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Abstract Mineral nutrients are distributed in a non-uni-

form manner in the soil. Plasticity in root responses to the

availability of mineral nutrients is believed to be important

for optimizing nutrient acquisition. The response of root

architecture to heterogeneous nutrient availability has been

documented in various plant species, and the molecular

mechanisms coordinating these responses have been

investigated particularly in Arabidopsis, a model dicoty-

ledonous plant. Recently, progress has been made in

describing the phenotypic plasticity of root architecture in

maize, a monocotyledonous crop. This article reviews

aspects of phenotypic plasticity of maize root system

architecture, with special emphasis on describing (1) the

development of its complex root system; (2) phenotypic

responses in root system architecture to heterogeneous N

availability; (3) the importance of phenotypic plasticity for

N acquisition; (4) different regulation of root growth and

nutrients uptake by shoot; and (5) root traits in maize

breeding. This knowledge will inform breeding strategies

for root traits enabling more efficient acquisition of soil

resources and synchronizing crop growth demand, root

resource acquisition and fertilizer application during crop

growing season, thereby maximizing crop yields and

nutrient-use efficiency and minimizing environmental

pollution.
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Abbreviations

AR Axial root

BR Brace root

CR Crown root

LR Lateral root

N Nitrogen

TRL Total root length

Introduction

Plant root architecture displays a considerable degree of

plasticity in response to the heterogeneous distribution of

soil resources (Hodge 2004; Malamy 2005; Nibau et al.

2008). In particular, the availability and distribution of

nitrate, the main source of nitrogen (N) for plants growing

in aerobic soils, influences both the carbon investment in,

and the architecture of, plant root systems (Lynch et al.

2012). In recent decades, researchers have developed var-

ious laboratory-based technologies for studying the root

systems of seedlings grown in non-soil or soil media (Ar-

mengaud et al. 2009; Iyer-Pascuzzi et al. 2010; Clark et al.

2011, 2013; Downie et al. 2012; Gruber et al. 2013; Shi

et al. 2013; Adu et al. 2014). These techniques have

revealed how root architectures of different plants respond

to the heterogeneous distribution of nutrients in the rooting

medium (Drew 1975; Robinson 1994; Hodge 2004, 2006;
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Hodge et al. 2009; Li et al. 2014) and provided some

knowledge of the molecular mechanisms coordinating

these processes (Zhang and Forde 1998, 2000; Forde and

Walch-Liu 2009; Ruzicka et al. 2010; Ruffel et al. 2011;

Giehl et al. 2013; Kellermeier et al. 2013; Mounier et al.

2014). However, although breeding for root traits could

play an unprecedented role in improving crop establish-

ment and increasing yield (Lynch 2007, 2013; Hammer

et al. 2009; Gewin 2010; White et al. 2013a, b; York et al.

2013), limited attention has been paid to genotypic

responses of root architecture to the heterogeneous avail-

ability of soil resources in crop breeding programs. One

reason for this might be that roots are entangled below-

ground and studying the architectures of root systems is

very time consuming, which limit both the accuracy and

speed of measuring root traits in the field (Waines and

Ehdaie 2007; Gewin 2010; Herder et al. 2010). Irrespective

of the great progress in documenting and understanding the

phenotypic plasticity of plant roots in the laboratory, there

are still various aspects of root growth and nutrient

acquisition, especially of cereal crops, that must be

addressed in the field.

An understanding of genotypic variation in the respon-

ses of root system architecture to the heterogeneous dis-

tribution of nutrients in the field will determine the

potential for the exploitation of such traits to increase crop

yields and maximize nutrient-use efficiency. Maize, which

is a classic model cereal plant and a staple crop in many

areas of the world, forms a complex root system composed

of several different root types (Hochholdinger et al. 2004;

Hochholdinger and Tuberosa 2009). This paper reviews the

aspects of phenotypic plasticity of maize root system

architecture with emphasis on describing (1) the develop-

ment of its complex root system; (2) phenotypic responses

in its root system architecture to heterogeneous N avail-

ability; (3) the importance of phenotypic plasticity in root

system architecture for N acquisition; (4) different regu-

lation of root growth and nutrient uptake by shoot; and (5)

root traits in maize breeding.

Development of the maize root system

Maize plants possess an embryonic root system consist-

ing of a single primary root and a variable number of

seminal roots and a post-embryonic root system con-

sisting of several whorls of shoot-borne roots (Hoch-

holdinger et al. 2004). The root axes of all seminal roots

and shoot-borne roots are called axial roots (ARs), and

the roots initiated from these ARs are called lateral roots

(LRs). There are also higher-order LRs initialed from

lower-order LRs. The maize root system develops in an

orderly manner that is coordinated with the development

of the shoot, starting with the emergence of the primary

root, then seminal and shoot-borne roots that subse-

quently branch to form different orders of LRs (Foth

1962; Hanway 1963; Hoppe et al. 1986; Feldman 1994;

Fig. 1). The LRs are initiated from pericycle and endo-

dermal cells close to the phloem poles in the differen-

tiation zone of roots (Bell and McCully 1970; Esau

1977; Fahn 1990; Casero et al. 1995; Jansen et al. 2012).

In most cases, some of the first-order LRs and ARs

become leaders that elongate rapidly, persist for a long

time, and thicken with time (Varney et al. 1991). These

roots comprise most of the biomass of the root system

and form the long-distance transport pathways and

branch-root junctions (McCully and Canny 1988; Varney

et al. 1991; Shane et al. 2000). The higher-order LRs are

usually finer roots that make up most of the length and

surface area of the root system, and are essential for

water and nutrient uptake (Varney et al. 1991; McCully

1995, 1999; Sullivan et al. 2000). The diameter of

individual roots varies widely. The ARs are thicker roots,

which are able to exert greater force to penetrate com-

pacted soil (McCully and Canny 1988; McCully 1995;

Waisel and Eshel 2002; Hund et al. 2009a) and deter-

mine both the direction of growth of the root system and

its spatial distribution in the soil (Eissenstat 1997).

Embryonic roots of maize are functionally important

during early growth, but their function is soon replaced by

post-embryonic shoot-borne roots (Varney and McCully

1991; Feldman 1994; Feix et al. 2002; Fig. 1). Neverthe-

less, if the development and growth of the shoot-borne

roots of maize plants is restricted, then the remaining

seminal roots will show compensatory growth and

increased nutrient uptake compared to those of control

plants (Jeschke et al. 1997; Xu et al. 2009; Yan et al.

2011a), suggesting that the longevity and importance of

different root classes can alter depending on the integrated

functioning of the entire root system.

Post-embryonic shoot-borne roots include crown roots

(CRs; Fig. 1a, b, c; Hochholdinger et al. 2004) and brace

roots (BRs; Fig. 1d, e; Feldman 1994). The CRs start to

emerge from below-ground stem nodes 5–10 days after

germination and BRs emerge from above-ground stem

nodes approximately 6 weeks after germination (Hoch-

holdinger et al. 2004). The number and diameter of CRs are

greater on higher shoot nodes (Fig. 1b, c). The growth of

the BRs results in dramatic increases in both the total

length of the root system (TRL) and its dry weight (DW),

and is contemporaneous with a rapid increase of shoot

growth and demand for nutrients (Hoppe et al. 1986; Niu

et al. 2010; Peng et al. 2012a). Although 35–55 % of the N

in maize plants at harvest is taken up by the root during the

reproductive stage (Hirel et al. 2007), the TRL of the maize

root system reaches its highest value at silking (Durieux

et al. 1994; Peng et al. 2012a). This is consistent with
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studies on many cereals in which it has been observed that

the DW of the whole root system does not increase after

flowering and in some studies a substantial decrease has

been observed during grain filling (reviewed by Gregory

2006). Although the TRL of the maize root system

decreases markedly after silking, there is only a small

change in the DW of the root system (Peng et al. 2012a).

This is because LRs comprise only a small portion of the

total root DW, but constitute the majority of the TRL

(Walk et al. 2005; Hund et al. 2009b; Peng et al. 2010).

The decline in total length of LRs after silking is pri-

marily due to root mortality. Root mortality during the

reproductive stage has been associated with the transloca-

tion of N and carbon from roots to the developing ear of

plants grown in the field (Wiesler and Horst 1993). The

rapid reduction in TRL of maize plants grown in the field

might be explained by the influence of soil biota. The

presence of microorganisms, decomposers, herbivores and

parasites in the rhizosphere could accelerate root mortality,

especially when roots receive less carbon from the shoot

during the reproductive stage (Eissenstat and Yanai 1997;

Eissenstat et al. 2000; Watt et al. 2006a, b). Interestingly,

when maize plants are grown in quartz sand or nutrient

solution their root DW and TRL increase continuously

until maturity (Warncke and Barber 1974) even when they

suffer from N deficiency, which indicates that their roots do

not exhibit ontogenetically programmed mortality during

the reproductive stage (Niu et al. 2010; Yu et al. 2014).

Overall, the developmental and environmental signaling

that co-regulates root growth and development allows

plants to optimize the placement of roots within root sys-

tem adapted to complex and flexibly changing soil envi-

ronments (Malamy 2005).

Phenotypic plasticity of maize root responses

to nitrogen supply

Root architecture is controlled both by intrinsic develop-

mental programs and by complex interactions between the

plant physiological status and exogenous biotic and abiotic

stimuli in the rhizosphere (McCully 1995, 1999; Rich and

Watt 2013). The phenotypic plasticity of plant root systems

is manifest in the ability of plants to optimize root system

architecture for resource acquisition under diverse envi-

ronmental conditions in response to the identity, avail-

ability and distribution of soil resources (Fitter 1994;

Fig. 1 Development of the maize root system from embryonic roots

in seedlings to crown and brace roots initiated from shoot nodes in

adult plants. a The root system of a 35-day-old maize plant with the

major root types indicated. b The root system of a 49-day-old maize

plant with its shoot-borne roots from the fifth node. c Roots emerging

from shoot nodes on a 49-day-old maize plant. d Phenotypic

responses of the shoot-borne roots from the fifth node of a 49-day-

old maize plant to a non-uniform N environment (LoHN, local high

nitrate supply: HN 4 mM, Control 0.5 mM). e Phenotypic responses

of the shoot-borne roots from the seventh node of a 70-day-old maize

plant in response to non-uniform N environments. f All root types of a

70-day-old maize plant grown with a sufficient N supply
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Robinson 1994; Hodge et al. 1999; Fitter 2002; Hodge

2004, 2006; Shemesh et al. 2010; Croft et al. 2012; Gruber

et al. 2013). The stimulation of LR development by nitrate-

rich patches is a classic example of a nutrient-induced

alteration in root system architecture (Drew et al. 1973;

Drew and Saker 1975; Granato and Raper 1989; Schorte-

meyer et al. 1993; Forde and Lorenzo 2001; López-Bucio

et al. 2003; Forde and Walch-Liu 2009; Giehl et al. 2013).

In the short-term, systemic N deficiency in maize seedlings

increases carbon partitioning to roots, accelerates root

growth, and results in fewer, longer ARs with longer LRs

(Pan et al. 1985; Feil et al. 1990; Eghball and Maranville

1993; Barber 1995; Gaudin et al. 2011) as is also observed

in other plant species (Hermans et al. 2006; Giehl et al.

2013; Gruber et al. 2013). However, the lengths of ARs of

the 60-day-old (adult) maize plants respond less dramati-

cally than those of seedlings to systemic N deficiency

(Gaudin et al. 2011; Orman-Ligeza et al. 2013; Yu et al.

2014). By contrast, although nitrate-rich patches only

increase the length of LRs from the treated roots of maize

seedlings, they increase both the length and density of LRs

from shoot-borne roots of adult maize plants (Peng et al.

2012a; Yu et al. 2014). Thus, the mechanisms controlling

the responses of embryonic roots and shoot-borne roots to

nitrate-rich patches appear to differ (Hochholdinger and

Tuberosa 2009; Zhu et al. 2011) and merit further inves-

tigation. In seedlings, a transient IAA increase in root tips

of nitrate-fed root segments is observed 2 days after the

treatment (Sattelmacher and Thoms 1995). Auxin and

auxin transport inhibitor application revealed the pivotal

roles of auxin transported from shoot to roots in response

of LR growth to localized supply of nitrate in maize (Wang

et al. 2004; Guo et al. 2005; Liu et al. 2008, 2010).

Another general response of roots of maize to sys-

temic N deficiency is to increase rooting depth (Gastal

and Lemaire 2002; Dunbabin et al. 2003, 2004). Root

growth angles of maize plants become steeper when they

are grown with a reduced N supply (Gaudin et al. 2011;

Lynch 2013; Trachsel et al. 2013). Conversely, excessive

N supply inhibits root growth and produces a shallower

root system (Durieux et al. 1994; Walch-Liu et al. 2006;

Gaudin et al. 2011). The N concentration in shoot tissues

affects the root responses to the availability and distri-

bution of nitrate in the soil, implicating long-distance

signals from the shoot to the root in these responses

(Zhang and Forde 1998, 2000; Zhang et al. 1999; Her-

mans et al. 2006; Desnos 2008; Ruffel et al. 2008;

Alvarez et al. 2012).

While many studies have focused on the morpholog-

ical responses of roots within nitrate-rich patches, less

attention has been paid to morphological responses of

roots outside these patches. However, recent studies have

demonstrated that, whilst the root length density (RLD;

cm cm-3) and specific root length (SRL; m g-1) of the

root system within nitrate-rich patches are increased, the

development and growth of LRs outside the nitrate-rich

patches is reduced, which suggests a systemic carbon

partitioning strategy within a whole root system both in

Arabidopsis and maize plants (Mounier et al. 2014; Yu

et al. 2014). It is known that CHL1 functions upstream

of ANR1 in regulating the proliferation of LRs in

response to a locally high nitrate supply; there are also

some additional components involved in ANR1 function

regulated by high nitrate supply (Zhang and Forde 1998;

Remans et al. 2006). It is hypothesized that, at low-

nitrate concentrations, CHL1 represses the growth of LRs

by promoting basipetal auxin transport (Krouk et al.

2010) and acts locally to modulate auxin levels and

meristematic activity in Arabidopsis plants (Mounier

et al. 2014). Alternatively, or additionally, the increased

N concentration in shoots resulting from a localized high

N supply might initiate a ‘systematic inhibitory effect’

on the development and growth of LRs outside nitrate-

rich patches (Mounier et al. 2014; Yu et al. 2014). The

NO-signaling pathway also plays a role in the responses

of maize roots to nitrate availability (Trevisan et al.

2011; Manoli et al. 2014), and it is thought that perox-

isomal NO modulates auxin-induced lateral root forma-

tion both in Arabidopsis and maize (Schlicht et al.

2013). Microarray analyses revealed that early-responsive

genes related to cell division and expansion such as a-

expansin, cellulose synthase, kinesin, plasma membrane

and tonoplast aquaporins are possibly involved in local-

ized nitrate stimulation of lateral root development in

maize (Liu et al. 2008). But so far, it remains unclear

what triggers LR elongation and initiation to deploy

nitrogen in the heterogeneous nutrients medium in maize.

The importance of root phenotypic plasticity in N

capture

Our knowledge of both the physiology and molecular

biology of root N acquisition has improved greatly over the

past few decades (Crawford 1995; Crawford and Glass

1998; Miller et al. 2007; Gojon et al. 2009; Gojon 2013;

Nacry et al. 2013). The role of root architecture in N

acquisition has also been studied widely. The development

of a plant root system continuously extends the rhizosphere

periphery into the soil, and the resulting root architecture

largely determines the efficiency of nutrient acquisition

(Lynch 1995; Linkohr et al. 2002; Zhu et al. 2005). Root

length per unit of soil volume (RLD) is an important factor

for nutrient acquisition (Robinson and Rorison 1983;

Wiesler and Horst 1994; Garnett et al. 2009; White et al.

2013a). Increasing the total length of LRs results in greater

N acquisition (Linkohr et al. 2002; Wang et al. 2004, 2006)
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and fine roots take up more N than thicker roots on a dry

weight (DW) basis (Sullivan et al. 2000). As mentioned in

the previous section, LRs proliferate in regions of the soil

with higher N availability.

In addition to root architecture, the characteristics of

nitrate uptake by root cells (i.e., their uptake capacity Vmax

and affinity for nitrate Km) also play an important role in N

acquisition. When roots encounter a local region of high

nitrate supply, their N uptake capacity increases transiently

by up to 75 % compared to regions of the root outside the

nitrate-rich patch (Jackson et al. 1990; Robinson 1994; van

Vuuren et al. 1996; Hodge 2004). In maize, three nitrate

transporters have been characterized: ZmNrt1.1 encodes a

low-affinity nitrate transporter expressed in both root and

shoot tissues (Quaggiotti et al. 2004), ZmNrt2.1 encodes a

high-affinity nitrate transporter that is predominantly

expressed in the epidermis and cortex of roots and is

implicated in high-affinity NO3
- uptake, and ZmNrt2.2

encodes a constitutive and inducible high-affinity nitrate

transporter that is expressed in the cortex and central cyl-

inder of the root (Santi et al. 2003; Trevisan et al. 2008).

Transcription of ZmNrt2.1 and ZmNrt2.2 is 1000-fold

higher than that of ZmNrt1.1A, ZmNrt1.1B and ZmNrt1.2;

even when plants are grown with an optimal N supply, and

basal transcription of ZmNRT2.1 and ZmNRT2.2 is much

higher than other ZmNRT2 and ZmNRT1 genes over a

plant’s life cycle (Garnett et al. 2013). Curiously, however,

the expression of ZmNRT2.1 and ZmNRT2.2 in roots of

maize plants within nitrate-rich patches is suppressed, and

the nitrate uptake capacity of roots within these patches is

lower than in those outside the patches (Quaggiotti et al.

2003). Increased N uptake by maize roots in nitrate-rich

patches is achieved mainly by changes in root system

architecture, which is observed not only in seedlings, but

also in adult plants (Yu et al. 2014). Because nitrate is

highly mobile in the soil profile, due to its high water

solubility, morphological plasticity of high-order laterals of

adult maize plants is beneficial for taking up nitrate leached

to deeper soil layers and, thereby, improving crop N use

efficiency and preventing environmental pollution (Lynch

and Brown 2001; Peng et al. 2012a; White et al. 2013a, b).

Further studies demonstrated that deep root genotypes are

important for deep soil exploration and that low crown root

numbers in maize tend to deserve consideration as a

potential trait for genetic improvement in low N soil

(Lynch et al. 2012; York et al. 2013; Saengwilai et al.

2014).

The investigation on temporal and spatial dynamics of

root distribution and nutrient depletion in the soil is

imperative (Kuchenbuch et al. 2009; Buczko and Ku-

chenbuch 2013). Roots are generally more abundant in the

topsoil than in deeper soil horizons, and this distribution

corresponds primarily to the availability of phosphorus and

other immobile soil nutrients (Lynch and Brown 2001;

Fitter 2002; Zhu et al. 2005; White et al. 2013a). The

relationship between root distribution and soil depth can be

described by a simple asymptotic function in most cases

(Jackson et al. 1996) and the length and mass of roots

decreases exponentially with depth for many crops (Ger-

witz and Page 1974; Robertson et al. 1993; Oikeh et al.

1999; Zhuang et al. 2001). A close correlation of RLD of

catch crops in the sub-soil layer with nitrate depletion is

reported in the field (Thorup-Kristensen 2001, 2006;

Kristensen and Thorup-Kristensen 2004) and similar trends

with soil residual mineral nitrogen (Nmin) in the whole soil

profile in maize (Wiesler and Horst 1994; Peng et al. 2010).

In the upper 0.1 m of soil, typical values of RLD are about

20 cm cm-3 in grasses, 5–10 cm cm-3 in temperate cereal

crops, and 1–2 cm cm-3 in other crops (reviewed by

Jackson et al. 1996). It is clear that root systems with

greater RLD in the topsoil horizon can acquire more of the

N fertilizer applied and reduce the movement of water and

nitrate toward deeper soil layers (Dunbabin et al. 2002;

Lynch 2013; White et al. 2013b).

Different regulation of root growth and nutrients uptake

by shoot

The balance between root growth and shoot photosynthesis

accumulation should be coordinated in crop production and

vary in relation to factors such as genotypic differences and

resource supply. In annual crops, the allocation of dry

matter to roots changes during their life cycle. Typically,

proportionally more assimilates are allocated to roots dur-

ing early stages of plant growth. After flowering, a large

proportion of recent assimilates are translocated to the

growing reproductive structures and the proportion of

assimilates translocated to roots decreases (Brown and

Biscoe 1985; Snapp and Shennan 1992; Wells and Eis-

senstat 2003). Data from many studies indicate that the

root: shoot DW ratio (R/S) of maize decreases from about

0.68 at emergence (9 days after planting) to 0.16 at phys-

iological maturity (137 days after planting) (Amos and

Walters 2006). During the vegetative growth period, the

increase in RLD is synchronized with shoot growth and

demand for nutrients, and is correlated with fluctuations in

carbon flux from shoot to roots (Rajcan and Tollenaar

1999; Gallais and Coque 2005; Hirel et al. 2007). During

reproductive growth, reduced carbon flux from shoot to

roots, and accelerated root mortality, results in a rapid

decrease in R/S DW ratio (Wiesler and Horst 1993; Wells

and Eissenstat 2003; Ogawa et al. 2005).

The amounts of mineral nutrients taken up by the root

system are coordinated with shoot growth and demand

for nutrients. Although covering or removing ears of

maize leads to greater allocation of carbon and nutrients
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to the root, and results in a larger root system and a

higher R/S ratio, less nutrients are taken up after these

treatments compared with control plants (Christensen

et al. 1981; Ceppi et al. 1987; Yan et al. 2011b; Ning

et al. 2012). These results demonstrate that the growth

and absolute size of the maize root system is not nec-

essarily correlated with the amount of nutrients it

acquires. Root growth is often determined by the amount

of carbon translocated from the shoot, whilst the amounts

of mineral nutrients taken up is often determined by

shoot demand or shoot growth potential (Ma and Dwyer

1998; Wang et al. 2006; Coque et al. 2008; Yan et al.

2011b; Ning et al. 2012).

It is interesting to observe that post-silking uptake

accounts for 16–43 % of the total N and 16–55 % of the

total P in maize plants at maturity, whilst there is little

accumulation of potassium (K) post-silking. The ratio of

grain K content to whole plant K content was the lowest

compared with the other two macro-elements N and P at

maturity. Indeed, there can even be a net loss of K in the

post-silking period (Peng et al. 2012b; Ciampitti et al.

2013; Ning et al. 2013). It is believed that the asynchronous

uptake of N, P and K is closely related to their functions in

plants. A requirement for K to maintain enzyme activities

and cell turgor underlies vigorous vegetative growth

(Hawkesford et al. 2012), which might explain the pref-

erential accumulation of K pre-silking, whereas N and P

are required in large amounts for the formation of new

tissues and the accumulation of seed reserves during post-

silking grain development. Also K is important for the

loading of sucrose and the rate of the mass flow-driven

solute transport in the sieve tubes of the phloem (Haw-

kesford et al. 2012). There is a net remobilization of N and

P from vegetative to reproductive tissues post-silking (Ning

et al. 2012, 2013).

Plasticity in the partitioning of carbon between shoot

and roots also depends upon external environmental fac-

tors. In the short-term, plants experiencing nutrient defi-

ciency can increase resource acquisition by increasing their

R/S DW ratio (Ågren and Ingestad 1987; Aikio and

Markkola 2002; Hermans et al. 2006). This plasticity of

carbon allocation to compensate for limitations in nutrient

uptake is modulated by species-specific developmental

patterns (Siddique et al. 1990; Gedroc et al. 1996), and is

negatively correlated with the concentrations of mineral

nutrients in leaves (Scheible et al. 1997; de Groot et al.

2003; Hermans et al. 2006). However, greater carbon

allocation to roots will restrict shoot growth, which can

ultimately result in reduced grain yield. Optimized nutrient

supply in crop production is therefore important for max-

imizing grain yield and, since agronomic nutrient-use

efficiency is the quotient of grain yield and nutrient supply,

improving nutrient-use efficiency.

Root traits in maize breeding

Although roots play a significant role in increasing nutrient

acquisition, limited attention has been paid to root traits in

crop breeding during the past decades, possibly because

roots grow belowground and are difficult to study (Gewin

2010; White et al. 2013b). Plant breeders usually make

considerable gains on ‘aboveground’ traits and tremendous

genetic variations trapped in roots have been neglected

(Duvick 2005). The development of new crop varieties

with enhanced soil resource acquisition is an important

strategy for global grain security (Lynch 1998, 2007;

Vance et al. 2003; White et al. 2013b). Improvement in the

ability of plants to tolerate stress conditions, rather than

increases in primary productivity perse, has been the pri-

mary driving force for increasing grain yield in maize

breeding in recent decades (Duvick 2005; Fischer and

Edmeades 2010). The ‘Green Revolution’ succeeded in

increasing maize yields using conventional germplasm to

develop disease-resistant F1-hybrid varieties, whose yields

responded positively to irrigation and fertilizer applications

without lodging (Evenson and Gollen 2003; Godfray et al.

2010). Increased root DW in new maize varieties plays an

important role in providing resistance to lodging at high

plant densities (Duvick and Cassman 1999; Duvick 2005;

Echarte et al. 2008). In addition, the deeper roots of the

new varieties enable maize plants to access more water and

soluble nutrients, such as nitrate, in deep soil horizons

(Dunbabin et al. 2003; Hammer et al. 2009; Lynch 2013).

Hammer et al. (2009) modeled the relationship between

root architecture and grain yield for maize varieties

released in the US over the last century and concluded that

improvements in root system architectures and, in partic-

ular, water capture through breeding have increased both

biomass accumulation and crop yields. Study on the three-

dimensional distributions of roots from maize varieties

released in different eras have demonstrated that new

maize varieties have larger root DW, but similar TRLs and

vertical root distributions, to older varieties at silking,

when the root system of maize attains its largest size, but

new maize varieties have greater TRL and deeper roots

than older varieties at maturity. The latter phenomenon was

the result of more growth of new roots and/or less root

mortality after silking in the new varieties, especially of

roots in the topsoil (Ning et al. 2014). Irrespective of

similar TRLs in both new and older maize varieties at

silking, new varieties accumulate more mineral nutrients

than older varieties. This is likely to be partly a conse-

quence of greater shoot demand, rather than simply an

effect of root size per se, as discussed in the preceding

section (Clarkson et al. 1988; Imsande and Touraine 1994;

Peng et al. 2010; Yan et al. 2011b). Fortunately, some

ongoing breeding and genetic improvement programs have
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been implemented gradually by the geneticists and agron-

omists in characterizing promising root traits for enhancing

nutrient acquisition and increasing the ability of stresses

tolerance (Tuberosa et al. 2003; Hund et al. 2004, 2011;

Zhu et al. 2005, Trachsel et al. 2009; Ruta et al. 2010;

Lynch 2013; Rose et al. 2013; White et al. 2013a, b;

Postma et al. 2014; Saengwilai et al. 2014).

Concluding remarks and future perspectives

Much is known about how root architecture responds to

heterogeneous nutrient availabilities in plants of different

species and of contrasting nutritional status under con-

trolled environmental conditions, and the molecular

mechanisms coordinating these responses are beginning to

be elucidated in model plants, such as Arabidopsis

(reviewed by Casimiro et al. 2003; López-Bucio et al.

2003; Hardtke 2006; Desnos 2008; Benková and Bielach

2010; De Smet 2012; Ubeda-Tomás et al. 2012). However,

little is known about the responses’ root architecture to

heterogeneous nutrient availability under field conditions

(reviewed by Hochholdinger et al. 2004; Hochholdinger

and Tuberosa 2009; Smith and De Smet 2012; Orman-

Ligeza et al. 2013).

While nitrate-rich patches increase the length of LRs

from the treated roots of maize seedlings, they increase

both the length and density of LRs of shoot-borne roots

that form adult maize plants at reproductive growth stage,

when TRL begins to decrease dramatically under field

conditions (Peng et al. 2012a; Yu et al. 2014). The pos-

sible regulatory mechanism underlying the markedly

increase in both the length and density of LRs initiated

from shoot-borne roots is unknown. In Arabidopsis, sys-

temic LP supply also causes an increase in length and

density of LRs. Expressional induction of the auxin

receptor TRANSPORT INHIBITOR RESPONSE1 (TIR1)

in pericycle cells promotes LRs initiation and emergence;

as a result, root density is significantly enhanced in

P-deficient roots (Pérez-Torres et al. 2008). Since modern

maize varieties take up more post-silking nutrients than

old ones, more attention should be paid to the genetic

improvements and novel adaptive mechanism of maize

shoot-borne roots, especially the later initiated ones to

resource deployment (Gaudin et al. 2011; Saengwilai

et al. 2014; Yu et al. 2014).

Although the amount of nutrients taken up is decided by

shoot demand, a larger and deeper root system is appar-

ently beneficial for increasing the contact with the soil and

thus nutrients uptake; and intercept/take up the nitrate

leached to deeper soil layers. Knowledge of root devel-

opment and the phenotypic plasticity of root system

architecture to nutrient availability will help harnessing the

potential for manipulating root growth in the field to

exploit the biological potential of root system on one hand,

and breeding roots with more efficient acquisition of soil

resources on the other hand, and thereby maximizing the

nutrient-use efficiency and reducing N losses in maize

production.

Approaches toward the understanding of the changing

demands of crops for nutrients over the growing season,

and the temporal and spatial heterogeneities in the avail-

ability of mineral nutrients in the field, enable us opti-

mizing root zone management to synchronize crop growth

demand, root resource acquisition and fertilizer application

throughout the crop growing season (Peng et al. 2012a;

Shen et al. 2013).

Acknowledgments We thank the National Natural Science Foun-

dation of China (No. 31272232), the State Key Basic Research and

Development Plan of China (No. 2013CB127402), the Innovative

Group Grant of National Natural Science Foundation of China (No.

31121062), Chinese Universities Scientific Fund (No. 2012YJ039),

Post-graduate Study Abroad Program of China Scholarship Council,

and the Rural and Environment Science and Analytical Services

Division (RESAS) of the Scottish Government for financial support.

References

Adu MO, Chatot A, Wiesel L, Bennett MJ, Broadley MR, White PJ,

Dupuy LX (2014) A scanner system for high resolution

quantification of variation in root growth dynamics of Brassica

rapa genotypes. J Exp Bot. doi:10.1093/jxb/eru048

Ågren GI, Ingestad T (1987) Root: shoot ratio as a balance between

nitrogen productivity and photosynthesis. Plant Cell Environ

10:579–586

Aikio S, Markkola AM (2002) Optimality and phenotypic plasticity

of shoot-to-root ratio under variable light and nutrient availabil-

ities. Funct Ecol 16:67–76

Alvarez JM, Vidal EA, Gutiérrez RA (2012) Integration of local and

systemic signaling pathways for plant N responses. Curr Opin

Plant Biol 15:185–191

Amos B, Walters DT (2006) Maize root biomass and net rhizode-

posited carbon: an analysis of the literature. Soil Sci Soc Am J

70:1489–1503

Armengaud P, Zambaux K, Hills A, Sulpice R, Pattison RJ, Blatt MR,

Amtmann A (2009) EZ-Rhizo: integrated software for the fast

and accurate measurement of root system architecture. Plant J

57:945–956
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