parts and edges of the LR primordium 
except at the center during LR development (Marin et al. 
2010). miR390 activity is detected in the whole primordium 

indicating that miR390 acts in a non-cell autonomous man-
ner and moves to few neighboring cells in the root (Marin 
et al. 2010). A few miRNAs are hypothesized to regulate 
root development in monocot plants (Fig. 3a).

sRNAs in shoot apical meristem (SAM) maintenance

SAM is responsible for giving rise to the aerial organs of the 
plant. SAM contains pluripotent stem cells, which are main-
tained in the undifferentiated state by a negative feedback 
loop activity between WUSCHEL (WUS) and CLAVATA3 
(CLV3) (Aichinger et al. 2012). SAM maintenance is con-
trolled by the activity of several genes and sRNAs (Fig. 4). 
The effectiveness of WUS-dependent stem cell signaling can 
be increased by ZWILLE/ARGONAUTE10 (AGO10), which 
competes with AGO1 to bind miR165/166 and maintains the 
transcript level of HD–ZIP III genes (Aichinger et al. 2012; 
Zhu et al. 2011) (Fig. 4a).

miR394 regulates SAM maintenance in Arabidopsis 
by targeting and downregulating the expression of LEAF 
CURLING RESPONSIVENESS (LCR) gene which affects 
WUS–CLV3 pathway (Fig. 4a). pMIR394B:YFP indicates 
its expression in the epidermal L1 layer of the SAM; how-
ever, miR394 restricts the target LCR expression in the L3 
layer (Knauer et al. 2013). As evident by in situ localization, 
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Peripheral endosperm
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Seed coat
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Chalazal endosperm
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Fig. 2  miRNA-mediated regulation of embryogenesis and seed devel-
opment, and seed germination. Several miRNAs have been impli-
cated in the embryonic/seed development in plants. Some  miRNAs 
regulate the embryonic development from pre-globular to mature 
embryonic stages by regulating the various stages of the development 
in Arabidopsis. In addition to the embryonic development, miRNAs 

also regulate the event of seed growth and germination by regulating 
the expression of various key target genes, which leads to the forma-
tion of the mature seedling. Arrows indicate the regulation. miRNAs 
involved in embryogenesis  and seed development are mentioned in 
purple color, miRNAs involved in seed germination  are mentioned in 
green color and common miRNAs are mentioned in red color



550 Planta (2018) 248:545–558

1 3

Fig. 3  Role of sRNAs in root development. a sRNA-mediated regula-
tion of root development in dicots and monocots. Different root types 
were shown in dicots (approximately 7-day-old) as, adventitious root 
(AR), LR, and PR and in monocots  (approximately 14-day-old) as 
crown root (CR), seminal root (SR), PR and LR. The model shows 
the role of important miRNAs in different root types in monocot and 
dicot. Dashed lines indicate the potential effect of sRNAs on monocot 
root development. b sRNA movement during xylem cell patterning. 
Diagrammatic representation of the miR165/166 movement which is 
a prerequisite for differentiation of xylem cell. The figure represents 
a transverse section of young Arabidopsis root. Cell layers shown in 

the figure are an outer blue color for endodermis, inner light green 
for pericycle, yellow are procambial cells, dark green cells are sieve 
elements, brown cells are companion cells, purple cells are metax-
ylem and orange is for protoxylem. A mechanistic model for root vas-
cular cell patterning suggested in the figure shows that SHR moves 
from pericycle to endodermis and forms dimer with SCR. SCR-SHR 
dimer in endodermis stimulates miR165/166 and later moves towards 
the stele region and targets HD–ZIP IIIs. The differential gradient of 
miR165/166 and HD–ZIP IIIs inside the stele region regulates xylem 
cell differentiation
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mature miR394 moves from L1 to L3 layer, where it restricts 
the expression domain of the target LCR and maintains 
shoot SCN (Knauer et al. 2013). ta-siRNA plays an impor-
tant role in meristem organization in monocots. It has been 
shown that mutation in maize LEAFBLADELESS1 (LBL1), 
a homolog of SGS3 in Arabidopsis, leads to defective mer-
istem (Nogueira et  al. 2009). Further, mutation in rice 
RDR6/SHOOTLESS2 (SHL2), AGO7/SHOOT ORGANI-
ZATION2 (SHO2) and DCL4/SHO1 leads to lack of SAM 
(Nagasaki et al. 2007). In rice, defects in SAM formation 
observed in shl mutants were due to the loss of expression 
of HD–ZIP IIIs gene family members (Nagasaki et al. 2007).

sRNAs in leaf development

Leaf develops from a small group of undifferentiated cells 
and forms defined organ having medio-lateral, proximal–dis-
tal and abaxial–adaxial symmetry. Abaxial–adaxial surfaces 
of leaf are opposite faces of leaf, which are meant for differ-
ent functions, e.g., adaxial surface is mainly involved in pho-
tosynthesis and abaxial is in gaseous exchange (Pulido and 
Laufs 2010). In Arabidopsis, abaxial–adaxial polarity of leaf 

is also maintained by the coordinated action of sRNAs such 
as miR165/166, through negative regulation of HD–ZIP 
IIIs. The expression of HD–ZIP IIIs in adaxial surface is 
maintained through negative regulation of miR165/166 
which is expressed at abaxial surface of leaf (Pulido and 
Laufs 2010).

miR394-mediated downregulation of LCR is impor-
tant for regulating leaf morphology and establishing 
the leaf polarity (Knauer et al. 2013). Like miRNAs, ta-
siRNAs such as tasiR-ARF is also hypothesized to move 
from adaxial L1 layer inwards and regulate dorsiventral 
leaf polarity in maize and Arabidopsis by restricting the 
expression of target ARF2/3/4 in the abaxial domain (Chit-
wood and Timmermans 2010). Interestingly, it is assumed 
that the expression of tasiR-ARF in the adaxial domain and 
miR165/166 in the abaxial domain form inwards gradients, 
which help to establish leaf polarity through downregula-
tion of their respective targets (Chitwood and Timmer-
mans 2010) (Fig. 4b). The formation of final leaf shape 
and size requires the activity of TEOSINTE BRANCHED/
CYCLOIDEA/PROLIFERATING CELL FACTORS 
(TCPs), which are targeted by miR319. TCP expression 
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Fig. 4  sRNA-mediated regulation of SAM development in plants. 
a Mobile sRNAs regulates embryonic SAM development. SAM is 
divided into central zone (CZ) and peripheral zone (PZ), which rep-
resents central zone and peripheral zone, respectively.  CZ of SAM 
is further divided into three layers L1–L3. miR394 expresses in the 
L1 layer of SAM and targets LCR gene in the L3 layer. Movement 
of miR394 in the L3 layer is important for proper SAM development 
and specification. LCR in L3 layer further regulates WUS and main-
tains SCN. Regulation of WUS and CLV3 is also essential for proper 
specification of SAM. Upregulation of HD–ZIP IIIs due to AGO10 
mediated decoying of miR165/166 leads to proper maintenance of 
SAM (Zhu et al. 2011; Knauer et al. 2013; Aichinger et al. 2012). b 
Mobile miR390 and miR166 regulates post-embryonic SAM develop-

ment. The balanced activity of miR166 and target HD–ZIP IIIs, as 
well as tasiR-ARF and target ARFs is crucial for SAM maintenance 
in plants. Model here shows the accumulation of miR166 and ARF3 
in the abaxial domain of the leaf primordia (highlighted by red color 
and dark blue dot, respectively), the adaxial domain is marked by 
the expression of target HD–ZIP IIIs and tasiR-ARF (highlighted by 
green color and orange dot, respectively). There exists a gradient of 
HD–ZIP IIIs in developing SAM (highlighted by the diffused accu-
mulation of HD–ZIP III in green color). miR390 and TAS3a accu-
mulates in the adaxial and SAM region (highlighted by magenta and 
light green dots, respectively). P1 indicates the first primordia and P0 
indicates the incipient leaf primordia. ‘Ad’ indicate the adaxial sur-
face, ‘Ab’ indicate the abaxial surface
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is reduced upon miR319 overexpression resulting in 
increased leaf serration and altered leaf shape (Palatnik 
et al. 2003). It has been shown that miR396 regulates leaf 
shape by targeting GROWTH-REGULATING FACTORS 
(GRFs) (Rodriguez et al. 2010). miR396 expression is 
activated by TCPs suggesting that miR319 and miR396 
regulate leaf shape development in a coordinated manner 
(Schommer et al. 2014). Another miRNA, miR164 regu-
lates leaf serration by negatively targeting CUP-SHAPED 
COTYLEDON2 (CUC2) (Nikovics et al. 2006).

In maize, the roles of components of ta-siRNA pathway 
are implicated in establishing leaf polarity (Fig. 5). TAS3-
derived ta-siRNAs require LBL1/SGS3 for the biogenesis 
of ta-siRNA from the TAS3 loci on the adaxial side of 
the incipient primordia, which guides the cleavage of the 
ZmARF3 transcripts (Nogueira et al. 2007; Chitwood et al. 
2009; Husbands et al. 2009; Nogueira et al. 2009). lbl1 
displays abaxialized leaf fate due to the complete loss of 
the adaxial cell identity (Kidner and Timmermans 2007, 
2010; Chitwood et al. 2007, 2009; Nogueira et al. 2007; 
Timmermans et al. 1998). miR166 expressed at the abax-
ial side of the incipient primordia restricts the expression 
domain of HD–ZIP III genes on the adaxial surface (Hus-
bands et al. 2009). The opposite activities of TAS3-derived 
ta-siRNAs and miR166 specify the polarity in developing 
maize leaves (Chitwood et al. 2007). ROLLED1 (RLD1), 
one of the members of HD–ZIP III gene family in maize, 
is expressed on the adaxial side of the leaf. The expres-
sion of RLD1 in adaxial domain is confined by the abax-
ial specific activity of miR166 (Juarez et al. 2004a). A 
semi-dominant Rld1-Original (Rld1-O) mutant results in 

increased accumulation of HD–ZIP III transcripts, leading 
to adaxialized leaf fate (Juarez et al. 2004a, b).

In Lotus japonicus, the role of ta-siRNA has been estab-
lished in regulating leaf development. L. japonicus has a 
compound arrangement of the leaves, which is different 
from that of Arabidopsis, rice, and maize. In L. japonicus, 
compound leaves are arranged as five leaflets from top to 
bottom. Leaflets are divided into three categories such as top 
leaflet (TL), lateral leaflet (LL) and basal leaflet (BL). Two 
ta-siRNA biogenesis pathway genes have been characterized 
in lotus, REDUCED LEAFLET1 (REL1) and REDUCED 
LEAFLET3 (REL3) which are the orthologues of Arabidop-
sis SGS3 and AGO7, respectively (Yan et al. 2010). rel1 and 
rel3 mutants show altered leaf polarity and reduced number 
of leaflet. BL is absent in both rel1 and rel3 mutants and 
the leaflets are elongated and pin-shaped (Yan et al. 2010). 
These mutants depicted the critical role of ta-siRNA path-
way in leaflet development and formation.

In Medicago truncatula, the mutation in ta-siRNA 
biogenesis components, SGS3 and RDR6, leads to severe 
developmental and physiological defects (Bustos-Sanmamed 
et al. 2014). M. truncatula sgs3a and rdr6.2 mutants show 
downwardly curled leaves with increased serration, and even 
lobed margin (Bustos-Sanmamed et al. 2014). The TAS3 
derived ta-siRNA plays a significant role in maintenance 
of fruit quality and yield in Vitis vinifera. The ta-siRNAs 
derived from vviTAS3 generally targets ARF4/5 transcrip-
tion factor, DIN1a protein, L10 (ribosomal protein), ribo-
somal protein S1, ferric reductase, RAD24 (a DNA damage 
checkpoint protein) and many other uncharacterized proteins 
whose functions have not been clearly identified (Zhang 
et al. 2012).

Maize leaf Arabidopsis leaf

LBL1/SGS3

TAS3a

tasiR-ARF

ZmARF3

miR166

HD-ZIP IIIs

MIR166c
Transcriptional regulation

miR390
RDR6

Adaxial

Abaxial
KAN

Auxin 
biosynthesis, 
transport & 
signaling

Fig. 5  Model illustrating the leaf polarity through ta-siRNA and 
miR166 in maize and Arabidopsis. Cross section of maize leaf is 
divided into adaxial and abaxial surfaces. On the adaxial surface, 
LBL1/SGS3 is required for biogenesis of tasiR-ARFs. tasiR-ARFs 
cleaves ZmARF3 transcripts which are accumulated on the abaxial 
(ab) side. ZmARF3 directly regulates the expression of miR166c, 

which accumulates on the abaxial surface. miR166 targets members 
of the HD–ZIP IIIs and restricts their expression on the adaxial sur-
face of maize leaf. The opposing activities of miR166 and HD–ZIP 
IIIs regulate leaf polarity in maize and Arabidopsis (Nogueira and 
Timmermans 2007; Nogueira et al. 2007)
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sRNAs in flower development and phase transition

Life cycle of a plant involves two phase transitions; juve-
nile to adult phase transition and adult to reproductive 
phase transition. The gradient of two miRNAs, miR156 and 
miR172, is responsible for these phase transitions (Fig. 6a). 
Ectopic expression of miR156 causes altered vegetative 
phase transition and delayed flowering (Yu et al. 2010; Xing 
et al. 2013). Flower development is regulated by a network 
of genes and sRNAs. In both dicots and monocots, miR156, 
miR159, miR171, miR172 and miR396 are known to regu-
late floral identity and timing (Fig. 6b) (Smoczynska and 
Szweykowska-Kulinska 2016). miR156/157 negatively regu-
lates SQUAMOSA-PROMOTER BINDING PROTEIN LIKE 
(SPLs) which subsequently regulate floral timing (Gandikota 
et al. 2007). Arabidopsis genome encodes 17 SPL genes of 
which 11 are post-transcriptionally targeted by miR156 
(Rhoades et al. 2002). SPL3, SPL4 and SPL5 regulate veg-
etative phase to reproductive phase transition (Schwab et al. 
2005; Wang et al. 2008; Wu and Poethig 2006). miR159 con-
trols flowering time by regulating floral meristem identity 

gene LEAFY (LFY) by negative regulation of gibberellic acid 
(GA)-specific transcriptional regulator GAMYB-related 
proteins (MYB33, MYB65, and MYB101) (Blazquez et al. 
1998). These proteins mediate the GA-induced regulation of 
LFY. Overexpression of miR159 causes reduced expression 
of LFY and delays flowering time (Achard et al. 2004). In 
Arabidopsis, miR171a is expressed in the inflorescence and 
regulates SCARECROW LIKE (SCL) SCL6-III and SCL6-
IV (Nikovics et al. 2006). In maize, miR172 negatively 
regulates AP2-like gene GLOSSY15 (GL15) in turn regulat-
ing juvenile to adult shoot transition (Lauter et al. 2005). 
miR172 stimulates flowering and is involved in the fate 
determination of floral meristem by downregulation of its 
target AP2 and a small group of AP2-like genes; including 
TARGET OF EAT1 (TOE1), TOE2, TOE3, SCHLAFMUTZE 
(SMZ), and SCHNARCHZAPFEN (SNZ) (Chen 2004; Auk-
erman and Sakai 2003).

Floral development is also regulated by miR167, which 
targets ARF6 and ARF8 (Nagpal et al. 2005). A resistant 
version of ARF6 and ARF8 causes sterility suggesting the 
important role of miR167 in floral development (Wu et al. 

a

Juvenile                   Adult Reproductive

271Rim651Rim

Anther

Filament

Stigma

Style

Ovary

Monocot FlowerDicot Flower

miR156, miR159, miR171, miR172 and miR396 
regulate  floral 

identity in dicots and monocots
b

Fig. 6  miRNA-mediated regulation of phase transition and floral 
development in plants. a miR156 and miR172 are important for juve-
nile to adult phase transition by regulating the activity of their tar-
get genes. The cumulative action of the selected miRNAs and target 

genes regulate the floral development tin both dicot and monocot 
plants. Arrows indicate the regulation. b Regulation of floral develop-
ment and identity: miR156, miR159, miR171, miR172 and miR396 
regulate floral development in both monocot and dicot plants
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2006). Many sRNA biogenesis pathway genes are known to 
be involved in pollen development and a number of miRNAs 
have been localized to viable pollen cells (Grant-Downton 
et al. 2013). miRNAs regulated male reproduction have been 
found to be overlapping among Arabidopsis and rice sug-
gesting their conserved function during pollen development. 
miR156, miR160, miR167 and miR173 are found to be pre-
sent in pollen tissue (He et al. 2015).

Conclusions and perspectives

Several characterized sRNAs play important roles in modu-
lating the development of seed, root shoot, leaf, and floral 
organs in both monocot and dicot plants. Mutations in the 
sRNA biogenesis components lead to the pleiotropic devel-
opmental defects in plants, which underlines the functional 
importance of sRNAs (miRNAs and ta-siRNA) in shap-
ing the various aspects of plant development. Components 
of sRNA biogenesis pathway and their function appear to 
be quite conserved among diverse groups of plants. Many 
sRNAs, such as miR165/166, miR167, miR156, etc. have 
been implicated in development of both shoot and root. 
Some miRNAs/ta-siRNAs are also having partially con-
served role in shoot and leaf patterning between monocot 
and dicot plants. Although next-generation sequencing 
(NGS) approach has identified huge number of sRNAs, 
only a handful of them have been characterized for their 
function, even in popular model plants, like Arabidopsis 
and rice. Advanced technology, like laser capture micro-
dissection (LCM) may be applied to identify miRNAs and 
targets that are enriched in specific developmental tissue 
of plants (Gautam et al. 2016; Gautam and Sarkar 2015). 
Often the multigenic origin of a sRNA species and multiple 
targets makes the functional study of sRNA a difficult one. 
More exhaustive effort is required to understand the func-
tion of many novel sRNAs. As discussed above, some level 
of functional diversification of miRNA or their targets is 
predicted to be there, due to their co-evolution. Functional 
characterization of these sRNAs and their targets will shed 
light on the evolutionary conservation/divergence of sRNA-
mediated regulation of plant development among diverse 
plant species. Developmental regulation by crosstalk of 
sRNAs with hormonal signaling, epigenetic regulation is 
poorly understood and an interesting area to be explored. 
Besides, traditional loss/gain-of-functional approaches, 
genome editing of sRNA or target loci may help to foster 
their functional characterization for role in plant develop-
ment and physiological responses.
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