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Abstract Ascorbate (AsA) plays a fundamental role in

redox homeostasis in plants and animals, primarily by

scavenging reactive oxygen species. Three genes, repre-

senting diverse steps putatively involved in plant AsA

biosynthesis pathways, were cloned and independently

expressed in Solanum lycopersicum (tomato) under the

control of the CaMV 35S promoter. Yeast-derived GDP-

mannose pyrophosphorylase (GMPase) and arabinono-1,4-

lactone oxidase (ALO), as well as myo-inositol oxygenase 2

(MIOX2) from Arabidopsis thaliana, were targeted.

Increases in GMPase activity were concomitant with

increased AsA levels of up to 70% in leaves, 50% in green

fruit, and 35% in red fruit. Expression of ALO significantly

pulled biosynthetic flux towards AsA in leaves and green

fruit by up to 54 and 25%, respectively. Changes in AsA

content in plants transcribing the MIOX2 gene were

inconsistent in different tissue. On the other hand, MIOX

activity was strongly correlated with cell wall uronic acid

levels, suggesting that MIOX may be a useful tool for the

manipulation of cell wall composition. In conclusion, the

Smirnoff–Wheeler pathway showed great promise as a

target for biotechnological manipulation of ascorbate levels

in tomato.
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Abbreviations

GMPase Guanidine-diphosphate mannose

pyrophosphorylase

ALO Arabinono-1,4-lactone oxidase

MIOX Myo-inositol oxygenase

MI Myo-inositol

L-GulL L-Gulono-1,4-lactone

GlucA D-Glucuronic acid

DHA Dehydroascorbate

L-Asc L-Ascorbate

AsA Total ascorbate

GalUR Galacturonic acid reductase

L-GalLDH L-Galactono-1,4-lactone dehydrogenase

GME GDP-D-mannose 3,5-epimerase

O/N Over night

GDP Guanidine-diphosphate

Introduction

The L-enantiomer of ascorbate (AsA), or vitamin C, acts as

a scavenger of the free radicals generated by photosyn-

thesis, cellular respiration, and abiotic stresses such as
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ozone and UV radiation (Levine 1986; Conklin et al. 1996;

Smirnoff and Pallanca 1996; Noctor and Foyer 1998;

Smirnoff and Wheeler 2000). AsA has additionally been

shown to play an important role as an enzyme cofactor

while participating in defense, cellular elongation, division,

and fruit ripening (Arrigoni and De Tullio 2000, 2002;

Pastori et al. 2003; Green and Fry 2005). In animals, AsA

is synthesized from D-glucose which is converted into

L-gulono-1,4-lactone (L-GulL) via the intermediates D-glu-

curonic acid (GlucA) and L-gulonate (Fig. 1; Electronic

Supplementary Material Fig. A). L-GulL is oxidized to AsA

by L-gulono-1,4-lactone oxidase (Burns and Mosbach

1956). Humans cannot synthesize AsA due to a mutation in

the L-gulono-1,4-lactone oxidase gene and have to acquire

Vitamin C through the regular ingestion of fruit and veg-

etables (Nishikimi et al. 1994). Vitamin C micronutrient

deficiency is associated with conditions such as scurvy and

low immunity because of its integral role as enzyme

cofactor and in the biosynthesis of carnitine and collagen

(reviewed by Padayatty et al. 2003). The biofortification of

crops has become a major focus in developing countries

where poverty and micronutrient deficiencies are synony-

mous and are largely responsible for poor health and

fatalities (reviewed by Müller and Krawinkel 2005).

Several AsA biosynthetic pathways have been identified

and characterized in plants (Fig. 1; Electronic Supplemen-

tary Material Fig. A). The ‘‘Smirnoff–Wheeler’’ pathway is

considered the principal route for de novo synthesis of AsA

and involves the conversion of D-mannose into AsA via a

series of L-galactose containing intermediates (Barber 1979;

Wheeler et al. 1998; Conklin et al. 1999, 2000, 2006;

Bartoli et al. 2000; Wolucka and Van Montagu 2003;

Smirnoff et al. 2004; Dowdle et al. 2007; Laing et al. 2007;

Loannidi et al. 2009). Conklin et al. (1997) has demon-

strated that ascorbate deficient Arabidopsis thaliana

mutants display reduced GDP-mannose pyrophosphorylase

(GMPase) activity, an enzyme that catalyzes one of the first

steps of the ‘‘Smirnoff–Wheeler’’ pathway. Expression of

an Acerola GMPase in tobacco resulted in up to 100%

increased levels of AsA (Badejo et al. 2007). Loannidi et al.

(2009) has shown that galactose-1-phosphate phosphatase

expression is up regulated during fruit development, sug-

gesting an important control point in ascorbate biosynthesis.

The final biosynthetic step, oxidation of L-galactono-1,4-

lactone (L-GalL) into AsA is catalyzed by galactono-

1,4-lactone dehydrogenase (L-GalLDH), the only

membrane-bound enzyme of this pathway (Hancock et al.

2003). A yeast homologue, arabinono-1,4-lactone oxidase

(ALO), has been shown to promiscuously convert L-GalL,

as well as L-guluno-1,4-lactone (L-GulL) into AsA (Huh

et al. 1994; Lee et al. 1999; Hancock et al. 2000; Sauer et al.

2004; Hancock 2009). The ‘‘Smirnoff–Wheeler’’ pathway

can, furthermore, be augmented through a ‘‘pectin scav-

enging’’ pathway whose products are directly utilized by L-

GalLDH (Agius et al. 2003). Support for this alternative

route to AsA stem from radiotracer, transcription, and

expression studies of various pathway intermediates (Lo-

ewus 1999; Agius et al. 2003; Cruz-Rus et al. 2010).

Fig. 1 A schematic

representation of proposed

ascorbic acidbiosynthesis

pathways: the Smirnoff–

Wheeler pathway (Wheeler

et al. 1998) the pectin

scavenging pathway (Agius

et al. 2003) and the animal and

animal-like AsA biosynthetic

pathways (Wolucka and Van

Montagu 2003; Lorence et al.

2004). GMPase GDP-mannose

pyrophosphorylase; MIOX myo-

inositol oxygenase; ALO
arabinono-1,4-lactone oxidase;

L-GulLDH L-gulono-1,4-lactone

dehydrogenase; L-GalLDH
L-galactono-1,4-lactone

dehydrogenase

554 Planta (2012) 235:553–564

123



Overexpression of a MIOX gene in Arabidopsis was

shown to increase AsA levels two- to threefold (Lorence

et al. 2004). A de novo ‘‘MIOX’’ or ‘‘animal-like’’ path-

way, involving the ring cleavage of myo-inositol (MI) by

myo-inositol oxygenase (MIOX) into D-glucuronic acid,

was proposed (Fig. 1). Labeling experiments revealed that

myo-inositol was incorporated not only into cell wall

components but also into L-gulonate, which in turn may be

converted into L-GulL (Lorence et al. 2004; Zhang et al.

2008). L-GulL was shown to serve a direct precursor of

L-ascorbic acid in plant cells (Wolucka and Van Montagu

2003).

Our current study was initiated with the intent of

increasing total AsA in tomato. Temporal analyses of

changes in the levels of AsA, as well as precursors and

breakdown products, have suggested that ascorbate

metabolism is highly complex in tomato (Carrari and

Fernie 2006; Wang et al. 2009; Garcia et al. 2009). Here

we report on the heterologous expression of GMPase,

ALO, and MIOX under the control of a constitutive

promoter and the corresponding effect on AsA content

within leaf and fruit tissue. GMPase has been shown to

affect ascorbate biosynthesis in several Solanaceous

species (Conklin et al. 1999; Keller et al. 1999; Badejo

et al. 2007), ALO effectively metabolizes a range of

substrates towards ascorbate production in situ (Huh

et al. 1994), and MIOX is thought to play a central role

in an ‘‘animal like’’ AsA biosynthetic pathway (Lorence

et al. 2004).

Materials and methods

Constructs and transformations

GMPase (GenBank accession number NM_001180114)

and ALO (accession number AY693120.1) were PCR

amplified from Saccharomyces cerevisiae strain FY23

(S288C) (Winston et al. 1995) genomic DNA. The coding

region of the Arabidopsis thaliana L. MIOX2 gene

(accession number NM_127538) was amplified from A.

thaliana Columbia-O cDNA [NASC (http://arabidopsis.

info/)]. Appropriate PCR primer pairs are given in Table 1.

Amplification, using pfu polymerase (Fermentas, Glen

Burnie, MD, USA), introduced XhoI and HindIII restriction

sites. PCR products were independently cloned into the

pGEM�-T Easy vector (Promega, Madison, WI, USA) and

sub-cloned into the pART7 vector (Gleave 1992) under

control of the constitutive CaMV 35S promoter. Expres-

sion cartridges were transferred into the pART27 plant

transformation vector as NotI fragments as described by

Basson et al. (2010b). The constructs, i.e. pART27::

GMPase, pART27::ALO, and pART27::MIOX2, were

mobilized into Agrobacterium tumefaciens EHA 105 cells

using the freeze–thaw method (Höfgen and Willmitzer

1988). The Solanum lycopersicum ‘Money maker’ cultivar

was infiltrated as described by Obiadalla-Ali et al. (2004).

Plant material

Stem cuttings representing different transformation events

were transferred onto MS agar (4.4 g/L Murashige and

Skoog, 15 g/L sucrose and 3 g/L, agar, pH 7) and grown in

tissue culture at 22�C under continuous light conditions.

After 2 weeks, plants were transferred to the glass house

and progressively hardened off in soil (Double Grow,

Durbanville, South Africa) at 22�C in a 16/8 h day night

cycle. Seeds were harvested from ripe fruit and germinated

in the glasshouse. At 4 weeks, plantlets were moved to a

greenhouse (summer between the months of November and

March) and grown under controlled irrigation. Every

4 days, plants were supplied with 1 g/L calcium nitrate and

1.5 g/L carbon-free hydroponic nutrient supplement

(Hygrotech Hygroponic Nutrients, Pretoria, South Africa

Reg No. K5709). Leaf samples were collected at 8 weeks

and whole fruit samples were harvested during green and

red stages of maturity at 25 days and 60 ± 5 days,

respectively, post anthesis (Basson et al. 2010a). The

pericarp was not separated from the locular tissue as this

would initiate a wound response thereby affecting ascor-

bate levels (Loannidi et al. 2009). Care was taken to har-

vest all samples at noon on days with non-overcast skies. In

each case, five replicates were sampled for each line.

Samples were immediately frozen, ground in liquid nitro-

gen, and stored at -80�C.

Selection of transformants by polymerase chain

reaction

Plant material was ground in liquid nitrogen and genomic

DNA extracted from 50 mg of tissue according to the

method of McGarvey and Kaper (1991) and in the presence

of 0.5 g/L spermidine. DNA concentration and quality

were determined spectrophotometrically (Basson et al.

2010a, b). GMPase, ALO, and MIOX transgenic lines were

screened using forward primer 10 and reverse primers 7, 8,

and 9, respectively (Table 1). PCR screening reactions

were performed with PromegaGoTaq� PCR (Promega,

Madison, WI, USA). Amplicons were visualized in a 1%

agarose gel containing ethidium bromide (4 lL/100 mL).

WT plants and plasmids containing the cloned genes

of interest were used as negative and positive controls,

respectively.
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RNA extraction and RT-PCR

RNA was extracted from frozen leaf and fruit material

according to Burgos et al. (1995) with the following

modifications. The extraction buffer contained 5% b-merca-

ptoethanol and RNA was precipitated with one-quarter

volume 8 M lithium chloride. The dried RNA pellet was

reconstituted in *50 lL MQ water and RNA concen-

trations were normalized to 100 ng/lL. All samples were

DNase-treated using DNase I (Fermentas). First strand

cDNA synthesis was performed with 5 lg RNA using

RevertAid H Minus Reverse Transcriptase (Fermentas).

Gene-specific forward primers (Table 1, numbers 1, 3,

and 5) and reverse primers (Table 1, numbers 2, 4, and

6) were used to amplify expressed sequences. TIP41, a

reference gene for quantitative transcriptomics in Sola-

num lycopersicum (Expósito-Rodrı́guez et al. 2008) was

used as a constitutively expressed gene control (Table 1,

number 11 and 12). All RT-PCR reaction conditions

were as follows: 3 min at 94�C; (25 cycles of: 30 s at

94�C, 30 s at 55�C, 30 s at 72�C); 7 min at 72�C.

Protein extraction

Total protein from GMPase expressing plants was extrac-

ted from frozen tissue in 10 volumes of ice cold buffer

containing 50 mM Tris–HCl (pH 7.5), 0.05% Triton

X-100, 5 mM EDTA, 5 mM DTT, 0.01% b-mercap-

toethanol and 1 mM PMSF. Samples were centrifuged

(18,000 g, 5 min, 4�C), one volume 50% PEG 6000

was added to the supernatant, and protein precipitated

for 30 min on ice. Samples were centrifuged (14,000 g,

10 min, 4�C) and pellets resuspended in 100 mM Tris pH

7.5. MIOX protein was extracted in 10 volumes of ice-

cold buffer containing 100 mM Tris–HCl pH 7.6, 2 mM

L-cysteine, 1 mM ammonium ferrous sulfate hexahydrate,

1 mM EDTA, and 1% PVPP. Protein was precipitated as

described above and resuspended in 100 mM KPO4 buffer

(pH 7.2) containing 2 mM L-cysteine and 1 mM ammo-

nium ferrous sulfate hexahydrate.

Activity assays

GMPase activity was measured using a stopped radio-

assay as described by Keller et al. (1999) with the fol-

lowing modifications. The assay was started by adding

400 lL crude protein extract to 400 lL assay mix

(100 mM Tris pH 7.5, 4 mM MgCl2, 5 mM sodium

pyrophosphate, 0.1 mM cold GDP-mannose, and 0.04 Cu
14C GDP-mannose) and stopped after 1 h with the

addition of 2 mg activated charcoal. Scintillation fluid

(5 mL) was added and 14C D-mannose-1-P determined

using the Tri-Carb 2100 TR Liquid Scintillation Ana-

lyzer (Packard Instrument Company, Meriden, CT,

USA).

MIOX activity was determined within the linear range

of an endpoint assay (Reddy et al. 1981) modified as

follows: Protein (500 lg per sample) was incubated for

30 min at 30�C in a buffer containing 100 mM KPO4

(pH 7.2), 2 mM L-cysteine, 1 mM ammonium ferrous

sulfate hexahydrate, and 60 mM myo-inositol (Electronic

Supplementary Material Fig. B). The reaction was stop-

ped by boiling for 10 min and denatured protein removed

by centrifugation (18,000 g, 10 min). Glucuronic acid

was measured as described by Van den Hoogen et al.

(1998).

Table 1 Primers used for this study: GDP-mannose pyrophosphorylase (GMPase); arabinono-1,4-lactone oxidase (ALO); myo-inositol

oxygenase (MIOX); cauliflower mosaic virus 35S promoter (CaMV 35S); TIP41-like protein (TIP41) (Expósito-Rodrı́guez et al. 2008)

Prime number Name Bp Oligo sequence Accession no.

1 GMPase F 30 50 GGCTCGAGCATATATAATTGAAAAATGAAAGG 30 NM_001180114

2 GMPase R 29 50 GGAAGCTTAGTTCGTTTTCCTAACTCACA 30

3 ALO F 28 50 GGCTCGAGTCAGGTTTTTCACCCCATGT 30 AY693120

4 ALO R 30 50 CCAAGCTTACAAAAAGAGACTAGTCGGACA 30

5 MIOX F 29 50 GGCTCGAGTCAAATTCCGAGCAAGATGAC 30 NM_127538

6 MIOX R 31 50 GGAAGCTTTGACTCGTAGCTTTATCTCACCA 30

7 GMPase R 21 50 AACAATGTTGGCACCTGTAGC 30

8 ALO R 21 50 ATCCCATTGCTTCAAAAGGTT 30

9 MIOX R 20 50 GGGTCGTGCCATTCTTCTTA 30

10 CaMV 35S 21 50 TCCACTGACGTAAGGGATGAC 30

11 TIP41 F 22 50 ATGGAGTTTTTGAGTCTTCTGC 30 SGN-U321250

12 TIP41 R 19 50 GCTGCGTTTCTGGCTTAGG 30

Bp base pairs, F forward primer, R Reverse primer
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Ascorbic acid measurement

Frozen plant tissue was ground in five volumes of 6% (w/v)

meta-phosphoric acid and total AsA quantified with the aid

of ascorbic acid oxidase (EC 1.10.3.3) and the reductant

tris[2-carboxyethyl]phosphine hydrochloride (TCEP) as

described by Basson et al. (2010a). Content was calculated

against a standard curve of 0–80 lM ascorbic acid. Total

AsA is given as the sum of oxidized AsA (L-ascorbic acid)

and reduced AsA (DHA).

GC–MS for metabolite profiling

Extraction and derivatization of plant tissue was done

according to the method of Roessner et al. (2000) with

modifications. The polar fraction was extracted from

60 mg frozen leaf tissue homogenized in 1,400 lL 100%

methanol and with 60 lL ribitol (0.2 mg/mL water) as

internal standard. Samples were extracted at 70�C for

15 min, vortexed and centrifuged (18,000 g, 10 min). The

supernatant was added to one volume chloroform and two

volumes water, vortexed and centrifuged (5,500 g,

15 min), and the upper phase vacuum dried for derivati-

zation. Dried samples were reconstituted in 40 lL meth-

oxyamine hydrochloride (20 mg/mL in pyridine),

derivatized for 2 h at 37�C, and incubated for a further

30 min (37�C) in the presence of 70 lL MSTFA and 40 lL

internal retention time standard.

Analysis was performed using a 6890-N gas chro-

matograph and 5975 inert mass selective inhibitor mass

spectrometer (Agilent Technologies; Santa Clara, CA,

USA). 1-lL Volumes of were injected with a 7683B

Series splitless injector (Agilent Technologies) and gas

chromatography was performed on a 30-m Rtx�-5Sil MS

Integra Guard column with 0.25 mm internal diameter

and 0.25 lm film thickness (Restek, Bellefonte, PA,

USA). Injection- and ion source temperatures were set at

230�C and 200�C, respectively, and the program was set

to 5 min at 70�C, a first ramp of 1�C/min to 76�C, and a

second ramp of 6�C/min to 350�C. Temperature was

equilibrated to 70�C prior to injection of each sample and

mass spectra recorded (2 scans per s in range of

50–600 m/z). Data were analyzed using the Automated

Mass Spectral Deconvolution and Identification System

(AMDIS, http://www.amdis.net/index.html, National

Institute of Standards and Technology, Gaithersburg,

MD, USA) (Stein 1999) and compared with a custom RI-

annotated supervised plant metabolite mass spectral

database (http://gmd.mpimp-golm.mpg.de/) (Schauer et al.

2005) and the NIST/EPA/NIH Mass Spectral Library

(NIST 05) using the NIST Mass Spectral Search Program

Version 2.0d.

Preparation of alcohol insoluble residues (AIR)

and measurement of cell wall uronic acids

Ethanol was added to ground plant tissue (125 ± 10 mg)

and incubated for 20 min at 70�C. Samples were centri-

fuged at 8,500 g for 10 min and supernatants discarded.

Ethanol extraction was repeated four times. Samples were

washed in acetone and vacuum dried. Cell wall uronic acids

were measured using an adaptation of methods previously

described (Blumenkrantz and Asboe-Hansen 1973; Van den

Hoogen et al. 1998). Dried AIR samples (10 mg) were

reconstituted in 200 lL 12 M sulfuric acid and incubated

for 2 h at 4�C. The sulfuric acid was diluted to 2 M and cell

wall polysaccharides hydrolyzed for 2 h at 80�C. Concen-

trated sulfuric acid containing 120 mM sodium tetraborate

was added to 40-lL aliquots of AIR sample (200 lL per

aliquot), incubated at room temperature for 30 min, and

background OD measured at 540 nm. Uronic acids were

measured as described by Van den Hoogen et al. (1998)

against a galacturonic acid standard of 0–8 lg.

Results

Constructs, transformations, and selection

Regenerated plant transformants were screened by PCR for

the presence of pART27::GMPase, pART27::ALO, and

pART27::MIOX2 constructs, respectively. GMPase positive

line G2 was not selected for further analyses due to the

high probability that it exhibited somaclonal variation

(Electronic Supplementary Material Fig. C), while ALO

line A16 was rejected due to an uncharacteristically low

fruit yield. Tomato seeds were collected and at least five

biological replicates established per line.

GMPase activity

Lines positive for the presence of the yeast-derived GMPase

gene were assayed for protein activity using a radiolabel

incorporation assay. In comparison with untransformed

controls, GMPase activity in leaves of transgenic lines

increased between 26 and 31 times (Fig. 2). Similarly, in

green fruit tissue activity increased 13–17 times. Despite the

fact that the baseline activity in different wild-type tissues

was very similar, transgenic leaf material displayed up to

100% more activity than transgenic green fruit.

ALO transcription

Arabinono-1,4-lactone oxidase (ALO) activity could not be

reliably measured because the protein is embedded within
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the mitochondrial membrane. Membrane fractions con-

tained varying amounts of active protein, complicating

measurements, and standardization of enzymatic assays.

Therefore, transcript levels of ALO were measured semi-

quantitatively and compared with the expression level of

the constitutively expressed TIP41 gene. RT-PCR con-

firmed the unique transcription of the heterologous gene in

transgenic lines (Fig. 3).

MIOX activity

Transgenic lines displayed approximately three- to fourfold

increased MIOX activity in leaves compared with wild-

type controls (Fig. 4). In green fruit, activity in line M8

was not significantly higher than in wild-type plants,

whereas lines M2 and M4 exhibited twofold increases

(P \ 0.1).

Ascorbate

Total ascorbate, measured as the sum of L-AsA and DHA,

was determined in leaves, green fruit and red fruit to

study the effect of introduced transgenes on ascorbate

biosynthesis or its steady-state levels. Due to the direct

link between ascorbate levels and the wounding response,

fruits were frozen and analyzed whole (Loannidi et al.

2009). During senescence, the locule becomes filled with

water and soluble sugars. In red fruit, DHA concentra-

tions per fresh weight were below the limits of detection,

and ascorbate content was therefore represented by L-AsA

alone. Increase in GMPase activity was concomitant with

increased ascorbate levels in all tissues measured

(Table 2). Ascorbate content in leaves was increased up

to 66% compared with 50 and 35% in green and red fruit,

respectively. Most transgenic ALO lines displayed

increased ascorbate levels (P \ 0.05) in leaf tissue, typi-

cally between 21 and 54% (Table 3). Levels in green fruit

were increased up to 25% (P \ 0.1), while red fruit

contained levels invariant from the wild type. In leaf

material, increased MIOX activity was associated with up

to 30% reduction in ascorbate content (Table 4). Con-

versely, transgenic green fruit with increased MIOX

activity displayed up to 35% increased ascorbate levels

(P \ 0.1).
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Fig. 2 GDP-mannose pyrophosphorylase (GMPase) activity mea-

surements in plants expressing GMPase from Saccharomyces cere-
visiae using [14C]GDP-mannose, cold GDP-mannose and PPi as

substrates. Activity was measured as the amount of radio label

incorporated into the product, mannose-1-phosphate. Values calcu-

lated as average ± standard deviation; n = 3; P \ 0.05
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provided as substrate and MIOX activity measured relative to the
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at 540 nm before and after samples developed a pink color with

addition of a 3-hydroxybiphenylphenol color reagent. Values calcu-

lated as average ± standard deviation; n = 3; P \ 0.1 (green fruit);

P \ 0.05 (leaves)
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Metabolite profiling

In order to determine whether precursor molecules within

the various pathways of AsA biosynthesis were affected,

GC–MS metabolite profiling was performed on leaf tissue.

Comparison of the GC–MS chromatograms with plant

metabolite and NIST mass spectral libraries revealed

numerous metabolites consistently present in all samples

and several significant deviations in the metabolite profiles

of the transgenic plants (Table 5). GMPase transgenic lines

showed an increase in galactono-1,4-lactone and galacto-

nate, and a concomitant decrease in glucuronic acid. Major

increases in citric acid cycle components, fumarate, and

succinate were also observed. Principal component analy-

sis (PCA) (Electronic Supplementary Material Fig. D) of

the GC–MS data (Electronic Supplementary Material

Table 1) revealed increases in threonate (P \ 0.1). Galac-

tonate, galactose, myo-inositol, and sucrose decreased

significantly in most ALO lines. Decreases in myo-inositol

content were most evident in MIOX lines, by between 72

and 90% (P \ 0.05), with concomitant increases in

gulonate.

Cell-wall analysis

Cell wall uronic acids were determined in leaf and green

fruit tissue of MIOX lines (Fig. 5). In leaf tissue, all three

transgenic lines displayed small increases in cell wall

uronic acids (P \ 0.1). In green fruit, levels were increased

by more than 100% in lines M2 and M4.

Discussion

Three different genes, GMPase, MIOX, and ALO, were

targeted for heterologous expression with the aim of

(re)directing carbon flux toward AsA biosynthesis in

plants. These genes were ectopically expressed in tomato in

an attempt to overcome rate-limiting steps in production, or

to increase the contribution of secondary pathways.

Expression of GDP-mannose pyrophosphorylase

A yeast-derived GMPase, catalyzing the conversion of

D-mannose-1-P to GDP-D-mannose (Hashimoto et al.

1997) was expressed in an attempt to accelerate the flux

of carbon through the Smirnoff–Wheeler AsA pathway

(Fig. 1). Transgenic tomato lines exhibited up to 31 and

17-fold increased GMPase activity in leaves and green

fruit, respectively. Total ascorbate levels increased up to

70%, most apparent in photosynthesizing tissues as

reported earlier (Yabuta et al. 2008). Heterologous

expression of a plant GMPase in tobacco leaves has

previously resulted in about 100% increased AsA content

(Badejo et al. 2007). In the current study, an increase in

GMPase activity was accompanied by up to 375% more

galactono-1,4-lactone, a downstream intermediate in the

Smirnoff–Wheeler pathway, and a significant increase in

galactonate, an intermediate in the cell wall scavenging

pathway. DHA (the reduced form of ASA) was signifi-

cantly increased in leaf tissue of all transgenic lines. Both

the rate of AsA synthesis and recycling via DHA, and

monodehydroascorbate reductase are critical in the

maintenance of a high AsA redox state (Conklin and

Barth 2004). Statistical principal component analysis

(PCA) of metabolic profiles in leaves revealed an overall

increase in threonate production in transgenic plants

(Electronic Supplementary Material Fig. D). Pallanca and

Smirnoff (2000) suggested that the rate at which AsA is

recycled and catabolized can be inferred from the levels

of DHA, glutathione or the breakdown products tartrate

and threonate. Significant increases in the citric acid

cycle components, fumarate and succinate, were mea-

sured in leaves. It has been shown that AsA biosynthetic

Table 2 L-Ascorbate (L-asc), dehydroascorbate (DHA) and total ascorbate (AsA) levels measured in leaf, green fruit and red fruit material from

plants with increased GDP-mannose pyrophosphorylase (GMPase) activity

Leaf Green fruit Red fruit

L-asc DHA AsA L-asc DHA AsA L-asc

WT 1.17 ± 0.29 0.43 ± 0.07 1.6 ± 0.36 0.76 ± 0.06 0.11 ± 0.06 0.87 ± 0.1 0.55 ± 0.08

G5 1.71 ± 0.08** 0.53 ± 0.01** 2.29 ± 0.07** 1.14 ± 0.06** 0.13 ± 0.01 1.27 ± 0.02** 0.66 ± 0.03**

G6 1.63 ± 0.35* 0.5 ± 0.12* 2.19 ± 0.46* 1.02 ± 0.03** 0.11 ± 0.004 1.13 ± 0.03* 0.73 ± 0.02**

G21 1.98 ± 0.45** 0.64 ± 0.14* 2.67 ± 0.59** 1.12 ± 0.05** 0.16 ± 0.01 1.28 ± 0.1* 0.74 ± 0.11**

DHA could not be detected in red fruit using the methods described. Values calculated as average ± standard deviation and measured in

lMoles/g FW

n = 3

* P \ 0.1

** P \ 0.05
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rates are affected by the flow of electrons through the

respiratory electron transport chain (Millar et al. 2003;

Alhagdow et al. 2007). Increased flux through the Smirnoff–

Wheeler pathway creates an increased demand for oxi-

dized cytochrome c, which is diverted from ATP

synthase. A resulting demand for citric acid cycle derived

NADH could plausibly lead to increased turnover and

intermediates such as succinate and fumarate. While

GMPase may not exert majority metabolic control over

this pathway, the study suggests that increased substrate

supply from early steps of the L-galactose pathway pos-

itively affects vitamin C production, especially in pho-

tosynthesizing tissue.

Expression of arabinono-1,4-lactone oxidase

D-Arabinono-1,4-lactone oxidase (ALO), the yeast analog

of galactono-1,4-lactone dehydrogenase (L-GalLDH),

converts D-arabinono-1,4-lactone to erythroascorbate,

while promiscuously converting L-galactono-1,4-lactone

and L-guluno-1,4-lactone to AsA (Huh et al. 1994; Lee

et al. 1999; Hancock et al. 2000; Sauer et al. 2004;

Hancock 2009). ALO was expressed in order to assess if

increased turnover of the terminal step in the ascorbate

biosynthetic pathway would increase carbon flux towards

AsA biosynthesis. L-GalLDH is sensitive to irradiance,

ascorbate oxidase activity, cytochrome c activity, and

respiration (Millar et al. 2003; Tamaoki et al. 2003;

Nunes-Nesi et al. 2005; Bartoli et al. 2006, 2009; Bulley

et al. 2009). By contrast, ALO has not shown sensitivity

to light or reductant availability. ALO activity in tomato

extracts could not be reliably quantified due to its pre-

sumed interaction with the inner mitochondrial membrane

as demonstrated for its plant homologue L-GalLDH

(Hancock et al. 2003). Transcription of the ALO transgene

was, however, confirmed (Fig. 4) and has resulted in

significantly higher AsA levels in leaves (up to 54%) and

green fruit (up to 25%). DHA levels in transgenic green

Table 3 L-Ascorbate (L-asc), dehydroascorbate (DHA) and total ascorbate (AsA) levels measured in leaf, green fruit and red fruit material from

plants transcribing the yeast arabinono-1,4-lactone oxidase (ALO) gene

Leaf Green fruit Red fruit

L-asc DHA AsA L-asc DHA AsA L-asc

WT 1.1 ± 0.16 0.13 ± 0.03 1.18 ± 0.11 1 ± 0.07 0.16 ± 0.02 1.12 ± 0.05 0.97 ± 0.04

A8 1.2 ± 0.11 0.17 ± 0.02* 1.43 ± 0.16** 1.15 ± 0.08** 0.2 ± 0.05* 1.41 ± 0.01** 0.88 ± 0.08

A13 1.11 ± 0.03 0.07 ± 0.02 1.2 ± 0.02 1.2 ± 0.09** 0.27 ± 0.08** 1.47 ± 0.01** 1.01 ± 0.11

A21 1.6 ± 0.2** 0.17 ± 0.02* 1.64 ± 0.19** 1.1 ± 0.09* 0.27 ± 0.07** 1.34 ± 0.04** 0.91 ± 0.05

A22 1.7 ± 0.08** 0.15 ± 0.03 1.82 ± 0.07** 1.26 ± 0.1** 0.15 ± 0.03 1.4 ± 0.08** 1.02 ± 0.07

A23 1.52 ± 0.13** 0.14 ± 0.12 1.51 ± 0.07** 1.11 ± 0.15* 0.25 ± 0.03** 1.35 ± 0.19* 0.88 ± 0.11

DHA could not be detected in red fruit using the methods described. Values calculated as average ± standard deviation and measured in

lMoles/g FW

n = 3

* P \ 0.1

** P \ 0.05

Table 4 L-Ascorbate (L-asc), dehydroascorbate (DHA) and total ascorbate (AsA) levels measured in leaf, green fruit and red fruit material from

plants containing the myo-inositol oxygenase2 (MIOX2) gene

Leaves Green fruit Red fruit

L-asc DHA AsA L-asc DHA AsA L-asc

WT 1.61 ± 0.09 0.09 ± 0.06 1.65 ± 0.07 0.65 ± 0.02 0.03 ± 0.003 0.69 ± 0.003 0.55 ± 0.08

M2 1.34 ± 0.1** 0.06 ± 0.02 1.4 ± 0.1** 0.82 ± 0.16* 0.07 ± 0.007** 0.89 ± 0.06** 0.69 ± 0.07**

M4 1.2 ± 0.24** n/d 1.14 ± 0.08** 0.9 ± 0.16** 0.04 ± 0.008 0.93 ± 0.08** 0.63 ± 0.15

M8 1.33 ± 0.12** n/d 1.29 ± 0.07** 0.49 ± 0.16 0.05 ± 0.02 0.55 ± 0.09 0.37 ± 0.22

DHA could not be detected in any of the red fruits because the assay is not sensitive enough. DHA could not be detected in red fruit using the

methods described. Values calculated as average ± standard deviation and measured in lMoles/g FW

n/d not detected

n = 3

* P \ 0.1

** P \ 0.05
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fruit also increased, suggesting an increase in AsA turn-

over. AsA feeding experiments have shown that AsA pool

size is directly proportionate to turnover rate (Pallanca

and Smirnoff 2000). Metabolite profiling of leaf tissue

revealed up to 42% reduction in galactose (an

intermediate in the Smirnoff–Wheeler pathway), up to

45% reduction of (galactonate an intermediate in the

pectin degradation pathway) and up to 90% reduction of

myo-inositol. GC–MS did not allow discrimination

between D- and L-galactose. The yeast isoform (ALO)

appears to pull carbon flux towards AsA biosynthesis. To

our knowledge, this is the first report on the successful

expression of ALO in planta.

Expression of myo-inositol oxygenase

Myo-inositol is converted into GlucA by the activity of

MIOX. However, whether GlucA acts as a precursor to

AsA in an ‘‘animal like’’ pathway in plants has not been

established with certainty (Lorence et al. 2004; Zhang

et al. 2008; Endres and Tenhaken 2009). The gene family

for the MIOX enzyme from Arabidopsis was shown to be

represented by four members (Kanter et al. 2005). The

current study investigated expression of the MIOX2 iso-

form in tomato. Transcription of the transgene resulted in

increased MIOX activity in leaf material without a

concomitant increase in AsA content. In contrast, a

Table 5 Metabolite profiling of leaf material from GDP-mannose pyrophosphorylase (GMPase), arabinono-1,4-lactone oxidase (ALO) and

myo-inositol oxygenase (MIOX) lines, together with wild-type controls

Galactonate Galactono-1,4-lactone Glucuronic acid Fumarate Succinate

Wild type 0.044 ± 0.008 0.012 ± 0.004 0.064 ± 0.013 0.065 ± 0.004 0.013 ± 0.002

G5 0.089 ± 0.016** 0.045 ± 0.005** 0.036 ± 0.004* 0.135 ± 0.028** 0.034 ± 0.004**

G6 0.068 ± 0.009** 0.028 ± 0.004** 0.038 ± 0.006* 0.085 ± 0.010** 0.026 ± 0.001**

G21 0.089 ± 0.003** 0.028 ± 0.005** 0.027 ± 0.008* 0.213 ± 0.056** 0.024 ± 0.001**

Galactonate Galactose Myo-inositol Sucrose

Wild type 0.244 ± 0.033 0.036 ± 0.008 11.548 ± 0.895 6.439 ± 1.246

A8 0.135 ± 0.033** 0.022 ± 0.005* 6.636 ± 2.627* 2.450 ± 0.146**

A13 0.142 ± 0.021** 0.021 ± 0.001* n/d 3.863 ± 0.577*

A16 0.173 ± 0.017* 0.027 ± 0.004 5.512 ± 3.300* 3.932 ± 0.705*

A21 0.169 ± 0.012** 0.023 ± 0.002* 4.407 ± 1.707** 4.220 ± 0.205*

A22 0.211 ± 0.026 0.023 ± 0.001* 3.920 ± 2.102** 4.154 ± 0.195*

A23 0.147 ± 0.016** 0.030 ± 0.008 6.325 ± 3.180* 3.193 ± 0.561**

Galactonate Gulonate Myo-inositol

Wild type 0.244 ± 0.033 0.027 ± 0.011 11.548 ± 0.895

M2 0.145 ± 0.020** 0.315 ± 0.024** 1.155 ± 0.611**

M4 0.228 ± 0.036 0.602 ± 0.252** 3.208 ± 0.657**

M8 0.174 ± 0.025* 0.386 ± 0.085** 1.357 ± 0.667**

GC–MS analysis was used to identify compounds affected by increased GMPase, ALO and MIOX expression. Values calculated as average peak

area ± standard deviation

n/d not detected

n = 3

* P \ 0.1

** P \ 0.05
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Fig. 5 Uronic acid measurements in myo-inositol oxygenase

(MIOX) lines representative of cell wall biosynthesis. Measurements

were performed on leaf and green fruit material with wild-type

controls and expressed as a weight percentage of total alcohol

insoluble residues (AIR) extracted from the cell wall. Values

calculated as average ± standard deviation; n = 3; P \ 0.1 (leaves);

P \ 0.05 (green fruit)

Planta (2012) 235:553–564 561

123



significant decrease in AsA in leaf tissue, inversely pro-

portionate to the level of MIOX activity, was apparent.

Previously, expression of the MIOX4 gene in Arabidopsis

was shown to increase AsA levels two- to threefold

(Lorence et al. 2004; Zhang et al. 2008). In contrast,

MIOX4 overexpressing Arabidopsis lines were recently

shown to be largely invariant from the wild type (Endres

and Tenhaken 2009).

Steady-state myo-inositol levels in lines with increased

MIOX activity were decreased to as low as 10% of levels

in wild type controls, while a tenfold increase in gulonate

was observed (Table 5). Gulonate resides downstream of

myo-inositol and is converted to L-gulono-1,4-lactone, the

terminal substrate in the ‘animal-like’ AsA biosynthesis

pathway (Fig. 1). While increased MIOX activity plays an

ambiguous role in AsA biosynthesis, the enzyme clearly

controls the metabolite level of myo-inositol and deriva-

tives in plants as suggested previously (Endres and

Tenhaken 2009). The authors have reported on increased

incorporation of MIOX-derived sugars into cell wall

polymers, while overexpressors exhibited a lower steady-

state level of myo-inositol due to an enhanced turnover

rate.

D-Glucuronic acid is a major precursor in cell wall

biosynthesis (Kanter et al. 2005). Expressed as a per-

centage of the AIR of the cell wall, uronic acid content

was significantly higher in the leaves of all MIOX lines.

Increased uronic acid levels were also observed in green

fruits with significantly higher MIOX activity, indicative

of a shunt of glucuronic acid into the cell wall (Fig. 5).

Green fruit with measurably higher MIOX activity levels

and uronic acids also showed significant increases in AsA.

Either carbon is being directed towards AsA biosynthesis

through an ‘animal-like’ pathway, or increases in cell wall

components provide more substrate for AsA biosynthesis

via the pectin scavenging pathway. The strong correlation

between MIOX activity and cell wall uronic acid levels

suggests that MIOX may be a useful tool for the

manipulation of cell wall composition. Downregulation of

GDP-D-mannose 3,5-epimerase (GME) isoforms in tomato

was recently shown to result in significant changes in cell

wall composition (Gilbert et al. 2009). Garcia et al.

(2009) showed direct correlations between intermediates

of ascorbate and cell wall biosynthetic pathways. Such

studies strengthen the concept of a cell wall-ascorbate

nexus.
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