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Abstract A symmetric somatic hybridization was per-
formed to combine the protoplasts of tall wheatgrass (Agro-
pyron elongatum) and bread wheat (Triticum aestivum,).
Fertile regenerants were obtained which were morphologi-
cally similar to tall wheatgrass, but which contained some
introgression segments from wheat. An SDS-PAGE analy-
sis showed that a number of non-parental high-molecular
weight glutenin subunits (HMW-GS) were present in the
symmetric somatic hybridization derivatives. These
sequences were amplified, cloned and sequenced, to deliver
14 distinct HMW-GS coding sequences, eight of which
were of the y-type (Hyl-Hy8) and six x-type (HxI—Hx6).
Five of the cloned HMW-GS sequences were successfully
expressed in E. coli. The analysis of their deduced peptide
sequences showed that they all possessed the typical
HMW-GS primary structure. Sequence alignments indi-
cated that Hx5 and HyI were probably derived from the tall
wheatgrass genes Aex5 and Aey6, while Hy2, Hy3, HxI and
Hy6 may have resulted from slippage in the replication of a
related biparental gene. We found that both symmetric and
asymmetric somatic hybridization could promote the emer-
gence of novel alleles. We discussed the origination of alle-
lic variation of HMW-GS genes in somatic hybridization,
which might be the result from the response to genomic
shock triggered by the merger and interaction of biparent
genomes.
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Abbreviations

AFLP Amplification fragment length polymorphism

GISH Genome in situ hybridization

HMW-GS  High-molecular weight glutenin subunit

SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel
electrophoresis

Introduction

The high-molecular weight glutenin subunits (HMW-GS)
are a set of well-conserved endosperm proteins synthesized
in the grain of wheat and related grasses (Lawrence and
Shepherd 1981; Shewry et al. 2003). In hexaploid wheat,
they are encoded by the Glu-1 homoeoloci located on the
long arms of chromosomes 1A, 1B and 1D, with each locus
comprising a pair of tightly linked genes encoding the
x-type (Glu-1-1) and the y-type (Glu-1-2) subunits (Lawrence
and Shepherd 1981; Payne 1987). Qualitative and quantita-
tive variation in the HMW-GS is associated with 45-70%
of the variation in bread-making performance of European
wheat, even though they only represent about 10% of grain
protein (Branlard and Dardevet 1985; Payne et al. 1987,
1988). Because of their importance for wheat quality
improvement, a substantial number of Glu-I genes have
been cloned (Forde etal. 1985; Sugiyama etal. 1985;
Thompson et al. 1985; Halford et al. 1987; Anderson and
Greene 1989; Anderson et al. 1989; Halford et al. 1992).
Sequence analysis of these genes has shown that each
contains a long repetitive region, flanking two highly
conserved terminal non-repetitive domains. The repetitive
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region includes tripeptides, hexapeptides and nonapep-
tides, with the tripeptide motif restricted to the x-type
subunits.

Although HMW-GS are clearly important for the deter-
mination of end-use quality, the number of high quality
alleles is rather limited within the bread wheat genepool.
Thus, some effort has been made to transfer alleles from
related species, using either a wide crossing (Zhou et al.
1995) or a somatic hybridization approach. Our focus has
been to take advantage of the latter route. We have so far
succeeded in fusing the protoplasts of the bread wheat culti-
var Jinan 177 (JN177) with UV-irradiated protoplasts of
tall wheatgrass (Agropyron elongatum (Host) Nevski
[Thinopyrum ponticum]) (Liu SW et al. 2007; Liu H et al.
2009). We have also attempted symmetric somatic hybrid-
ization, in which the tall wheatgrass protoplasts were not
UV irradiated. Regenerant plants of this latter protoplast
fusion resembled the tall wheatgrass parent, but inherited
several introgression segments from wheat (Cui etal.
2009). Selections CU and XI (each derived from a single
fusion cell) were particularly fertile. Here, we have investi-
gated whether any novel HMW-GS alleles are present in
these somatic hybrid regenerants.

Materials and methods
Plant materials

The plant material used in these experiments consisted of
the tall wheatgrass and bread wheat biparents of the
somatic fusion, five R, (third generation following the
regeneration of the primary somatic hybrid) lines
R;CU1, R;CU2, R;CU3, R;XI1 and R;XI2. Karyotypic
analysis indicated that the chromosome number of the in
vitro cultured tall wheatgrass cells ranged from 60 to 70,
while about 80% of R;CU1-R;CU3 and R;XI1-R;XI2
cells carried 66-70 chromosomes. Cui et al. (2009)
showed, by a combination of cytological and marker
analyses, that the wheat chromosome segments were int-
rogressed into A. elongatum chromosomes in the
genomes of R;—R; regenerants. Both JN177 and the
introgression lines were grown in a greenhouse separated
from other wheat cultivars to avoid uncontrolled out-
crossing.

SDS-PAGE analysis of HMW-GS
The HMW-GS content of JN177 was obtained by SDS-
PAGE analysis (Feng et al. 2004) of a crude protein extract

of an embryo-less half grains, while those of tall wheat-
grass and the introgression lines were obtained from
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extracts of the whole seed, as described by Mackie et al.
(1996).

Cloning and characterizing of HMW-GS genes

Genomic DNA was extracted from the introgression line
seedlings using the CTAB method (Murray and Thompson
1980). As the HMW-GS genes are intron less, genomic
DNA was used as a PCR template to amplify the entire
coding region. A pair of degenerate primers (P1: 5'-AT
GGCTAAGCGGc/tTa/gGTCCTCTTTG and P2: 5'-CTA
TCACTGGCTa/gGCCGACAATGCG) was designed on
the basis of published DNA sequences. P1 includes the
HMW-GS start codon, and P2 includes the two conserved
tandem stop codons. PCR amplification employed a high
fidelity LA Tag polymerase (TaKaRa Biotechnology,
Dalian, China) with a GC buffer provided for GC-rich tem-
plate. The amplification profile consisted of a denaturation
step (95°C/5 min), followed by 28 cycles of 94°C/40 s,
68°C/4 min, and ending with an extension step (72°C/
7 min). The amplicon was recovered from a 1% agarose
gel, cloned into the pMD18-T vector (TaKaRa Biotechnol-
ogy, Dalian, China), and transformed into E. coli DH10B
competent cells. Sequencing was performed commercially
(Invitrogen, Shanghai, China). Both amplification and clon-
ing were repeated at least three times to minimize the risk
of amplification and/or sequencing errors. Sequence analy-
ses were carried out using the MEGA software package
v3.1 (Kumar etal. 2004) along with standard programs
available from NCBI (http://www.ncbi.nlm.nih.gov/Tools/)
and EBI (http://www.ebi.ac.uk/Tools/sequence.html).

Bacterial expression of HMW-GS sequences

To express the mature introgression line HMW-GS
proteins in E. coli, two sets of PCR primers (PF/PR1
and PF/PR2) were designed to amplify the sequences
while excluding their signal peptides, and at the same
time introducing cloning sites. The sequence of PF was
5'-ACCCATATGGAAGGTGAGGCCTCT-3', that of PR1
was 5'-CTAGAATTCCTATCACTGGCTGGCCGA-3'
(for Hy4, Hy3, Hy7, Hy8) and that of PR2 was 5'-CTAG
AATTCCTATCACTGGCTAGCCGA-3' (for Hy6). PF
contains an Ndel site and both PR1 and PR2 an EcoRI
site. The amplicons were cloned into the expression vec-
tor pET-24a (Novagen, Shanghai, China), and trans-
formed into E. coli BL21 (DE3) pLysS competent cells
(Promega, Shanghai, China). Heterologous expression
was induced using standard methods (Sambrook et al.
1989) and proteins were extracted by dissolving cells in
SDS-PAGE sample buffer for SDS-PAGE analysis (Wan
et al. 2002).
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Results

The HMW-GS content of the biparents
and the introgression lines

The HMW-GS content of JN177 is 1Bx7.1 + 1By9.1;
1Dx2.1 + 1Dy12.1, while that of the tall wheatgrass con-
sists of nine distinct subunits. The HMW-GS composition
of the five introgression lines R;CU1-R;CU3 and R;XI1-
R;XI2 was overall very similar to that of the tall wheat-
grass, although a small number of novel subunits could be
identified (Fig. 1). A gel separation of the amplicons
derived from each of the five introgression lines was shown
in Fig. 2. After restriction enzyme digestion mapping and
terminal DNA sequencing, we confirmed that at least 14
distinct sequences had been amplified from the introgres-
sion lines (designated as Hx/—Hx6 and Hyl-Hy8, accord-
ing to their type and length).

2 3 4 5
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gz s

Fig. 1 HMW-GS profiles of some bread wheat/tall wheatgrass sym-
metric somatic hybridization derivatives and their parents. Lanes 1-5
R;CU1-R;CU3 and R;XT1-R;XI2 progeny, lane 6 tall wheatgrass, lane
7 IN177

Fig. 2 PCR amplification of HMW-GS coding sequences from some
bread wheat/tall wheatgrass symmetric somatic hybridization deriva-
tives and their parents. M Lambda DNA digested by EcoRI + HindlII,
lane 1 IN177, lane 2 tall wheatgrass, lanes 3—7 R;CU1-R;CU3 and
R;XI1-R;XI2 hybrid spike lines, respectively

Expression of the HMW-GS alleles in bacterial cells

Five of the cloned sequences with intact ORFs were suc-
cessfully expressed in E. coli, namely pET-Hy3, pET-Hy4
pET-Hy6, pET-Hy7 and pET-Hy8. The SDS-PAGE mobil-
ity of four of these (Hy4, Hy6, Hy3 and Hy8) was similar to
that of equivalent subunits extracted from tall wheatgrass
seeds, but there was no match between the proteins directed
by pET-Hy7 and any tall wheatgrass seed-extracted protein
(Fig. 3).

Characteristic of derived amino acid sequences
of HMW-GS alleles

The deduced peptide sequences of the 14 HMW-GS genes
shared the expected primary structure. Each consisted of a
21 residues signal peptide, a conserved N-terminal region, a
central repetitive domain and a conserved C-terminal
region. The N-terminal regions of five of the eight y-type
subunits include 105 residues, while this length in Hyl,
Hy4 and Hy5 was 104, 76 and 59 residues, respectively
(Table 1). N-terminal regions of Hyl lacked a glutamine
residue when compared with Hy2, Hy3, Hy6, Hy7 and
Hy8. This glutamine residue is also present in all the known
x-type subunits. The conserved C-terminal regions of all
the 14 subunits comprise 42 residues, and their central
repetitive region included both hexapeptide and nonapep-
tide motifs; the six x-type subunits also contained the diag-
nostic GQQ tripeptide motif. Differences between these
subunits and those already known in wheat lie mostly in
single residue substitutions, and the insertion/deletion of
repeat motifs in central repetitive region. The deduced pep-
tide lengths of these subunits varied from 817 (Hx1) to 295

116kDa sl

Fig. 3 SDS-PAGE analysis of heterologously expressed HMW-GS
proteins. M protein molecular weight marker, lane 1 IN177, lane 2 tall
wheatgrass, lane 3 bacteria harboring pET-Hy4 without IPTG induc-
tion, lanes 4-8 expression of the modified sequences of Hy4, Hy6, Hy3,
Hy7 and Hy8. The HMW-GS gene-directed proteins induced by IPTG
are indicated by arrows
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Table 1 Sequence characteristics of the HMW-GS genes isolated from a set of bread wheat/tall wheatgrass symmetric somatic hybridization

derivatives
Subunit Accession Signal peptide N-terminal region Repetitive region C-terminal region Total
number Size (aa) Size (aa) Cys Size (aa) Cys Size (aa) Cys Size (aa) Cys

Hx1 GQ465208 21 86 3 668 0 42 1 817 4
Hx2 GQ465209 21 86 3 543 0 42 1 692 4
Hx3 GQ465210 21 86 3 536 0 42 1 685 4
Hx4 GQ465211 21 86 3 531 0 42 1 680 4
Hx5 GQ465212 21 86 3 516 0 42 1 665 4
Hx6 GQ465213 21 86 3 326 0 42 1 475 4
Hyl GQ465214 21 104 5 442 1 42 1 609 7
Hy2 GQ465215 21 105 5 346 0 42 1 513 6
Hy3 GQ465216 21 105 5 342 0 42 1 509 6
Hy4 GQ465217 21 76 4 290 0 42 1 429 5
Hy5 GQ465218 21 59 3 288 0 42 1 410 4
Hy6 GQ465219 21 105 5 213 0 42 1 380 6
Hy7 GQ465220 21 105 5 128 0 42 1 295 6
Hy8 GQ465221 21 105 5 128 0 42 1 295 6

(Hy7 and Hy8) residues (Table 1). The Hy7 and Hy8 are
also two of the smallest known HMW-GS.

Relationships between HMW-GS sequences

A phylogenetic tree was assembled from the alignment of
the full-length nucleotide sequences of the 14 HMW-GS
genes and the HMW-GS genes from JN177 and tall wheat-
grass (Liu SW et al. 2007, 2008) (Fig. 4). As expected,
the y-type genes were separated from the x-type ones. The
eight y-type and the six x-type sequences each clustered
into three clades. The Hyl sequence resembled that of tall
wheatgrass Aey6, and was distantly related to the remaining
seven y-type sequences, while Hy6 was more similar to
Aeyl0 than to any of the other introgression line alleles.
The other six y-type alleles of the introgression lines fell
into three subgroups. Hy2 and Hy3 shared a close relation-
ship with Aey8, while Hy7 was similar to Hy8, as were Hy4
and Hy5. Of the six x-type alleles, Hx/ was similar to Aex2,
Hx5 to Aex5 and quite closely related to Hx2, Hx3 and Hx4,
Hx6 was an outlier within the x-type clade.

Discussion

Asymmetric somatic hybridization between bread wheat and
UV-irradiated tall wheatgrass is known to generate wheat-
like introgression lines (Xia et al. 2003; Wang et al. 2005),
among which a deal of allelic variation for the HMW-GS
genes has been identified (Liu SW et al. 2007; Liu H et al.
2009). Symmetric somatic hybridization involving the same
biparents has produced fertile regenerants which more
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resemble tall wheatgrass in phenotype, but whose genomes
still contain some introgressed wheat segments (Cui et al.
2009). Therefore, we obtained a contrary introgression line
of wheat/tall wheatgrass, which is favorable for exploring the
variation of HMW-GS in different introgression lines via
symmetric or asymmetric somatic hybridization.

The Hx5 and Hyl sequences each differed by only a
small number of single nucleotides from a tall wheatgrass
sequence (Aex5 and Aey6, respectively), and they had no
close match with any of the HMW-GS sequences present in
another parent JN177. Thus, it is likely that both were
inherited from the tall wheatgrass parent, suffering some
point mutation as a result of the somatic hybridization pro-
cess. Similarly, Hy2 and Hy3 resembled Aey8, but for the
presence of additional repeat motifs and a few single-nucle-
otide polymorphisms. Hx/ and Hy6 resembled Aex2 and
Aeyl0, respectively. When compared with Aex2, HxI
gained three additional repeats but lost one, while, com-
pared to Aeyl0, Hy6 gained one and lost two (Fig. 5). Pos-
sibly, therefore, these four Glu-1 alleles may have derived
via slippage of their corresponding parental gene during
replication. The reason for why we have not found the
origin of the other six novel HMW-GS sequences of the
introgression lines might be that A. elongatum was a cross-
pollinating species and there were plenty of the Glu-I
alleles in A. elongatum and we have only obtained a limited
number of Glu-1 alleles from them (Liu SW et al. 2008).

The addition or deletion of repeat motifs is thought to be
an effective source of variation (Wells 1996), while Ander-
son and Greene (1989) have proposed that the evolution of
HMW-GS genes proceeds via a combination of single base
changes, deletions or additions within a repeat, single
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Hy3 GGGTACTACCCAACTTCTCCGCAGCAGEC TAGGACAATG
Aeys GGGTACTACCCAACTTCTCCGCAGCAGCCAGGAC TG
Hy2 GGGTACTACCCAACTTCTCCGCAGCAGCCAGGAC AGCTAGGACAATG
Hy3 CAACCAGGACAATG GGGTACTACCCAACTTC
Aeys CAACCAGGACAATGGCAAC GGGTACTACCCAACTTC
1Dy12.1 Hy2 CAACCAGGACAATGGCAACAACCAGGACAATGGCAACAAGGGTACTACCCAACTTC
Aey2 a
100 ,—1By9/|
|—Aey1 Hyé CAACAGACT TACTACCCAAC
B2 46 Aey3 Aey18 CAACAGACTGGAC AACAGACTAGAL AAC TACTACCCAAC
100 I: Aey? Hy6 CAACAACCAGGACAGTGGC CAGGAC - CTGCCCAAC
Aey18 CAACAACCAGGACAGTGGCAACAACCAGGAL ACTGCCCAAC
|: Aey10
1 100 Hyb Hy6 CCAGEGAC ACCAGCCAGGAC ACCAGCC AGCAATC
CCAGGAC Al AGCCAGGAC AGCAA
100 Hy4 Aey1d TC
Hy8
Hx1 CAACTTCTCCGCAGCAGCCAGGACAATTGCAACAACCAGCAL AGCAAGGE
Aex2 CAACTTCT
Hx1 CAGCAACCAGGAC AACAAGGTCGGCAGTCAGGAL AACCAGEGTA
Aex2
Hx1 CTACCCAACTTCTTCGCAGCAGCCAGGACARTTGCAACAACCAGCACL AAC
Aex2  -—-----——————— TCGCAGCAGCCAGGACGATTGCAARCAACCAGCACAAGGGCAAC
HxB
Hx1 GGCAACAAGGTCAGCAGECC GGGAC [
00 Aex2 GGCAACAAGGTCAGCAGCCAGGAC! AGCCAGGG
Hx1 Ac AACAAGATCCGC T
Aex2 Al AAC AGCAACCGEEAC AGC
Hx1 ACTACCCAACTTCTC TTGCAR
Aex2 ACTACCCAACTTCTCTGCAGCAGACAGGAL GGCAGCCATGACAATTGCAA

—
0.02

Fig. 4 Phylogenetic analysis of the HMW-GS sequences in some
bread wheat/tall wheatgrass symmetric somatic hybridization deriva-
tives and their parents. The phylogenetic tree was constructed accord-
ing to the full-length DNA sequences using the MEGA software
package v3.1. Hy/-Hy8 and Hx/—-Hx6 came from the somatic hybrid-
ization derivatives; Aeyl-Aeyl0 and Aex/-Aex5 came from tall wheat-
grass; I1Bx7.1, 1By9.1, 1Dx2.1 and 1Dyl2.1 came from JN177

repeat changes and deletions or duplications of blocks of
repeats. The formation of some novel hybrid genes was
inosculated with the mechanism mentioned by Anderson
and Greene (1989). Thus, the forms of novel HMW-GS
alleles generated in these introgression lines are consistent
with that of naturally emerging ones, although the process
of their formation appears to be accelerated by the somatic
hybridization procedure.

Both the present symmetric hybridization experiments, as
well as those based on the asymmetric hybridization (Liu
SW et al. 2007; Liu H et al. 2009) have produced regener-
ants carrying a number of novel HMW-GS alleles. Although
the regenerants from JN177 callus have also been shown to
produce novel HMW-GS alleles, the somaclonal mutation
rate is much lower (Feng et al. 2004). Although some of the

[

Fig. 5 Comparisons of the primary structure of HMW-GS sequences
extracted from some bread wheat/tall wheatgrass symmetric somatic
hybridization derivatives and their parents. a Hy2 and Hy3 versus
Aey8, b Hy6 versus Aeyl0, ¢ Hxl versus Aex2

somatic hybridization-induced alleles may have arisen
through somaclonal variation, it seems likely that many
resulted from an interaction between the biparental genomes
and/or the process of protoplast fusion itself; in the case of
the asymmetric hybridization products, an additional source
of variation is provided by the pre-fusion UV-irradiation
treatment (Liu H et al. 2009). The analysis of certain newly
synthesized alloploids has shown that when two genomes
are united in a single nucleus, some instability ensues, which
results in the elimination of genomic DNA sequences, the
alteration of cytosine methylation patterns, and the reactiva-
tion of retrotransposons (Shaked et al. 2001; Ozkan et al.
2001; Madlung etal. 2002, 2005). Similar instability is,
therefore, not unexpected in a somatic hybrid, and this has
been demonstrated in wheat/tall wheatgrass combinations in
the form of variation at microsatellite sequences, the elimi-
nation of DNA sequences, changes in the pattern of cytosine
methylation and silencing or activation of homoeologous
alleles (unpublished). The wide hybridization of different
genomes might trigger a genomic shock that lead to these
responses and it fit McClintock’s view about genomic shock
response that “initiates a highly programmed sequence of
events within the cell that serves to cushion the effect of
the shock” (McClintock 1984). Therefore, the response to

@ Springer



250

Planta (2010) 231:245-250

genomic shock triggered by the merger and interaction of
biparent genomes might be mainly responsible for the
sequence variation in the introgression lines.

In conclusion, we have shown here that the variation in
the HMW-GS sequences can be induced by symmetric as
well as asymmetric somatic hybridization. It is possible that
some of the novel alleles may make a positive contribution
to the wheat end-use quality and is favorable to the investi-
gation of genome variation and evolution.
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