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Abstract

Main conclusion This genetic map for Agropyron
Gaertn. contained 1023 markers on seven linkage
groups, with a total of 907.8 cM and an average dis-
tance of 1.5 ¢cM between adjacent loci.

Many wheat-Agropyron cristatum derivative lines exhibit
superior agronomic traits, and part of them are valuable for
future wheat breeding. To date, no high-density genetic map
for Agropyron Gaertn. has been published. Specific-locus
amplified fragment sequencing (SLAF-seq), a recently
developed strategy for large scale de novo discovery and
genotyping of single nucleotide polymorphisms (SNPs), was
employed in this study to develop sufficient markers for a
segregating Agropyron F| population derived from an
interspecific cross between two cross-pollinated diploid
collections A. cristatum (L.) Beauv. ‘21842’ and A. mon-
golicum Keng ‘Z2098’. In total, we obtained raw data con-
sisting of 128,932,358 pair-end reads of ~ 80 bp long after
sequencing. Then 69,325 high-quality SLAFs were detected,
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of which 26,248 SLAFs were polymorphic and 1752 of the
polymorphic markers were used for the genetic map con-
struction. The final map contained 1023 markers on the seven
linkage groups (LGs), which spanned a total of 907.8 cM
with an average number of 146 markers and 89 loci per LG
and an average distance of 1.5 cM between adjacent loci. To
our knowledge, this map is the densest genetic linkage map
for Agropyron so far. Through BLAT alignment of
Agropyron SLAF marker sequences with the draft genome
assemblies of wheat and barley, the Agropyron LGs were
assigned as LGI1-7 according to their corresponding
homoeologous chromosomal groups of wheat. Results of this
study will not only provide a platform for gene/QTL fine
mapping, but also serve as a reference to assist the assem-
bling of the P genome sequence in future.

Keywords Agropyron - Genetic map - High density -
SLAF marker

Abbreviations

Agropyron  Agropyron Gaertn.

CP Cross-pollinated

LG Linkage group

SLAF-seq Specific-locus amplified fragment sequencing
SNP Single nucleotide polymorphism
Introduction

Agropyron Gaertn. is an important perennial genus of the
tribe Triticeae. Approximately 15 species exist in the genus
and most of them are distributed on the temperate-frigid
grassland and sand land of Eurasia (Dewey 1984). A.
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mongolicum, A. cristatum, A. cristatum ssp. imbricatum, A.
cristatum ssp. pectinatum, and A. fragile are five most
common members of the Agropyron genus (Chen et al.
2013). The Agropyron genus exists naturally at three ploidy
levels: diploid, 2n =2 x =14, PP; tetraploid,
2n = 4 x = 28, PPPP; and hexaploid, 2n = 6 x = 42,
PPPPPP. Agropyron is not only a kind of pasture grass, but
also an excellent wild germplasm for wheat breeding as a
genus of wild relatives of wheat (Ford-Lloyd et al. 2011).
Importing exogenous superior genes into wheat through
wide cross is an effective approach to improve the wheat
genetic diversity. Agropyron (P genome) exhibits many
superior traits beneficial to disease resistance, abiotic stress
tolerance and high yield (Dong et al. 1992). Introduction of
desirable genes from A. cristatum into common wheat has
been fulfilled through intergeneric hybridization (Li et al.
1998). Subsequently, a series of derivative lines were
produced and characterized, and part of them are valuable
for future wheat breeding as novel germplasms (Wu et al.
2006; Chen et al. 2012). For example, the disomic addition
line 4844 shows superior numbers of florets and kernels per
spike, and the alien chromosomes were designated as 6P of
A. cristatum (Wu et al. 2006). Recently an A. cristatum-
wheat compensating Robertsonian translocation conferring
resistance to leaf rust was reported (Ochoa et al. 2015).
The detection of alien chromosome/fragment/gene in the
wheat background can provide a guide to utilize the wheat-
A. cristatum derivative lines with high efficiency, and a
great deal of efforts have been made using genomic in situ
hybridization (GISH), fluorescence in situ hybridization
(FISH), molecular markers from A. cristatum (Luan et al.
2010; Wu et al. 2010; Song et al. 2013; Han et al. 2014).
These work provide valuable clues for the application of
wheat-A. cristatum translocation and introgression lines in
wheat breeding. However, so far the P genome of
Agropyron has not been sequenced due to its huge size.
Construction of a high-density and high-quality genetic
map will be of great benefit in germplasm study before
whole genome sequencing. To date, only one genetic
linkage map of Agropyron Gaertn. has been published, in
which 152 AFLP and 23 RAPD markers were ordered in
seven linkage groups (LGs; Yu et al. 2012). The progress
in P genome study lags far behind the production and
application of wheat-A. cristatum translocation and intro-
gression lines, which limited the further elucidation of the
genetic effects of alien fragments/genes on the agronomic
traits of these derivative lines. Therefore, developing and
mapping molecular markers to construct a high-density
genetic map for P genome are very urgent and important.
High-throughput sequencing can provide new strategies
for sequence-based single nucleotide polymorphism (SNP)
genotyping. To reduce the costs of sequencing, reduced
representation library (RRL) sequencing to reduce the
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complexity of the genome has been developed within the
past several years (Hyten et al. 2010). One of the simplest
methods is the separation and purification of restriction
fragments within a given size range. For example,
restriction site-associated DNA (RAD) sequencing has
been used to successfully construct high-density genetic
map for Lolium perenne and grape (Pfender et al. 2011;
Wang et al. 2012). Based on the next generation
sequencing (NGS) technology, specific-locus amplified
fragment sequencing (SLAF-seq) is a recently developed
high-resolution strategy for large scale de novo discovery
and genotyping of SNP (Sun et al. 2013). SLAF-seq is
similar to RAD sequencing, but it is an enhanced RRL
sequencing method. Compared with previous single-end
RAD sequencing, pair-end reads obtained by SLAF-seq
can somewhat increase marker specificity and accuracy.
Double barcodes in SLAF reads can easily and accurately
assign these reads to the individuals in a big population.
Several high-density genetic maps for different species
have been successfully constructed based on SLAF-seq in
the last 2 years, such as sesame and soybean (Zhang et al.
2013; Qi et al. 2014).

The genetic study on cross-pollinated plant is difficult
because of its self-incompatibility or selfing depression,
and outcrossing can result in high levels of individual
heterozygosity and population heterogeneity. The mapping
population for cross-pollinated plant can be a “CP” (cross-
pollinated) population which consisted of F; individuals
(cross-pollinated progeny) generated from a cross between
two heterogeneously heterozygous and homozygous
diploid parents with no prior knowledge of linkage phases.
The genetic map for tea, grape and L. perenne using CP
population has been reported (Pfender et al. 2011; Wang
et al. 2012; Hu et al. 2013).

In this study, we obtained a segregating Agropyron F,
population derived from an interspecific cross between two
cross-pollinated diploid collections A. cristatum (L.)
Beauv. ‘21842’ and A. mongolicum Keng Z2098’. Then
the F; population was used as CP population for map
construction. SLAF-seq was used to generate genotype
data, which allowed the efficient development of a large
number of SNP markers. Subsequently a high-density
genetic map for Agropyron was constructed, and its syn-
teny to wheat and barley was analyzed, and future appli-
cations of the map were also discussed.

Materials and methods

Plant material and DNA extraction

A segregating Agropyron F, population was derived from
an interspecific cross between two cross-pollinated diploid
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collections ‘Z1842’ and ‘Z2098’. The male parent was
71842 [A. cristatum (L.) Beauv., 2n = 2 x = 14, PP], and
the female parent was Z2098 [A. mongolicum Keng,
2n = 2 x = 14, PP]. In 2013, seedlings of progeny and
parents were planted in the greenhouse of Chinese Acad-
emy of Agricultural Sciences, Beijing, China. Young
healthy leaves were collected from the 113 individuals and
their parents and genomic DNA was extracted according to
the cetyltrimethylammonium bromide (CTAB) method
with minor modifications (Porebski et al. 1997). The
components of 100 ml CTAB buffer contained 2 g CTAB,
1.4 M NaCl, 20 mM EDTA, pH 8.0, 100 mM Tris—HCI,
pH 8.0). DNA concentration and quality were estimated
with a NanoDrop-2000 spectrophotometer (Thermo Fisher
Scientific, Wilmington, DE, USA) and by electrophoresis
in 0.8 % agarose gels with a DNA marker.

SLAF library construction and high-throughput
sequencing

SLAF-seq was used to genotype a total of 113 individuals
and their two parents, as previously described with minor
modifications (Sun et al. 2013). 2 pg genomic DNA from
each sample was digested with Nlalll/Msel (New England
Biolabs, Beverly, MA, USA), and then a quick blunting kit
(New England Biolabs) was used to convert the digested
sample to 5'-phosphorylated, blunt-ended DNA. A 3’-ade-
nine overhang was added to the resulting samples using
Klenow Fragment (3’ — 5’ exo™) (New England Biolabs)
and dATP at 37 °C. Duplex tag-labeled sequencing adap-
ters (PAGE-purified, Life Technologies, Gaithersburg,
MD, USA) were then ligated to the A-tailed fragments
using T4 DNA ligase. The reaction products were purified
using a Quick Spin column (Qiagen, Chatsworth, CA,
USA) and electrophoresed in a 2 % agarose gel. Fragments
of 280-330 bp (not including adapter sequence indexes and
adaptors) were isolated using Gel Extraction Kits (Qiagen)
and then subjected to PCR with Phusion Master Mix (New
England Biolabs) and Solexa amplification primer mix.
PCR products were purified for paired-end sequencing
(40 bp each end) on an Illumina HiSeq 2500 sequencing
platform (Illumina, San Diego, CA, USA) at Biomarker
Technologies Corporation in Beijing.

Genotyping

SLAF marker identification and genotyping were per-
formed using procedures described by Sun et al. (2013).
According to the barcode sequences, raw reads were clas-
sified to different individuals. Then low-quality reads
(quality score <20) were filtered out. After barcodes were
trimmed from reads, each read were 80 nucleotides long.
All SLAF pair-end reads with clear index information were

clustered based on sequence similarity detected by BLAT
(—tileSize = 10, —stepSize = 5) (Kent 2002). Sequences
with over 95 % identity were grouped in one SLAF locus.
Allelic tags were detected by parental sequences (depth
>10) and those of progeny were genotyped by similarity
with parental sequences. Alleles were defined in each
SLAF using the minor allele frequency (MAF) evaluation.
SLAF marker containing only one allelic tag was defined
as non-polymorphic, while SLAF marker with 2—4 allelic
tags was considered to be potential marker. In this study,
the average sequence depths of SLAF markers were more
than 19-fold in the two parents and 3.6-fold in 113 indi-
viduals. Polymorphic markers were classified into eight
segregation patterns (paternal genotype x maternal geno-
type): ab x cd, ef x eg, hk x hk, Im x 1, nn x np,
aa x bb, ab x cc and cc x ab. According to JoinMap 4
manual, the two characters left of the ‘x’ in these codes
represent the alleles of the first parent, the two on the right
represent those of the second parent; each distinct allele is
represented with a different character. Among them,
ab x cd, ef x eg, hk x hk, Im x 1l and nn x np were
appropriate for CP population and used to construct the
genetic map.

Genetic map construction and segregation distortion
analysis

JoinMap 4.0 software was used to calculate recombination
rates between markers, create linkage groups and analyze
segregation distortion (Stam 1993). After data had been
imported, a “CP” type was selected for data mining. The
integrities of SLAF markers and individuals are both more
than 80 %. Marker segregation ratios were calculated using
the chi-square test. Markers showing significant (P < 0.05)
segregation distortion and 100 % similarity of loci were
excluded from the map construction. Independence LOD
was used as grouping parameter with a threshold range 3—
10. HighMap Strategy was used to calculate map distances,
order SLAF markers and correct genotyping errors within
LGs by ML (Maximum Likelihood) mapping (Liu et al.
2014).

Analysis of syntenic relationship between Agropyron
and wheat and barley

Agropyron SLAF marker sequences were aligned with the
draft genome assemblies of wheat and barley (https://urgi.
versailles.inra.fr/download/iwgsc/;ftp://ftpmips.helmholtz-
muenchen.de/plants/barley/public_data/sequences) by BLAT.
The sequence identity should be >80 % and the most
significant BLAT alignment was used to assign putative
ortholog and identify homoeologous relationship. In addi-
tion, two strict criteria were used to screen the putative
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ortholog: (1) both 40-bp end sequences had to align with
the same contig; (2) the coverage on homologous contig
had to fall between 200 and 500 bp. The genetic positions
for these contigs of wheat and barley were retrieved from:
https://urgi.versailles.inra.fr/download/iwgsc/POPSEQ/;
ftp://ftpmips.helmholtz-muenchen.de/plants/barley/public_
data/popseq_IPK. The syntenic relationships between
Agropyron markers and wheat (or barley) contigs were
described as plots of the genetic positions (cM) of
Agropyron markers on the linkage groups against the
genetic positions (cM) of the homologous contigs of wheat
and barley.

Results
Analysis of SLAF-seq data and SLAF markers

After SLAF library construction and high-throughput
sequencing, we obtained 19.88 Gb of raw data consisting
of 128,932,358 pair-end reads of ~ 80 bp long. Among
them, 9,447,505 and 7,802,086 reads were from the male
and female parent, respectively. Read numbers of the 113
individuals in the CP population ranged from 466,226 to
2,045,138 with an average of 917,133.

The numbers of SLAFs in the male and female parents
were 44,866 and 41,344, respectively. The read numbers of
SLAFs were 1,229,975 and 810,857 in the male and female

parents, respectively. The average coverage for each SLAF
was 27.4-fold in the male parent and 19.6-fold in the
female parent. In the F; population, the numbers of SLAF
markers in each individual ranged from 21,297 to 42,314
with an average of 32,301 (Fig. 1a). The read numbers of
SLAFs ranged from 48,436 to 323,024 with an average of
118,565, and the average depth ranged from 2.2-fold to
7.6-fold with an average of 3.6-fold in the F; population
(Fig. 1b).

In total, 69,325 high-quality SLAFs were detected, of
which 26,248 were polymorphic with a polymorphism rate
of 37.9 % (Supplemental Table S1). Of the 26,248 poly-
morphic SLAFs, 14,174 were classified into eight segrega-
tion patterns (Supplemental Table S2). Five segregation
patterns (ab x cd, ef x eg, hk x hk,Im x 1l and nn x np)
were appropriate for CP population. In total, 4231 markers
fell into this five types, and the examples for this five seg-
regation types were shown in Supplemental Fig. S1. Among
these 4231 markers, 1752 markers with more than 40-fold of
parental sequence depth and more than fourfold of indi-
vidual sequence depth were used for the genetic map con-
struction (Supplemental Table S3), and their genotype data
in the 113 F; individuals was shown in Supplemental
Table S4. All 113 individuals contained more than 95 % of
the 1752 SLAF markers. Then markers showing significant
(P < 0.05) segregation distortion, less than 80 % integrity
of individual segregation pattern, and 100 % similarity of
loci were excluded from the map construction.
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Table 1 Summary of seven linkage groups

Linkage group Number of markers

Genetic sizes (cM)

Female (Z2098) Male (Z21842)

Integrated map

Female (Z2098) Male (Z21842) Integrated map

1 130 157 175
2 161 200 225
3 86 98 107
4 86 107 117
5 121 142 152
6 91 96 115
7 118 121 132
Total 793 921 1023

127.5 2433 186.1
101.2 267.9 185.5
59.2 119.6 89.4
108.1 222.5 165.3
46.9 157.3 102.1
58.8 85.3 72.1
53.7 160.8 107.3
555.4 1256.7 907.8

Basic characteristics of the genetic map

After linkage analysis, 921 markers for Z1842 (male), 793
markers for Z2098 (female), and 1023 markers for the
integration were mapped onto the genetic maps and
assigned to 7 LGs (Table 1; Supplemental Figs. S2-S8).
Taking into account the size of all LGs, marker coverage
amounted to 1256.7 cM for Z1842 (male), 555.4 cM for
72098 (female), and 907.8 cM for the integrated map. The
final integrated map contained 622 loci with an average
distance of 1.5 cM between adjacent loci (Figs. 2, 3, 4).
Positions of the SLAF markers on these LGs are shown in
Supplemental Table S5.

Basic characteristics of the 7 LGs of the integrated map
were shown in Table 2. To our knowledge, this map is the
densest genetic linkage map for Agropyron so far. On
average, one LG contained 146 markers and 89 loci which
spanned an average of 129.7 cM. The genetic distance of
the LGs ranged from 72.1 cM (LG6) to 186.1 cM (LGI).
According to total distance, the largest LG was LG1 with
175 markers, a length of 186.1 cM, and an average distance
of 1.8 cM between adjacent loci. The smallest LG was
LG6, with 115 markers, a length of 72.1 cM, and an
average distance of 1.0 cM between adjacent loci. The
degree of linkage between markers was reflected by
‘Gap < 5’ ranging from 83.1 to 100 % with an average
value of 95.4 %. The largest gap on this map was 18.4 cM
located in LGI.

Segregation distortion markers on the map

Among the 1752 SLAF markers used for the map con-
struction, 293 markers showed segregation distortion,
which genotype frequencies in the F; individuals were
shown in Supplemental Table S6. It can be found that, for
the two segregation types (ab x cd) and (ef x eg) in
Supplemental Table S6, in most cases, there is one most
predominant allele in the genotypes of F; individuals,
accompanying with two predominant genotypes. For

example, the genotypes of Marker26833 (segregation
type (ab x cd)) was 60 ac, 1 ad, 45 bc and 7 bd. For
Marker26833, ¢ was the most predominant allele, and both
ac and bc were predominant genotypes in 113 F; individ-
uals. The allele ¢ came from the second parent’s first
parent. For two-allele (Im x 1l) and (nn x np), both
heterozygous and homozygous genotypes are likely to be
predominant.

Segregation distortion markers at mild significance level
(0.05 < P < 0.1) were kept and 126 markers were mapped
onto the map (Supplemental Table S5). The distribution of
segregation distortion markers was not similar to that of all
markers except for LG5 (Table 3). For example, LG7 had
the highest percentage (35.7 %) of segregation distortion
markers, whereas it only had 12.9 % of all markers. The
highest frequency of segregation distortion markers was
also on LG7, which was 34.1 %, while the lowest fre-
quency (2.6 %) was on LG4. Furthermore, 7 of 16 segre-
gation distortion regions (SDR) were detected on LG7,
while none was detected on LG3 and LG4.

Homoeologous relationship between Agropyron
linkage group and chromosomal group of wheat
and barley

To evaluate the accuracy of the genetic map and analyze
the homoeologous relationship between Agropyron and
wheat and barley, we aligned Agropyron SLAF marker
sequences with the draft genome assemblies of wheat and
barley. 161 and 46 of 1023 mapped Agropyron markers
showed high sequence identity (>80 %) with wheat and
barley contigs, respectively (Supplemental Table S7 and
8). The serial number of Agropyron linkage group was
assigned according to the corresponding homoeologous
chromosomal group of wheat, which was defined by the
highest hit number of contigs. 15 of 22 markers on LG5
were homologous to SA/B/D contigs, and 11 of 17 markers
on LG6 were homologous to 6A/B/D contigs, showing
substantial homoeologous relationship between LGS and
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Fig. 2 Linkage group 1 and 2 of high-density linkage map for Agropyron
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Fig. 3 Linkage group 3 and 4
of high-density linkage map for
Agropyron
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