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Abstract

Main conclusion Medicinal and aromatic plants are

known to produce secondary metabolites that find uses

as flavoring agents, fragrances, insecticides, dyes and

drugs. Biotechnology offers several choices through

which secondary metabolism in medicinal plants can be

altered in innovative ways, to overproduce phyto-

chemicals of interest, to reduce the content of toxic

compounds or even to produce novel chemicals.

Detailed investigation of chromatin organization and

microRNAs affecting biosynthesis of secondary metab-

olites as well as exploring cryptic biosynthetic clusters

and synthetic biology options, may provide additional

ways to harness this resource.

Plant secondary metabolites are a fascinating class of

phytochemicals exhibiting immense chemical diversity.

Considerable enigma regarding their natural biological

functions and the vast array of pharmacological activities,

amongst other uses, make secondary metabolites interest-

ing and important candidates for research. Here, we present

an update on changing trends in the biotechnological

approaches that are used to understand and exploit the

secondary metabolism in medicinal and aromatic plants.

Bioprocessing in the form of suspension culture, organ

culture or transformed hairy roots has been successful in

scaling up secondary metabolite production in many cases.

Pathway elucidation and metabolic engineering have been

useful to get enhanced yield of the metabolite of interest;

or, for producing novel metabolites. Heterologous expres-

sion of putative plant secondary metabolite biosynthesis

genes in a microbe is useful to validate their functions, and

in some cases, also, to produce plant metabolites in

microbes. Endophytes, the microbes that normally colonize

plant tissues, may also produce the phytochemicals pro-

duced by the host plant. The review also provides per-

spectives on future research in the field.
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Abbreviations

4CL 4-Coumaroyl:CoA ligase

CHI Chalcone isomerase

CUS Curcuminoid synthase

CYPs Cytochrome P450 enzymes

DMAPP Dimethylallyl pyrophosphate

EST Expressed sequenced tag

IPP Isopentenyl pyrophosphate

mA Milli ampere (electric current)

MAP Medicinal and aromatic plants

MEP Methylerythritolphosphate pathway

MEV Mevalonate pathway

ORF Open reading frame

PAL Phenylalanine ammonia-lyase

PLR Pinoresinol/lariciresinol reductase

STS Stilbene synthase
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T DNA Transfer deoxyribose nucleic acid

TIA Terpenoid indole alkaloid pathway

US-FDA United States Food and Drug Administration

UV Ultra violet

VIGS Virus induced gene silencing

Introduction

A variety of organic compounds are synthesized by plants,

which are chiefly classified as primary and secondary

metabolites. Primary metabolites are required for basic pro-

cesses like photosynthesis, respiration, growth and develop-

ment. Secondary metabolites are other phytochemicals,

which are specifically accumulated and are not present merely

as intermediates of chemical processes. These compounds are

very diverse and distribution of specific types of secondary

metabolites is often restricted to taxonomically related spe-

cies. Though precise functions of secondary metabolites in

plant metabolism and physiology are as yet unclear, they are

believed to play various roles in interactions of plants with

their environment, like (a) providing protection to plants

against pathogens (Schwekendiek et al. 2007; Naoumkina

et al. 2008) (b) providing protection against abiotic stresses

like UV radiation (Xu et al. 2008) (c) attractants for pollina-

tors (Kessler and Baldwin 2007; González-Teuber and Heil

2009) (d) signal molecules (Xu et al. 2009) etc.

The major reason for interest in plant secondary

metabolites stems from their overwhelming diversity. They

appear to be a never-ending source of novel chemical

structures with a variety of pharmacological activities.

Nearly 100,000 such metabolites have been isolated from

higher plants (Verpoorte et al. 1999; Afendi et al. 2012).

Several of these chemicals are used as flavoring agents,

fragrances, insecticides, dyes and drugs. Since time

immemorial plants and their products have also been used

as traditional medicines for treatment of common ailments

(Crozier et al. 2006); an estimate suggests that up to 70,000

species of plants are used in folk medicine (Farnsworth and

Soejartto 1991). In India about 7,500 plant species are used

in ethnomedicines (Shankar and Majumdar 1997). In

China, about 1,000 medicinal plants are commonly used as

traditional medicine (He and Sheng 1997). Advances in

chemistry and pharmacology have validated or vitiated the

claims of traditional medicines and have discovered the

active principles. About 50 % of all US-FDA approved

drugs introduced in the market are natural products or their

analogues (Vuorelaa et al. 2004). However, often the raw

material could be limiting and its exploitation may be

surrounded by ecological concerns. One of the key objec-

tives of plant biotechnology is to develop eco-friendly

ways of large-scale production of pharmacologically active

compounds. Moreover, the enormous biosynthetic potential

of plants is yet to be exploited completely and biotech-

nology could be used to generate novel chemical com-

pounds, with enhanced or newer bioactivities, through

activation of silent or cryptic metabolic clusters.

Powerful molecular tools have been used to exploit

microbial biochemistry to produce novel compounds

(Prather and Martin 2008). This in part, could be attributed

to lesser complexity, clustering of genes involved in a

pathway, lower redundancy, easy amenability to genetic

intervention and availability of genome sequences of a

large number of microbes. Biotechnological interventions

have also played a major role in improvement of crop

yields and quality. Crops have also been engineered to

produce valuable enzymes, heterologous proteins and

antibodies (Desai et al. 2010). Despite such progress in

plant molecular biology, only limited application of bio-

technology has been seen in medicinal and aromatic plants

(MAPs). In MAPs, generally there is paucity of available

molecular information and standardized protocols for

transgenesis and marker-assisted selection are also not

readily available. In contrast, for most crop species, pre-

sence of large EST libraries, genome sequences for at least

some of the crops and standardized protocols for trans-

genesis have played a role in employing biotechnology for

improvement of crop yields. However, for MAPs, use of

hairy root cultures and bioreactors for production of sec-

ondary metabolites have become popular (Srivastava and

Srivastava 2007). Moreover, reducing time and costs of de

novo genome and EST sequencing have made it possible to

Fig. 1 Biotechnology of plant secondary metabolism
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unravel the molecular secrets of secondary metabolite

production by MAPs. Here we present an update of bio-

technological applications in plant secondary metabolism

(Fig. 1). Supplementary Table 1 summarizes the available

biotechnologies for few pharmacologically important plant

secondary metabolites obtained from MAPs.

Bioprocessing

Plant secondary metabolites are usually produced in lesser

quantities; often they get accumulated in specific plant

organs, at distinct developmental stages, or, on an exposure

to a specific stress, or in a particular agro-geo-climatic zone

(Chemler and Koffas 2008). Many such metabolites like

taxol, artemisinin, forskolin etc. are very difficult to syn-

thesize chemically, and the process is economically unvi-

able (Hashimoto et al. 1988; Corey et al. 1988; Heinstein

and Chang 1994; Bouwmeester et al. 2006). Industrial scale

plant tissue culture presents itself as a commercially viable

alternative for production of phytochemicals, considering

the (1) increasing demand for metabolites of interest, (2)

long-time scales required for certain slow growing plants,

(3) continuously reducing land availability for large-scale

cultivation of plants, and (4) destruction of wild populations

of medicinal plants through blatant exploitation.

Suspension culture

Suspension cultures are fast growing and amenable to

continuous culture in a chemostat. For establishing plant

cell suspension cultures, the undifferentiated plant cell

culture or callus is generally transferred into liquid medium

and agitated on a rotary shaker. However, plant cell cul-

tures growing in such environments show propensity

towards production of certain compounds only (Smetanska

2008). Few biosynthetic pathways, such as those involved

in production of cinnamic acid derivatives, anthraquinones,

berberines, shikonins, anthocynanins etc., express very

well in suspension cultures (Chattopadhyay et al. 2002;

Chiang and Abdullah 2007). Many times these compounds

get spontaneously accumulated in suspension cell cultures,

often at concentrations much higher than found in intact

plants, even without any efforts for medium engineering. In

contrast, other compounds such as morphinan alkaloids,

tropane alkaloids (e.g. hyoscyamine and scopolamine),

quinoline alkaloids, dimeric monoterpene indole alkaloids

(e.g. vinblastine and vincristine) etc. are expressed only in

traces in suspension cultures (Berlin 1997). Large-scale

efforts to increase their expression through medium engi-

neering and use of elicitors have not yielded results that can

lead to commercial exploitation of tissue cultures for pro-

duction of these compounds.

Organ culture

Organ culture has been explored for production of such

phytochemicals that are not expressed by suspension cul-

ture. Morphinan alkaloids of Papaver somniferum L.

(Papaveraceae), dimeric indole alkaloid (anhydrovinblas-

tine—a direct precursor of vinblastine and vincristine) of

Catharanthus roseus (L.) G. Don (Apocynaceae), sesqui-

terpene lactone (artemisinin) of Artemisia annua L. (As-

teraceae), for instance, are produced in better quantities in

shoot culture (Endo et al. 1987; Liu et al. 2003; Tisserat

and Berhow 2009). Similarly root cultures produce better

amounts of tropane alkaloids, such as hyoscyamine and

scopolamine, as compared to suspension cultures (Berlin

1997; Saito and Mizukami 2002).

Hairy root culture

Genetic transformation of plant cells using Agrobacterium

rhizogenes results in differentiation into hairy roots. These

roots can be excised from the infection site, bacteria can be

removed using antibiotic treatment, and then the hairy

roots can be cultured indefinitely in liquid medium. Hairy

roots cultures have several advantages, such as (1) high

growth rate, (2) genotypic and phenotypic stability over

long culture periods, (3) they do not require exogenous

supply of plant growth regulators, and (4) produce high

levels of secondary metabolites (Srivastava and Srivastava

2007). Expression levels of genes contained in the inserted

T-DNA have been correlated to the amount of secondary

metabolites produced. The variability in different insertion

lines can be used to select for the lines that are better

producers. Apart from phytochemicals, hairy roots have

also been explored, though with limited success, for the

production of heterologous proteins (Tzfira and Citovsky

2008).

Process optimization

Like any other plant tissue culture process, the use of

suspension cells and organ cultures, requires addition of

auxin and cytokinins in specific ratio, to either promote

dedifferentiation into suspension cells, or in a different

ratio for differentiation into specific plant organs. How-

ever, if the products (phytochemicals) are to be used as

crude extract for human/animal consumption, it is desirable

to avoid addition of plant growth regulators. Media opti-

mization also plays a crucial role in production of sec-

ondary metabolites. For certain secondary metabolites, a

media that supports maximum biomass production, may

not actually result in corresponding higher yields of sec-

ondary metabolites. For instance, addition of nitrogen-rich

medium resulted in 25–30 % increase in biomass but only
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marginal (2–9 %) increase in shikonin concentration by

Lithospermum erythrorhizon Siebold & Zucc. (Boragina-

ceae) culture (Srinivasan and Ryu 1993). The nature of

carbon source used could also affect biomass as well as

production of secondary metabolites. Glucose and/or

sucrose are considered good carbon sources for biomass

increase in plant cell culture, but not for hairy root culture

(Giri and Narasu 2000). Carbon–nitrogen ratio also affects

secondary metabolite biosynthesis. Nitrogen is usually

supplied as ammonia and nitrates. Ratios of these two, as

well as total nitrogen content in the medium could affect

secondary metabolite production differently in different

plant cell cultures. Alternating carbon- and nitrogen-rich

media enhanced shikonin production in cultures of L.

erythrorhizon, while betacyanin production was markedly

increased in cultures of Phytolacca americana L. (Phyto-

laccaceae) with increase in total nitrogen supply (Sakuta

et al. 1987; Srinivasan and Ryu 1993). Similarly phosphate

limitation also reduced anthraquinone synthesis by cultures

of Galium mollugo L. (Rubiaceae) (Wilson and Balague

1985). Production of secondary metabolites by plant cell

cultures is also greatly potentiated by addition of biotic (of

biological origin) or abiotic (chemical or physical) elicitors

(Karuppusamy 2010). Use of abiotic elicitors is thought to

induce production of phytoallexins and release of biotic

elicitors from plant cell walls (Davis et al. 1986).

Sequential treatment of commonly used elicitors such as

methyl jasmonate (abiotic), salicylic acid (abiotic) and

yeast extract (biotic) at 24 h intervals was found to enhance

the accumulation of dihydrosanguinarine (2.5 times) and

sanguinarine (5.5 times) in Eschscholzia californica Cham.

(Papaveraceae) suspension culture (Cho et al. 2008).

Addition of sodium vanadate and vanadyl sulfate was

found to increase the production of coumarins in the sus-

pension culture of Angelica archangelica L. (Apiaceae)

(Siatka and Kasparová 2007). Use of UV-B light leads to

increase in production of catharanthine in Catharanthus

roseus cell suspension culture and flavonoid production in

Passiflora quadrangularis L. (Passifloraceae) callus culture

(Ramani and Chelliah 2007; Antognoni et al. 2007).

Addition of filtered and autoclaved mycelial extract of

Verticillium dahliae increased the production of artemisi-

nin from hairy root cultures of A. annua without affecting

the growth and morphology of hairy roots (Wang et al.

2000a, b). Electric current also appears to be a good elicitor

for secondary metabolite production. Pea hairy roots trea-

ted with 30–100 mA of electric current produced 13 times

higher amounts of (?)-pisatin compared to the non-elicited

controls. Similarly seedlings, intact roots or cell suspension

cultures of Trigonella foenum-graecum L. (Fabaceae),

Medicago truncatula Gaertn. (Fabaceae), Arabidopsis

thaliana (L.) Heynh. (Brassicaceae), Trifolium pratense L.

(Fabaceae) and Cicer arietinum L. (Fabaceae) also

produced increased levels of secondary metabolites in

response to electro-elicitation (Kaimoyo et al. 2008).

Several types of bioreactors have been used for pro-

duction of secondary metabolites by plant cell cultures.

The general aspects that need to be taken care of during

bioreactor design are (1) low shear mixing for efficient

nutrient transport without sedimentation or clumping of

cells, (2) optimal aeration with low shear stress, (3) sterility

of the process, and (4) introduction of light for photo-

trophic cultures. Stirred reactor, rotating drum reactor,

fluidized bed reactor, airlift reactor, etc. have been used for

both suspension cells and hairy root cultures. Bubble col-

umn and aerated reactors were found to be more suitable

for organ cultures. Souret et al. (2003) compared terpenoid

gene expression patterns and artemisinin production from

hairy root cultures of A. annua in shake flask, bubble

column reactor and mist reactor. They found that bubble

column reactor supported more biomass production while

more artemisinin was produced in mist reactor. Moreover,

root samples from different regions of the same reactor

showed considerable differences in expression of terpenoid

pathway genes. Scale-up to bioreactors as well as the

choice of bioreactor continues to remain a challenge.

Mathematical models have been used to evaluate the pro-

cess parameters against productivity and provide optimal

conditions using different types of bioreactors (Rizvi

2012).

Molecular elucidation of plant secondary metabolite

pathways

Molecular elucidation in broad sense consists of finding out

the precise chemical route of metabolite biosynthesis,

enzymes catalyzing the biosynthetic reactions, genes

encoding the biosynthetic enzymes and regulatory factors

that control secondary metabolite biosynthesis. Identifica-

tion of genes involved in plant secondary metabolite bio-

synthesis is a very important component of biotechnology

of MAPs. The availability of molecular information with

regards to production and regulation of plant secondary

metabolites enables the biotechnologist to rationally tinker

with the biosynthetic machinery. Approaches used to study

secondary metabolite pathways have changed considerably

over time, with the availability of new molecular tools and

technological advances. These approaches may be roughly

divided into pre-genomic era and post-genomic era

approaches.

Precursor labeling

Labeling experiments and retro biosynthetic studies gen-

erally precede the identification of enzymes and genes
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involved in secondary metabolite biosynthesis. These are

used to trace the precise chemical route of biosynthesis.

For instance, terpenoids that contribute one-third of all

known secondary metabolites were shown to be produced

by condensation of C5 units—IPP (isopentenyl pyrophos-

phate) and DMAPP (dimethylallyl pyrophosphate) (Poulter

et al. 1981). Earlier it was thought that only the cytosolic

mevalonate (MEV) pathway produces IPP, the universal

precursor of all terpenoids. However, with the use of 13C

labeled intermediates, it was shown that in microorganisms

and plants, certain terpenoids are produced not from

mevalonate pathways, but from another pathway also

producing IPP/DMAPP (Rohmer 1999). Now it is well

established that cytosolic mevalonate pathway provides

precursors for synthesis of sesquiterpenes (C15) and tri-

terpenes (C30) while plastidial methylerythritol phosphate

(MEP) pathway provides precursors for synthesis of mon-

oterpenes (C10), diterpenes (C20) and tetraterpenes (C40)

(Dudareva et al. 2005).

Pre-genomic era approaches

Biochemical approach

Biochemical approach for molecular dissection of sec-

ondary metabolite pathways has been very useful in the

pre-genomic era. Here, once the chemical route of

metabolite biosynthesis is known, a hypothetical scheme is

laid, based on the plausible reaction mechanisms. Enzyme

activity is detected in cell free systems and then one pro-

ceeds for activity-guided purification of the enzyme using

various chromatographic techniques. The purified protein

(enzyme) is sequenced, degenerate primers are designed

and partial cDNA is amplified using polymerase chain

reaction (PCR). The sequence of partial cDNA is used to

design RACE (Rapid amplification of cDNA ends) primers

and full-length cDNA is cloned. Heterologously expressed

protein is checked for the enzyme activity against purified

substrates. Phenylalanine aminomutase that catalyzes the

first committed step in taxol side-chain biosynthesis was

cloned from Taxus chinensis Roxb. (Taxaceae) using this

approach (Steele et al. 2005). Similarly, phenylalanine

ammonia lyase that catalyzes the first committed step in

phenylpropanoid biosynthesis was cloned from Pinus taeda

L. (Pinaceae) using this method (Whetten and Sederoff

1992).

Positional cloning, tagging and expression libraries

Another pre-genomic era approach, involves positional

cloning of biosynthetic pathway genes. This approach

starts with creation of mutants that are defective in sec-

ondary metabolite synthesis, mainly those metabolites

whose deficiency results in score able phenotypes, such as

color, aroma and flavor. Mutants are classified into com-

plementation groups and map-based cloning of gene

ensues. The open reading frames in the cloned DNA are

expressed in heterologous system and assayed for enzyme

activity. To cite an illustration, these methods were used in

discovery of an alternative pathway for formation of b-

carotene in plant chloroplasts. Two mutations that affect

tomato pigmentation: Beta, a dominant mutation that

increases b-carotene and old gold, a recessive mutation that

stops b-carotene synthesis and increases lycopene pro-

duction, were analyzed. Positional cloning and further

molecular analysis revealed that Beta encoded a lycopene

b-cyclase that converts lycopene to carotene. Old gold was

found to be a null allele of Beta (Ronen et al. 2000).

Alternatively, a functionally expressed cDNA library is

screened for the requisite enzyme activity against purified

substrates. Once the expected enzyme activity is detected,

the clone is sequenced. This approach has been used for

cloning of several cytochrome P450 enzymes, that catalyze

various steps in many secondary metabolite pathways

(Schoendorf et al. 2001).

Homology based cloning

Once large number of sequences were accumulated using

the above-mentioned methods, it became evident, that

related enzymes share considerable sequence homology

both at protein and DNA level, at least in conserved

domains, which could be used for designing degenerate

primers and cloning of related genes in new plant species.

This approach considerably reduced the time required for

cloning of secondary metabolite pathway genes, and has

been successfully employed for several important plant

secondary metabolites. To exemplify, b-caryophyllene

synthase of A. annua which converts farnesyl diphosphate

to b-caryophyllene, was cloned using this approach (Cai

et al. 2002). Similarly, Engprasert et al. (2004) aligned the

protein sequences of geranylgeranyl diphosphate synthase

and identified regions of high homology. Degenerate

primers were used to amplify partial GGPP synthase gene

and eventually full-length cDNA was cloned from Coleus

forskohlii (Willd.) Briq. (Lamiaceae).

Post-genomic era approaches

Differential expression analysis, EST libraries, NGS

In the post-genomics era, the reducing costs of DNA

sequencing, availability of large-scale proteomics plat-

forms and development of better bioinformatics tools have

changed the outlook and approaches to understand the

plant secondary metabolite pathways at a molecular level.
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Often the secondary metabolites are synthesized in specific

plant organs, for instance, leaf trichomes are sites of syn-

thesis of several secondary metabolites (Lommen et al.

2006). This property is exploited for conducting a differ-

ential expression-based transcriptomics study. Treatment

with biotic or abiotic elicitors that induce production of

specific secondary metabolites could also present an

opportunity for conduction of a differential expression

study. Suppression subtractive hybridization is one such

method, following which the EST library is sequenced.

Recently the advances in massively parallel sequencing

techniques (next generation sequencing platforms like

Roche 454�, Illumina Solexa� etc.) have considerably

reduced the time required for sequencing of differentially

expressed transcriptomes. Wherever genomic resources

preexist, a microarray-based differential expression study

may be conducted. Differentially expressed RNAs (or

proteins, in case of comparison of 2D PAGE profiles) are

analyzed by bioinformatic tools. Genes, which could be

involved in the biosynthesis of secondary metabolite in

question, are identified on the basis of homology. Further

their expression pattern helps to predict with some degree

of certainty, whether they could be involved in secondary

metabolite biosynthesis. Once the genes are predicted, one

generally goes for fishing out the full-length cDNA and

heterologous expression followed by in vitro enzyme

activity determination. To further prove the role of the

gene-of-interest in secondary metabolite biosynthesis,

knock-out or knock-down lines may be created using

transgenesis and then accumulation of preceding interme-

diate may be tested, as per the proposed biosynthetic

pathway. These methods have been employed for charac-

terizing several secondary metabolite pathway genes such

as those involved in the production of anti-cancer com-

pounds—vincristine and vinblastine in C. roseus (Rischer

et al. 2006; Miettinen et al. 2014). Co-expression of sec-

ondary metabolite or essential oil components with specific

ESTs have also been used for associating functions of

genes with metabolites (Fang et al. 2014; Mahajan et al.

2015). Transcriptome sequencing on Roche 454� platform

was recently used to better understand the regulation of

artemisinin (anti-malarial) metabolism in A. annua (Soe-

taert et al. 2013).

Functional genomics

Reverse genetics has become a popular tool for functional

genomics and could be utilized for molecular elucidation of

secondary metabolite pathways. Once an EST library or a

plant genome is sequenced (and ORFs predicted), genome-

scale approaches, mostly utilizing the power of RNA

interference-based knock-down, can be employed to find

the function of genes (Alonso and Ecker 2006). However,

many times the secondary metabolite of interest is pro-

duced by an exotic plant species or in some cases by trees,

where these methods may not be viable due to unavail-

ability of transgenesis protocols and unreasonable time

scales.

Metabolic engineering of plant secondary metabolism

A thorough understanding of biosynthetic machinery and

regulatory aspects of plant secondary metabolism are crit-

ical for rational metabolic engineering. The biosynthetic

processes in a cell are highly networked and several pos-

sible fates are possible with tens or hundreds of interactions

at each step of a biosynthetic pathway often leading to

unpredictable results in metabolic engineering. A systems

biology approach, integrating information from metabolo-

mics, proteomics and transcriptomics enables the biotech-

nologist to engineer the metabolic pathways with higher

chances of predictable results (Yang et al. 2014). The main

objectives of metabolic engineering of secondary metabo-

lite pathways are to produce novel metabolites, to over

produce selective metabolites, to reduce the percentage of

toxic and unwanted chemicals and to engineer the bio-

synthetic apparatus into a microorganism for cheaper,

large-scale production of plant secondary metabolites

(refer Table 1 for examples).

Overexpression of the enzyme catalyzing the rate-limit-

ing step in a pathway is often used as a strategy to increase

the metabolic flux through a pathway. For instance, over-

expression of strictosidine synthase, an early enzyme in

alkaloid biosynthetic pathway, in C. roseus cells leads to

increased accumulation of alkaloids (Whitmer et al. 1998).

Scopolamine, a medicinally important compound produced

by several solanaceous species, is produced by the oxidation

of hyoscyamine to scopolamine. Hyocyamine 6b-hydrox-

ylase catalyzes the oxidative reactions that lead to conver-

sion of hyocyamine to scopolamine (Hashimoto et al.

1987). Simultaneous introduction and overexpression of

hyocyamine 6b-hydroxylase and putrescine N-methyl-

transferase in transgenic Hyoscyamus niger L. (Solanaceae)

hairy root line resulted in almost nine times higher yields of

scopolamine as compared to wild type (Zhang et al. 2004).

Similarly, higher levels of anthocyanins and flavonoids are

desirable in food products, since these have antioxidant

activity. Chalcone isomerase (CHI) is an early enzyme of

flavonoid biosynthesis. Overexpression of CHI (cloned

from Petunia) in tomato plants led to a 78-fold increase of

flavonoid levels compared to control (Muir et al. 2001).

Overexpression of farnesyl diphosphate synthase in A.

annua led to 2–3 fold increase in artemisinin production

(Chen et al. 2000). Another approach for increasing meta-

bolic flux is to inhibit competitive pathways. Blocking a
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competitive branch of monoterpenoid metabolic network,

that converts pulegone, (a common precursor of menthol

and menthofuran) to menthofuran, resulted in increased

accumulation of menthol. This was achieved by making

transgenics expressing antisense gene for menthofuran

synthase (Mahmoud and Croteau 2001). Inhibition of spe-

cific steps in a metabolic pathway has also been attempted

to allow accumulation of preceding intermediate. Forsythia

plants produce lignans, such as matairesinol using pi-

noresinol as precursor. Pinoresinol is converted to ma-

tairesinol by pinoresinol/lariciresinol reductase (PLR) and

secoisolariciresinol dehydrogenase. Down-regulation of

PLR expression, using an RNAi construct led to a complete

loss of matairesinol and a 20-fold accumulation of pi-

noresinol in its glucoside form, compared to the controls

(Kim et al. 2009). In P. somniferum, reduction of codeinone

reductase, an enzyme encoded by a multigene family was

achieved by silencing the entire gene family using a chi-

meric small hairpin RNA construct. This led to accumula-

tion of precursor alkaloid (S)-reticuline in the transgenic

plants, at the expense of morphine, codeine, oripavine and

thebaine (Allen et al. 2004). As an alternative, increased

production of a secondary metabolite is also possible by

engineering the regulatory mechanism of secondary

metabolite biosynthesis. For instance, silencing of DET1

regulatory gene using RNAi, in tomato fruits, resulted in

increased apocarotenoid and flavonoid content (Davuluri

et al. 2005). Overexpression of maize regulatory gene leaf

color (Lc), in transgenic apples resulted in increased fla-

vonoid content (Li et al. 2007). In maize suspension cells,

overexpression of transcription factors C1 and R led to

increased accumulation of anthocyanins (Grotewold et al.

1998). Heterologous overexpression of maize C1 and

R genes in Arabidopsis resulted in increased pigmentation

in normally pigmented tissues and induced pigmentation

even in non-pigmented tissues (Lloyd et al. 1992). Over-

expression of ORCA3, a transcription factor, in C. roseus

results in upregulation of the genes of terpenoid indole

alkaloid (TIA) pathway. ORCA3 directly interacts with the

jasmonate and elicitor response element (JERE) in the

upstream promoter region of strictosidine synthase (TIA

pathway enzyme) and induces its increased expression.

Transgenic suspension cells of C. roseus, simultaneously

overexpressing ORCA3 and G10H (encoding a cytochrome

P450 enzyme; not responsive to Orca3 overexpression) led

to threefold increase in accumulation of alkaloids (van der

Fits and Memelink 2000).

Removal or reduction in quantity of toxic chemicals is

also an important goal of metabolic engineering. Nornic-

otine, which is a precursor for a carcinogen, is produced by

N-demethylation of nicotine. In transgenic tobacco plants,

RNAi-induced silencing of CYP82E4 gene (encoding the

enzyme that catalyzes this N-demethylation) was employed

to suppress the production of nornicotine (Gavilano et al.

2006). ZntA gene of Escherichia coli encodes a lead/cad-

mium/zinc transporting ATPase. Ectopic expression of

E. coli ZntA gene in Arabidopsis plants led to reduction in

cellular levels of these heavy metals and improved resis-

tance against lead and cadmium (Lee et al. 2003). In

Coffee plants, CaXMT1, CaMXMT1 (theobromine syn-

thase) and CaDXMT1 (caffeine synthase), enzymes suc-

cessively add methyl groups to xanthosine converting it

into caffeine. In sensitive individuals higher caffeine con-

tent could cause palpitations, increased blood pressure and

insomnia. Transgenic coffee plants expressing RNAi con-

structs against these genes resulted in coffee with up to

70 % reduction in caffeine content (Ogita et al. 2003).

Sometimes metabolic engineering efforts may unpre-

dictably yield novel compounds. Action of two multi-

functional cytochrome P450 enzymes (CYPs) and a

specific UDPG-glucosyltransferase catalyze the production

of dhurrin from tyrosine. Overexpression of CYP79A1,

first enzyme of the pathway, in Arabidopsis resulted in the

formation of p-hydroxybenzylglucosinolates, which are

normally not found in this plant species (Bak et al. 1999).

In E. californica, RNAi-mediated suppression of berberine

bridge forming enzyme leads to accumulation of reticuline

which is a precursor of isoquinoline alkaloids. As an

obvious outcome the products of this pathway, such as

sanguinarine, were considerably reduced. However, lau-

danine, a methylated derivative of berberine accumulated

in the transgenic plants (Fujii et al. 2007).

Exploring endophytes for production of plant

secondary metabolites

Microbes that colonize host plant tissues without any

apparent adverse effect (in contrast to pathogens), and

survive in a mutualistic/commensal association are called

endophytes. It is estimated that each plant may harbor one

or more endophytic species (Tan and Zou 2001). The host

plants, in their respective agro-geo-climatic zones provide

unique niches to these microbes. In culture medium, out-

side their host plant species, these endophytes often pro-

duce bioactive compounds, which sometimes are the same

as those produced by the host plant species. The power of

this approach was first demonstrated by the discovery of

taxol producing fungal endophyte Taxomyces andreanae,

isolated from the host tree Taxus brevifolia Nutt. (Taxa-

ceae) (Strobel et al. 1993). After this discovery, many other

fungal endophytes isolated from various species of Taxus

as well as from other trees were shown to produce taxanes

(Pulici et al. 1996; Strobel et al. 1996; Bashyal et al. 1999;

Wang et al. 2000a, b). Another plant metabolite, torreyanic

acid, a potential anti-cancer agent, was found to be

Planta (2015) 241:303–317 311

123



produced from an endophytic fungus Pestalotiopsis

microspora isolated from the endangered tree Torreya

taxifolia Arn. (Taxaceae) (Lee et al. 1996). Endophyte

isolated from Podophyllum peltatum L. (Berberidaceae)

was reported to produce podophyllotoxin (Eyberger et al.

2006). Dysoxylum binectariferum (Roxb.) Hook.f. ex

Bedd., (Meliaceae) is an endangered tree known for pro-

duction of rohitukine, which is a precursor of flavopiridol

(drug approved for treatment of chronic lymphocytic leu-

kemia in EU) (Mahajan et al. 2014). An endophyte,

Fusarium proliferatum, isolated from D. binectariferum,

has been reported to produce rohitukine (Mohana Kumara

et al. 2012). Microbes, due to their small generation time

and high growth rates are desirable for industrial produc-

tion of metabolites. Despite the discovery of high value

plant secondary metabolites produced from endophytic

fungi, to date there appears to be no report of commercial

exploitation of these fungi for industrial scale production. It

has been observed that after a few generations, the amounts

of plant secondary metabolite produced by the endophytic

microbe growing in culture medium, reduces to a great

extent. For instance, a sharp attenuation in the production

of camptothecin was noted from the first to seventh gen-

eration subculture of camptothecin-producing endophyte

isolated from Camptotheca acuminata Decne. (Cornaceae)

(Kusari et al. 2009). Horizontal transfer of genetic material

(DNA or RNA) between the host plant and the endophytic

microbe has been proposed to explain the production of

phytochemicals by endophytes. Gene encoding 10-deace-

tylbaccatin-III-10-O-acetyl transferase was found to be

present in the endophytic fungus Cladosporium cladospo-

rioides MD2 isolated from Taxus media Rehder (Taxa-

ceae). It shared 99 % identity with the homologous gene in

host tree (T. media) and about 97 % identity with homol-

ogous genes in other species of Taxus (Zhang et al. 2009).

In the endophytic fungus P. microspora, it has been

observed that repeats of telomeric sequence 50-TTAGGG-

30 are added to the termini of foreign transforming DNA

and they replicate independently of the chromosomal DNA

(Long et al. 1998). It is possible that these segments of

DNA are lost or become silent during sub culturing, in the

absence of any selective pressure. The endophytic microbe

and host plant cells share an intimate and complex rela-

tionship. More research into this relationship and the

biology of endophytic microbes may help to understand the

phenomenon of attenuation in a better way.

Rewiring microbial biochemistry to produce plant

secondary metabolites

An important component of elucidation of plant secondary

metabolite pathways(s) is to clone and express the putative

gene in a microbe (E. coli or Saccharomyces cerevisiae)

and determine its biochemical activity on pure substrates so

as to assign its role in the plant pathway. Co-expression of

more than one gene of a pathway in a microbe results into a

primitive metabolic cluster. For instance, an artificial

curcuminoid biosynthetic pathway was constructed in

E. coli by co-expressing phenylalanine ammonia-lyase

(PAL) from the yeast Rhodotorula rubra, 4-couma-

royl:CoA ligase (4CL) from L. erythrorhizon and curc-

uminoid synthase (CUS) from rice (Oryza sativa L.;

Poaceae), which resulted in the production of curcuminoids

by the recombinant E. coli (Hwang et al. 2003). Recom-

binant E. coli cultures expressing 4-coumaroyl CoA ligase

(4CL) from A. thaliana and stilbene synthase (STS) cloned

from Arachis hypogaea L. (Fabaceae), converted the

externally added precursor 4-coumaric acid to resveratrol

([100 mg/L) and externally added caffeic acid to picea-

tannol ([10 mg/L) (Watts et al. 2006).

Heterologous expression of a complete biosynthetic

pathway of a complex plant secondary metabolite in a

microbial host is considerably tough and tricky, compared

to the above examples. Sometimes there may be missing

links in a biosynthetic pathway; enzyme activities encoded

by genes that have not yet been identified or cloned.

Involvement of multiple enzymatic steps, which sometimes

may not necessarily function in a linear fashion, makes

cloning of multiple genes and their functional co-expres-

sion difficult in a microbial host. Even after overcoming

most of these difficulties, and functionally expressing all

the genes of a secondary metabolite biosynthetic pathway,

the biggest challenge is optimization of enzyme activities

to make the process economically feasible. For instance,

biosynthesis of FDA approved, anti-cancer chemothera-

peutic agent, paclitaxel (taxol) involves about 19 steps

(Croteau et al. 2006). Reconstitution of first five committed

steps of taxol biosynthesis in budding yeast for production

of taxadien-5a-acetoxyl-10b-ol resulted in trace amounts

of taxadien-5a-ol while taxadiene was produced only at a

concentration of 1 mg/L (Dejong et al. 2006). Using reg-

ulatory proteins to inhibit competitive pathways, combi-

natorial biosynthesis and codon optimization of the cloned

pathway genes, helped to increase the yield of taxadiene by

40 folds (Engels et al. 2008).

Lycopene, a bright red-colored carotenoid found in

fruits and vegetables, is an antioxidant well known for its

preventive activity against several types of cancers (Palo-

zza et al. 2011; Takeshima et al. 2014). Heterologous

expression of geranylgeranyl diphosphate synthase, phy-

toene synthase and phytoene desaturase in E. coli resulted

in the production of lycopene (Bartley et al. 1999). An

effective mutation screening method was used to identify

targets for further increasing the production of lycopene in

Blakeslea trispora fungus (Wang et al. 2013).
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Advanced precursor of another FDA approved mole-

cule—artemisinin, was produced in S. cerevisiae by het-

erologous reconstitution of a part of the artemisinin

pathway from A. annua, involving five enzymes

CYP71AV1, CPR1, CYB5, ADH1 and ALDH1. Notably, the

engineered yeast produced artemisinic acid to a concen-

tration of 25 g/L. The artemisinic acid produced by fer-

mentation can be chemically converted to artemisinin at a

much lower price compared to extraction from plants (Ro

et al. 2006; Paddon et al. 2013).

Microbes have thus immensely contributed in biotech-

nology of plant secondary metabolism by providing a

model for its elucidation and as biosynthetic factories for

production of phytochemicals.

Conclusion and Future perspectives

Bioprocessing of plant cultures holds great promise for

production of phytochemicals. It provides an alternative

method for production of phytochemicals on a large scale,

in an economically viable and ecology friendly manner.

Traditionally, brute-force methods have been used for

selecting a better cell line for production of phytochemical

of interest (Thomas et al. 2006). Combining bioprocessing

with genetic engineering could help in making the tissue

culture processes more productive. This however, requires

a better understanding of the biosynthetic pathway and its

regulation. It is known that certain pathways express better

in suspension culture while others may not express at all

(Berlin 1997; Chattopadhyay et al. 2002; Chiang and

Abdullah 2007). This may be regulated by certain tran-

scription factors that do not express well in undifferenti-

ated cells (Xu et al. 2012; Patra et al. 2013). Alternatively,

epigenetic changes like DNA methylation (Cazzonelli

et al. 2010) or expression of certain microRNAs (Mahajan

et al. 2011) may regulate the transcription of biosynthetic

pathway enzymes. A detailed understanding of these reg-

ulatory mechanisms may help to rationally tinker with the

secondary metabolite biosynthetic pathways. It is pre-

sumed that transport proteins might be playing a critical

role in accumulation of secondary metabolites, at high

concentration, in specialized cells or in a specific cell

organelle (Brodelius and Pedersen 1993; Roytrakul and

Verpoorte 2007). These proteins present another avenue

for metabolic engineering of plant secondary metabolism.

This needs to be done in conjunction with development of

easier and faster plant transformation methods for

medicinal plants. In cases where competitive pathways

have to be inhibited, use of chemical inhibitors may be

explored (Demain 1998; Sergeant et al. 2009; Craney et al.

2012). Alternatively, the use virus-induced gene silencing

(VIGS) may be explored for silencing the targeted genes,

to circumvent the need for development of elaborate

transgenesis protocols (Huang et al. 2012). Construction of

hybrid pathways, in engineered micro-organisms, using a

combination of genes from different plant systems as well

as other microbes, may be useful for optimizing/enhancing

the yields of phytochemicals produced by the microbes.

Use of genes from other systems that encode enzyme with

analogous activities but are not sensitive to feedback

inhibition may also be an option. Such innovative, syn-

thetic biology approaches may also result in production of

novel chemical scaffolds. Further, sharing of engineered

microbial strains amongst researchers may aid the pros-

pects of producing advanced/novel phytochemicals in

microbes. Exploring the use of endophytes for phyto-

chemicals has been criticized due to the unresolved mys-

tery of attenuation of phytochemical production after a

few generations (Kusari et al. 2009). However, there are

reports where certain chemical activators were able to

restore phytochemical production in otherwise attenuated

endophytic cultures (Li et al. 1998). Use of such chemicals

may also be explored. Analyzing the changes in genome

sequence, epigenetic structure and transcription over suc-

cessive generations may help to understand the reasons

due to which endophytes loose the ability to produce

phytochemicals after a few generations in culture. This

may, in future, help to harness this resource of naturally

engineered microbial strains that produce phytochemicals

of interest, in a more meaningful manner. Further, bioin-

formatics tools for discovery, molecular understanding and

methods for activation of silent or cryptic metabolic

clusters are available for microbial species (Olano et al.

2014; Seyedsayamdost 2014), however, this remains a

relatively unexplored area in plants. Discovery and acti-

vation of such silent metabolic clusters in plants, may

result in production of novel phytochemicals.
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Olano C, Garcı́a I, González A et al (2014) Activation and

identification of five clusters for secondary metabolites in

Streptomyces albus J1074. Microb Biotechnol 7:242–256.

doi:10.1111/1751-7915.12116

Planta (2015) 241:303–317 315

123

http://dx.doi.org/10.1007/s00299-012-1334-9
http://dx.doi.org/10.1007/s00299-012-1334-9
http://dx.doi.org/10.1021/ja00219a058
http://dx.doi.org/10.1146/annurev.pp.45.060194.003311
http://dx.doi.org/10.1146/annurev.pp.45.060194.003311
http://dx.doi.org/10.1007/s11427-012-4280-4
http://dx.doi.org/10.1128/AEM.69.5.2699-2706.2003
http://dx.doi.org/10.1007/s10265-013-0582-2
http://dx.doi.org/10.1021/bp0703329
http://dx.doi.org/10.1111/j.1365-313X.2006.02995.x
http://dx.doi.org/10.1111/j.1365-313X.2006.02995.x
http://dx.doi.org/10.1093/pcp/pcp156
http://dx.doi.org/10.1021/np800455b
http://dx.doi.org/10.1021/jo960471x
http://dx.doi.org/10.1021/jo960471x
http://dx.doi.org/10.1104/pp.103.021972
http://dx.doi.org/10.1111/j.1467-7652.2008.00324.x
http://dx.doi.org/10.1038/sj.jim.2900521
http://dx.doi.org/10.1038/sj.jim.2900521
http://dx.doi.org/10.1007/s00425-007-0573-4
http://dx.doi.org/10.1111/jipb.12136
http://dx.doi.org/10.1111/jipb.12136
http://dx.doi.org/10.1023/A:1025158416832
http://dx.doi.org/10.1023/A:1025158416832
http://dx.doi.org/10.1055/s-2005-916202
http://dx.doi.org/10.1006/fgbi.1998.1065
http://dx.doi.org/10.1006/fgbi.1998.1065
http://dx.doi.org/10.3109/13880209.2014.923006
http://dx.doi.org/10.3109/13880209.2014.923006
http://dx.doi.org/10.1073/pnas.141237298
http://dx.doi.org/10.1073/pnas.141237298
http://dx.doi.org/10.1038/ncomms4606
http://dx.doi.org/10.1038/ncomms4606
http://dx.doi.org/10.1007/s10482-011-9638-2
http://dx.doi.org/10.1038/88150
http://dx.doi.org/10.1186/1471-2229-8-132
http://dx.doi.org/10.1186/1471-2229-8-132
http://dx.doi.org/10.1038/423823a
http://dx.doi.org/10.1111/1751-7915.12116


Paddon CJ, Westfall PJ, Pitera DJ et al (2013) High-level semi-

synthetic production of the potent antimalarial artemisinin.

Nature 496:528–532. doi:10.1038/nature12051

Palozza P, Simone RE, Catalano A, Mele MC (2011) Tomato

lycopene and lung cancer prevention: from experimental to

human studies. Cancers (Basel) 3:2333–2357. doi:10.3390/

cancers3022333

Patra B, Schluttenhofer C, Wu Y et al (2013) Transcriptional

regulation of secondary metabolite biosynthesis in plants.

Biochim Biophys Acta Gene Regul Mech 1829:1236–1247.

doi:10.1016/j.bbagrm.2013.09.006

Poulter CD, Wiggins PL, Le AT (1981) Farnesylpyrophosphate

synthetase. A stepwise mechanism for the 10-4 condensation

reaction. J Am Chem Soc 103:3926–3927. doi:10.1021/

ja00403a054

Prather KLJ, Martin CH (2008) De novo biosynthetic pathways:

rational design of microbial chemical factories. Curr Opin

Biotechnol 19:468–474. doi:10.1016/j.copbio.2008.07.009

Pulici M, Sugawara F, Koshino H et al (1996) Pestalotiopsins A and

B: new caryophyllenes from an endophytic fungus of Taxus

brevifolia. J Org Chem 61:2122–2124. doi:10.1021/jo951736v

Ramani S, Chelliah J (2007) UV-B-induced signaling events leading

to enhanced-production of catharanthine in Catharanthus roseus

cell suspension cultures. BMC Plant Biol 7:61. doi:10.1186/

1471-2229-7-61

Rischer H, Oresic M, Seppänen-Laakso T et al (2006) Gene-to-

metabolite networks for terpenoid indole alkaloid biosynthesis in

Catharanthus roseus cells. Proc Natl Acad Sci USA

103:5614–5619. doi:10.1073/pnas.0601027103

Rizvi Z (2012) Application of artificial neural networks for predicting

maximum in vitro shoot biomass production of safed musli

(Chlorophytum borivilianum). J Med Diagn Methods 01:1–6.

doi:10.4172/scientificreports.464

Ro D-K, Paradise EM, Ouellet M et al (2006) Production of the

antimalarial drug precursor artemisinic acid in engineered yeast.

Nature 440:940–943. doi:10.1038/nature04640

Rohmer M (1999) The discovery of a mevalonate-independent

pathway for isoprenoid biosynthesis in bacteria, algae and

higher plants�. Nat Prod Rep 16:565–574. doi:10.1039/a709175c

Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An

alternative pathway to beta -carotene formation in plant chro-

moplasts discovered by map-based cloning of beta and old-gold

color mutations in tomato. Proc Natl Acad Sci USA

97:11102–11107. doi:10.1073/pnas.190177497

Roytrakul S, Verpoorte R (2007) Role of vacuolar transporter proteins

in plant secondary metabolism: Catharanthus roseus cell culture.

Phytochem Rev 6:383–396. doi:10.1007/s11101-006-9022-4

Saito K, Mizukami H (2002) Plant cell cultures as producers of

secondary compounds. In: Oksman-Caldentey K-M, Barz WH

(eds) Plant biotechnology and transgenic plants. CRC Press,

New York, pp 66–91

Sakuta M, Takagi T, Komamine A (1987) Effects of nitrogen source

on betacyanin accumulation and growth in suspension cultures of

Phytolacca americana. Physiol Plant 71:459–463. doi:10.1111/j.

1399-3054.1987.tb02884.x

Schoendorf A, Rithner CD, Williams RM, Croteau RB (2001)

Molecular cloning of a cytochrome P450 taxane 10 beta-

hydroxylase cDNA from Taxus and functional expression in

yeast. Proc Natl Acad Sci USA 98:1501–1506. doi:10.1073/pnas.

98.4.1501

Schwekendiek A, Spring O, Heyerick A et al (2007) Constitutive

expression of a grapevine stilbene synthase gene in transgenic

hop (Humulus lupulus L.) yields resveratrol and its derivatives in

substantial quantities. J Agric Food Chem 55:7002–7009. doi:10.

1021/jf070509e

Sergeant MJ, Li J-J, Fox C et al (2009) Selective inhibition of carotenoid

cleavage dioxygenases: phenotypic effects on shoot branching.

J Biol Chem 284:5257–5264. doi:10.1074/jbc.M805453200

Seyedsayamdost MR (2014) High-throughput platform for the

discovery of elicitors of silent bacterial gene clusters. Proc Natl

Acad Sci USA 111:7266–7271. doi:10.1073/pnas.1400019111

Shankar D, Majumdar B (1997) Beyond the biodiversity convention:

the challenges facing the biocultural heritage of India’s medic-

inal plants. In: Bodeker G, Bhat KKS, Burley J, Vantomme P

(eds) Medicinal plants for forest conservation and health care.

Non-wood forest products 11. FAO, Rome, pp 87–99

Sharafi A, Sohi HH, Mousavi A et al (2013) Metabolic engineering of

morphinan alkaloids by over-expression of codeinone reductase in

transgenic hairy roots of Papaver bracteatum, the Iranian poppy.

Biotechnol Lett 35:445–453. doi:10.1007/s10529-012-1080-7

Shkryl YN, Veremeichik GN, Bulgakov VP, Zhuravlev YN (2011)

Induction of anthraquinone biosynthesis in Rubia cordifolia cells

by heterologous expression of a calcium-dependent protein

kinase gene. Biotechnol Bioeng 108:1734–1738. doi:10.1002/

bit.23077
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