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Abstract The promoter of the pepper pathogen-induced
membrane protein gene CaPIMP1 was analyzed by an
Agrobacterium-mediated transient expression assay in
tobacco leaves. Several stress-related cis-acting elements
(GT-1, W-box and ABRE) are located within the CaPIMP1
promoter. In tobacco leaf tissues transiently transformed
with a CaPIMP1 promoter-�-glucuronidase (GUS) gene
fusion, serially 5�-deleted CaPIMP1 promoters were diVer-
entially activated by Pseudomonas syringae pv. tabaci, eth-
ylene, methyl jasmonate, abscisic acid, and nitric oxide.
The ¡1,193 bp region of the CaPIMP1 gene promoter
sequence exhibited full promoter activity. The ¡417- and
¡593 bp promoter regions were suYcient for GUS gene
activation by ethylene and methyl jasmonate treatments,
respectively. However, CaPIMP1 promoter sequences
longer than ¡793 bp were required for promoter activation
by abscisic acid and sodium nitroprusside treatments.
CaPIMP1 expression was activated in pepper leaves by
treatment with ethylene, methyl jasmonate, abscisic acid, �-
amino-n-butyric acid, NaCl, mechanical wounding, and
low temperature, but not with salicylic acid. Overexpres-
sion of CaPIMP1 in Arabidopsis conferred hypersensitivity

to mannitol, NaCl, and ABA during seed germination but
not during seedling development. In contrast, transgenic
plants overexpressing CaPIMP1 exhibited enhanced toler-
ance to oxidative stress induced by methyl viologen during
germination and early seedling stages. These results sug-
gest that CaPIMP1 expression may alter responsiveness to
environmental stress, as well as to pathogen infection.
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Abbreviations
ABA Abscisic acid
BABA �-Amino-n-butyric acid
ERE Ethylene-responsive element
GUS �-Glucuronidase
MeJA Methyl jasmonate
MV Methyl viologen
OX Overexpression
PR Pathogenesis-related
SA Salicylic acid
SNP Sodium nitroprusside

Introduction

Adverse environmental conditions such as pathogen and
herbivore attack, or high salinity and drought stresses,
limit plant growth and drastically reduce plant productiv-
ity. Biotic and abiotic stresses trigger depolarization of
the plasma membrane and changes in membrane
potentials, and plants respond by transmitting defense
signals (Gelli et al. 1997; Pike et al. 1998; Krol et al.
2003). Plasma membrane-associated proteins, which are

The nucleotide sequence data reported here has been deposited in the 
GenBank database under the accession number DQ356279.
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involved in plant homeostasis and stress responses, com-
prise a subfamily of membrane proteins localized pre-
dominantly in organelles such as vacuoles, the Golgi
apparatus, the endoplasmic reticulum, and the nucleus.
Structurally distinct transmembrane domains have been
found in plasma membrane proteins, and their number and
location are highly variable among plant species. For
example, two transmembrane domains have been found in
Arabidopsis NDR1 (Century et al. 1997), and the barley
Mlo protein and the cold-regulated wheat COR-413 pro-
tein were found to have seven and nine transmembrane
domains, respectively (Breton et al. 2003; Bhat et al.
2005). Only transmembrane helix structures are suYcient
to address the biological roles of plasma membrane pro-
teins, including COR-413 and wpi6 (Breton et al. 2003;
Imai et al. 2005).

Large proteins localized in plasma membranes are
involved in plant stress tolerance in adverse environmental
conditions (Shi and Zhu 2002; Véry and Sentenac 2002;
Hussain et al. 2004; Takano et al. 2005). The rice Xa21 and
tomato Cf-9 resistance proteins are involved in the recogni-
tion of bacterial avrXa21 and fungal Avr9 proteins, respec-
tively, in plasma membrane to mediate rapid defense
signaling. The plasma membrane-localized K+ and Ca2+

channels play a pivotal role in plant nutrition and cell sig-
naling during abiotic stress (Véry and Sentenac 2002). Na+/
H+ antiporters localized in plasma membrane and tonoplast
are involved in maintaining cellular homeostasis during
high salt stress (Shi and Zhu 2002; Shi et al. 2003; Yokoi
et al. 2005), and overexpression of these antiporters confers
salt tolerance in Arabidopsis (Aspe et al. 1999; Shi et al.
2003). The Arabidopsis P-type ATPase HMA2 and boron
transporter BOR1, which regulate transport of these metals
in the plasma membrane, are required for heavy metal
homeostasis (Hussain et al. 2004; Takano et al. 2005).
HMA2 was also suggested to inXuence cadmium detoxiW-
cation (Hussain et al. 2004). More recently, Arabidopsis
and rice proteins that belong to the integral and peripheral
plasma membrane protein family have been identiWed by
proteomics analyses (Alexandersson et al. 2004; Marmagne
et al. 2004; Tanaka et al. 2004; Chen et al. 2007). However,
the roles of plasma membrane proteins in cellular adapta-
tion and developmental cues in plants are still poorly under-
stood.

Several cis-acting promoter elements are indispensable
for the regulation of defense-related gene expression during
biotic and abiotic stress. These elements, such as the W-
box, the GCC-box, and CRT/DRE, have been identiWed in
stress- and hormone response-related promoters in several
plant species and have been investigated by deletion analy-
sis (Eyal et al. 1993; Eulgem et al. 1999, 2000; Shinozaki
et al. 2003). The W-box (TTGACC), the ethylene-respon-
sive GCC-box (AGCCGCC), and the salicylic acid-respon-

sive (SA) as-1 element (TGACG) are also involved in plant
disease defense (Eyal et al. 1993; Jupin and Chua 1996;
Eulgem et al. 2000). The W-box is a binding site for tran-
scription factors in the WRKY family. Ethylene-inducible
pathogenesis-related (PR) gene expression is modulated by
ERF transcription factors containing the AP2 domain,
which speciWcally interact with a GCC-box characterized in
Arabidopsis and tobacco (Ohta et al. 2000; Oñate-Sánchez
and Singh 2002). Recently, several pepper (Capsicum
annum) PR promoters were isolated and functionally char-
acterized by Agrobacterium-mediated transient expression
in tobacco plants (Hong et al. 2005; Jung et al. 2005; Hong
and Hwang 2006). However, there is little information
about how defense-related promoters of plasma membrane
protein genes are regulated in response to pathogen infec-
tion and abiotic elicitors.

We previously demonstrated that the pepper CaPIMP1
gene, which encodes a plasma membrane protein, is diVer-
entially expressed in leaf tissues during compatible and
incompatible interactions with Xanthomonas campestris
pv. vesicatoria (Hong et al. 2008). Overexpression of
CaPIMP1 also alters resistance to bacterial and oomycete
pathogens. In this study, we analyzed CaPIMP1 expression
and promoter activation by biotic and abiotic stimuli. We
found that CaPIMP1 transcripts accumulated in pepper leaf
tissues upon treatment with abiotic defense elicitors. The
CaPIMP1 promoter region was essential for gene expres-
sion activated by pathogen infection and defense elicitor
treatment. CaPIMP1 overexpression (OX) in transgenic
Arabidopsis plants altered osmotic and oxidative stress tol-
erance.

Materials and methods

Plants and growth conditions

Pepper (Capsicum annuum, cv. Nockkwang) seeds were
sown in a soil mix (peat moss/perlite/vermiculite, 5/3/2, v/
v/v). Plants were grown in a growth room at 25 § 1°C and
70 �mol photons/m2 s¡1 illumination under a 16-h-light/8-
h-dark regime. Plants at the 6-leaf stage were used for treat-
ment with various agents. Tobacco (Nicotiana tabacum, cv.
Xanthi-nc) seeds were sown in the same soil mix and
grown under the same conditions. Tobacco leaves at the 6-
leaf stage were used for Agrobacterium-mediated transient
gene expression. Wild-type (Col-0) and CaPIMP1-overex-
pression (OX) transgenic Arabidopsis thaliana seeds (Hong
et al. 2008) vernalized for 4 days at 4°C were sown on a
potting soil mix (compost soil/perlite/vermiculite, 3/1/1, v/
v/v). Arabidopsis plants were raised in a growth chamber at
24°C/19°C (day/night) with a 12-h photoperiod
(100 �mol photons/m2 s¡1).
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Pathogen inoculation

Tobacco leaves inWltrated with Agrobacterium harboring
the binary vector pCAMBIA1381 with CaPIMP1 promoter
deletion constructs were inoculated with a suspension
(2 £ 108 cfu/ml) of Pseudomonas syringae pv. tabaci using
a syringe without a needle. Control plants were mock-inoc-
ulated by inWltration with 10 mM MgCl2. Mock- and bacte-
ria-infected tobacco plants were maintained in a moist
chamber at 26°C for 12 h prior to the GUS activity assay.

Isolation of genomic sequence and promoter of the 
CaPIMP1 gene

Pepper genomic DNA was extracted from leaf tissues fol-
lowing the method of Hong et al. (2000). A genomic frag-
ment containing the CaPIMP1 gene was ampliWed by PCR
using degenerate primers, primer, 5�-CTATTTTAGTTG
AATAGACAAAGTGAA-3� (forward), and 5�-AAACA
TAATTTCTCGAAACACTG-3� (reverse), based on the
5�- and 3�-untranslated regions of the CaPIMP1 cDNA.
PCR ampliWcation was performed with initial denaturation
at 95°C for 2 min followed by 35 cycles of incubation at
95°C for 1 min, 54°C for 30 s, and 72°C for 2 min, with
Wnal extension at 72°C for 10 min. PCR products were
cloned into the vector pCR2.1-TOPO (Invitrogen). Geno-
mic DNA sequences were aligned and compared with the
CaPIMP1 cDNA nucleotide sequence. The Genome
Walker Universal Kit (Clontech Laboratories Inc., Palo
Alto, CA, USA) was used to isolate the CaPIMP1 promoter
region with antisense CaPIMP1-speciWc primers, 5�-AGC
ATAAAAGTCCTTAAACTTGATTTTGA-3� and 5�-AA
ATGTTTCTGACAAAATTTCATAGTTT-3� for primary
and secondary nested PCR, respectively, according to the
manufacturer’s instructions. The generated PCR product
was cloned into pCR2.1-TOPO and sequenced. CaPIMP1
promoter sequences were analyzed by the PLACE Web
Signal Scan program (Higo et al. 1999).

Promoter deletion-GUS constructs

A CaPIMP1-GUS construct was generated by fusing a
CaPIMP1 promoter fragment (from ¡1193 to ¡1 bp,
where the Wrst nucleotide of the initiating ATG is desig-
nated +1) to the coding region of the GUS reporter gene in
pCAMBIA 1381. Serially 5�-deleted CaPIMP1-GUS con-
structs were created by PCR, using the full-length promoter
fragment as a template with the reverse oligonucleotide
primer VI (5�-CCATGGTTCACTTTGTCTATTCAACT
AAA-3�, with a NcoI restriction site at the 5�-end) with Wve
forward oligonucleotides: primer I (5�-GAATTCACTTGT
GAGAAATAGTTTGAGT-3�), primer II (5�-GAATTC
CTTATTTCTTTCAAAAGCTTA-3�), primer III (5�-GAA

TTCTATATTCGATCAATATTCAAGAA-3�), primer IV
(5�-GAATTCTTAATAGGATGAAAATACATA-3�) or
primer V (5�-GAATTCATTATGTTGTTTGAAACAAC
G-3�), each containing an EcoRI restriction site at the
5�-ends. Each fragment was digested with EcoRI/NcoI and
subcloned into EcoRI/NcoI-digested pCAMBIA 1381 to
generate Wve promoter deletion derivatives. All constructs
were veriWed by nucleotide sequencing. Each promoter-
GUS fusion construct was introduced into Agrobacterium
tumefaciens strain EHA105 via electroporation.

Agrobacterium-mediated transient expression assay

Assays of the CaPIMP1 promoter-GUS constructs were
performed in tobacco leaves using the method of Hong
et al. (2005). A. tumefaciens EHA105 harboring each of the
serially deleted promoter-GUS constructs was grown on
yeast extract peptone medium (10 g yeast extract, 10 g
Bacto peptone, 5 g NaCl, 15 g agar/l) supplemented with
rifampicin (60 �g/ml) and kanamycin (50 �g/ml). Agrobac-
terium was cultured at 28°C and harvested by centrifuga-
tion for 15 min at 6,000£g, resuspended in inWltration
media [0.1£ MS salts, 0.1£ B5 vitamins, 20 mM MOPS,
pH 5.4, 1% (w/v) glucose, 2% (w/v) sucrose, 200 �M
acetosyringone (Sigma-Aldrich, St Louis, MO)], and
adjusted to an OD600 of 0.7. After inWltration of Agrobacte-
rium suspension into abaxial surfaces of tobacco leaves
using a syringe without a needle (Kim et al. 2007), the
tobacco plants were maintained in a moist chamber at 26°C
for 48 h, followed by P. syringae pv. tabaci inoculation and
abiotic elicitor treatments for GUS activity analysis.

GUS activity measurement

GUS activity in Agrobacterium-mediated, transiently
expressed tobacco leaves was measured as described by
JeVerson et al. (1987). Tobacco leaf tissues were homoge-
nized in 1 ml extraction buVer [50 mM NaH2PO4, pH 7.0,
10 mM EDTA, 0.1% Triton X ¡100, 0.1% (w/v) sodium
laurylsarcosine, 10 mM �-mercaptoethanol]. After centri-
fuging for 10 min at 12,000£g at 4°C, the supernatant was
transferred to a fresh microtube. The Xuorogenic reaction
was carried out in a 1-ml volume with 1 mM 4-methylum-
belliferyl-�-D-glucuronide (Duchefa Biochemie, Haarlem,
The Netherlands) in the extraction buVer supplemented
with a 0.1-ml aliquot of protein extract supernatants. GUS
activity was normalized to protein concentration in each of
the crude extracts and was expressed as nmol 4-methylum-
belliferone min/mg protein. Total protein in sample extracts
was quantiWed using bovine serum albumin as a standard,
according to the method of Bradford (1976). The GUS
measurement was repeated at least three times with similar
results.
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Abiotic elicitor treatments

Ethylene treatment was performed by placing the pepper
plants in a tight glass chamber, where 5 �l/l ethylene was
applied by injecting the gas, via a syringe, through a rubber
septum in the chamber. Pepper plants sprayed with 100 �M
methyl jasmonate (MeJA) were packed in a vinyl bag. For
abscisic acid (ABA) treatment, the pepper plants were
removed from soil. The roots were carefully washed with
tap water and then soaked in 100 �M ABA. For salicylic
acid (SA) treatment, 5 mM SA was foliar-sprayed onto
pepper plants. For �-amino-n-butyric acid (BABA) treat-
ment, 20 mM BABA in water was foliar-sprayed onto pep-
per plants. For wounding stress, the leaves were pricked
with a needle. For low-temperature treatment, pepper plants
were placed at 4°C. For NaCl treatment, pepper plants
grown in plastic pots containing compost soil mix were
gently removed from the soil and their roots were immersed
in 400 mM NaCl. At various time points, pepper leaves
treated with abiotic elicitors were harvested, frozen in liq-
uid nitrogen, and stored at ¡70°C until used for RNA blot
analyses.

To investigate the activation of the CaPIMP1 promoter
by treatment with abiotic elicitors, tobacco leaves inWltrated
with Agrobacterium harboring CaPIMP1 promoter-GUS
constructs were sprayed with 100 �M ABA or 100 �M
sodium nitroprusside (SNP). Tobacco plants were sprayed
with water as a mock-treatment. To monitor ethylene
responsiveness of the CaPIMP1 promoter, 10 �l/l of ethyl-
ene gas was injected into a glass chamber containing
tobacco plants. Tobacco plants sprayed with 100 �M MeJA
were sealed with a transparent plastic bag. Treated tobacco
plants were placed in a growth room for 12 h and then
immediately frozen in liquid nitrogen for GUS activity
assays.

RNA gel blot analysis

Total RNA was isolated from pepper and Arabidopsis using
the guanidium-acid phenol method (Chomczynski and Sac-
chi 1987; Chung et al. 2007) and Trizol reagent (Invitrogen,
Carlsbad, CA, USA), respectively. Ten micrograms of total
RNA was separated on 1.2% agarose/formaldehyde gels,
blotted onto Tropilon-Plus nylon membranes positively
charged (Applied Biosystems, Bedford, MA, USA), and
hybridized overnight with 14-dCTP-biotin-labeled
CaPIMP1 cDNA (accession no. DQ356278) in the hybrid-
ization buVer (1 mM EDTA, 7% SDS, 250 mM Na2HPO4,
and 5% dextran sulfate) at 65°C. After hybridization, the
nylon membranes were washed as previously described
(Hong et al. 2005). Biotin was detected via chemilumines-
cence with CDP-Star substrate according to manufacturer’s
protocol (Applied Biosystems, Bedford, MA, USA). The

membranes were exposed to X-ray Wlm. All RNA blot anal-
yses were repeated at least three times.

Evaluation of Arabidopsis responses to abiotic elicitors

Arabidopsis seeds sown on basal MS medium containing
400 mM mannitol, 200 mM NaCl, and 2.5 �M ABA were
maintained at 4°C for 4 days, and germination (emer-
gence of radicles) was scored daily. Arabidopsis seedlings
were grown in 1£ MS agar medium supplemented with
1% sucrose in a growth chamber for 4 days after sowing
and transferred to 1£ MS agar medium supplemented
with mannitol, NaCl, or ABA. Arabidopsis seeds sown on
MS medium containing 100 �M methyl viologen (MV)
were maintained at 4°C for 2–4 days, and germination
(emergence of radicles) was scored daily. To monitor
seedling development, Arabidopsis seedlings were grown
in 1£ MS agar medium supplemented with 1% sucrose in
a growth chamber for 7 days after sowing and transferred
to 1£ MS liquid medium supplemented with MV at diVer-
ent concentrations. Germination and seedling growth
assays were repeated at least three times with similar
results.

Results

Sequence analysis of the CaPIMP1 gene

The CaPIMP1 genomic sequence was isolated and com-
pared with the CaPIMP1 cDNA sequence, which revealed
that it contains three exons and two introns of 698 and
859 bp in length (data not shown). All deduced intron/exon
junctions possess the consensus GT/AG splice sites. The
nucleotide sequence data in this study appear under the
accession number DQ356279 in the DDBJ/EMBL/Gen-
Bank nucleotide database.

An upstream region including the putative promoter
sequence of the CaPIMP1 gene was isolated from pepper
genomic DNA, and sequence analysis with the PLACE pro-
gram revealed several motifs that are found in most eukary-
otic promoters for gene expression and regulation (Fig. 1).
Potential regulatory elements associated with hormone- and
stress-related responses found in other plant promoters
were located within the CaPIMP1 promoter: two GT-1 ele-
ments, three MYB transcription factor-binding sites, four
W-boxes, three ethylene responsive elements (EREs), two
ACGT elements, eleven cytokinin-regulated transcription
factor ARR1-binding sites, and two gibberellin-responsive
elements. The presence of these motifs indicates that
CaPIMP1 may be regulated by various cis-acting elements
within the promoter as well as corresponding trans-acting
factors.
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Activation of the CaPIMP1 promoter by bacterial infection 
and defense signaling molecules

To determine the minimal promoter sequence of the
CaPIMP1 gene required for promoter activity, Wve pro-
moter fragments beginning ¡1,193, ¡1,017, ¡793, ¡593,
and ¡417 bp upstream of the translational initiation site
were fused to the GUS reporter gene (Fig. 2a). Tobacco

leaves were inWltrated with Agrobacterium harboring these
constructs, and GUS activity expressed in response to bac-
terial infection and various signal molecules was analyzed
by quantitative Xuorometry. Twelve hours after inoculation
with P. syringae pv. tabaci (Fig. 2b), tobacco leaf tissues
harboring the ¡1,193 bp promoter construct exhibited a
threefold higher GUS activity than did mock-inoculated
leaves. However, further deletion of the promoter permitted

Fig. 1 Nucleotide sequence of 5�-Xanking promoter regions and puta-
tive cis-acting elements of the CaPIMP1 gene. ACGTAterd1, ACGT
sequence required for the etiolation-induced expression of erd1 (early
responsive to dehydration) in Arabidopsis (Simpson et al. 2003);
ARR1At, ARR1-binding element (Sakai et al. 2000; Ross et al. 2004);
BP5, OsBP-5 (a MYC protein) binding site in the rice Wx promoter
(Zhu et al. 2003); ERE, ethylene-responsive element of the tomato E4
and carnation GST1 genes (Montgomery et al. 1993; Itzhaki et al.
1994); GARE, GA-responsive element (Ogawa et al. 2003);
GT1GmSCaM4, GT-1 motif found in the promoter of soybean CaM

isoform, SCaM-4 (Park et al. 2004); LeCp, TAAAATAT element in
the LeCp (tomato Cys protease) binding cis-element in the LeAcs2
gene (Matarasso et al. 2005); MYB core, binding site for all animal
MYBs and the Arabidopsis MYB proteins AtMYB1 and AtMYB2
(Urao et al. 1993); NtBBF1, tobacco Dof protein binding site in the
Agrobacterium rhizogenes rolB gene (Baumann et al. 1999); RAV1At,
binding consensus sequence for the Arabidopsis transcription factor
RAV1 (Kagaya et al. 1999); W-box, binding site for the WRKY tran-
scription factor (Eulgem et al. 2000)
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induction of GUS activity in response to P. syringae pv.
tabaci.

Treatments with ethylene, MeJA, ABA, and SNP for
20 h proved suYcient to trigger GUS expression driven by
CaPIMP1 promoter constructs (Fig. 3). Ethylene treatment
distinctively induced expression driven by all promoter
regions between ¡1,193 and ¡417 bp. Promoter deletion
to ¡1,017 bp led to a twofold induction of GUS activity.
Further deletions to ¡793 and ¡593 bp were more eVective
for ethylene-mediated GUS activation, resulting in 7- and
11-fold increases, respectively. The ¡417 bp promoter con-
struct showing a 4.5-fold increase also was suYcient for the
induction of GUS activity by ethylene. The ethylene-
induced GUS activity levels driven by the CaPIMP1 pro-
moter were relatively higher than those by other signal mol-
ecules, such as ABA, SNP, and MeJA. All CaPIMP1
promoter fusions except for the ¡417 bp construct were
responsive to MeJA treatment. ABA induced a twofold
increase in GUS activity in tobacco leaves harboring the
¡1,193 bp promoter construct. Deletion to ¡1,017 and
¡793 bp regions resulted in roughly threefold increases in
GUS activity by ABA treatment. However, signiWcant GUS
activity was not observed in ABA-treated tobacco leaves

harboring the ¡593- and ¡417 bp CaPIMP1 promoter
fusions. Treatment with SNP, a nitric oxide donor, also
induced GUS expression in tobacco leaves harboring the
¡1,193, ¡1,017, and ¡793 bp regions of the CaPIMP1
promoter. SNP-induced GUS activity gradually decreased
following further promoter deletion to ¡417 bp. GUS
activity was abolished by deletion of the CaPIMP1 pro-
moter to ¡593 and ¡417 bp.

CaPIMP1 gene expression in pepper leaves treated 
with abiotic elicitors

To evaluate the eVect of signal molecules on CaPIMP1
expression, ethylene, MeJA, ABA, SA, and BABA were
exogenously applied to pepper plants at the 6-leaf stage
(Fig. 4). Treatment with ethylene, MeJA, ABA, and BABA
activated the CaPIMP1 gene. Transcription began 1 h after
ethylene treatment, increased up to 6 h and slightly
decreased over 24 h. CaPIMP1 expression was also tran-
siently induced 2–12 h after treatment with MeJA and
ABA. CaPIMP1 transcripts were detected 1 h after BABA
treatment, with a peak of induction at 2–6 h. To determine
whether environmental stresses aVect CaPIMP1 expres-
sion, pepper plants were exposed to NaCl, wounding, and
low temperature. The CaPIMP1 gene was rapidly activated
within 1 h after NaCl treatment, and expression drastically
declined by 12 h and disappeared by 24 h. The CaPIMP1
gene was markedly expressed within 30 min following
mechanical wounding, and thereafter gradually diminished
in pepper leaf tissues. In response to cold stress, CaPIMP1
transcripts accumulated in pepper leaves 24 h after low-
temperature treatment.

Fig. 2 a Schematic representation of CaPIMP1 promoter constructs
for assaying GUS (�-glucuronidase) expression in tobacco leaves. The
serially 5�-deleted promoter constructs of the CaPIMP1 gene were
fused to the GUS reporter gene in the vector pCAMBIA1381. b Ca-
PIMP1 promoter activation in response to Pseudomonas syringae pv.
tabaci infection in tobacco leaf tissues transiently transformed with
5�-CaPIMP1-GUS chimeric constructs. Tobacco leaves were inWl-
trated with a bacterial suspension of P. syringae pv. tabaci
(2 £ 108 cfu/ml 10 mM MgCl2) or with 10 mM MgCl2 as a mock-
inoculation. GUS activity was analyzed Xuorometrically and expressed
as nmoles 4-methylumbelliferone (MU)/mg protein min¡1. Data are
means § standard deviations from three independent assays of tobacco
leaf extracts
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Enhanced sensitivity to osmotic stress and ABA of 
CaPIMP1-OX Arabidopsis

We monitored seed germination and seedling growth of
Arabidopsis to examine the responses of transgenic plants
to osmotic stress and ABA (Fig. 5). Most (80–90%) wild-
type seeds germinated in 400 mM mannitol, 200 mM NaCl,
and 2.5 �M ABA within 7 days after sowing, whereas ger-
mination of CaPIMP1-OX transgenic seeds was severely
reduced under the same conditions (Fig. 5a). In contrast,
there was no diVerence in development for wild-type and
transgenic seedlings when they were treated with mannitol,
NaCl, or ABA (Fig. 5b).

Enhanced tolerance to oxidative stress of CaPIMP1-OX 
Arabidopsis

Methyl viologen (MV), a redox-cycling herbicide that
propagates cellular reactive oxygen species, was used to
evaluate the tolerance of CaPIMP1-OX transgenic plants to
oxidative stress. Transgenic plants were more resistant than
wild-type plants to MV-mediated oxidative stress during
the germination and early seedling stages. Following
100 �M MV treatment, the transgenic lines germinated to a
higher extent than did the wild-type seeds (Fig. 6a): after
4 days, 75% of the transgenic seeds but only 10% of the
wild-type seeds germinated. Lower dosages (0.4–0.8 �M)
of MV severely retarded post-germination growth of both

wild-type and transgenic plants, and this eVect was more
pronounced in wild-type plants (Fig. 6b, c). Some wild-
type seedlings became bleached and died. Oxidative stress
responses of 4-day-old wild-type and transgenic seedlings
were not distinctively diVerent after treatment with 0.5 �M
MV (Fig. 6d). However, transgenic lines #4 and #5 exhib-
ited slightly higher tolerance to 1.0 �M MV compared to
the wild-type plants.

Discussion

To elucidate the molecular basis of CaPIMP1 gene expres-
sion, we analyzed its genomic organization and promoter
activity in this study. We further investigated the biological
functions of CaPIMP1 during osmotic and oxidative
stresses in CaPIMP1-OX transgenic Arabidopsis plants.

CaPIMP1 expression was induced by pathogen and abi-
otic elicitors. Several putative cis-acting elements, such as
the ACGT-box and W-box, were found by computational
analysis to reside in the CaPIMP1 promoter, and these ele-
ments may be responsible for CaPIMP1 expression by
pathogen infection and abiotic elicitors. The ¡1,193 bp
CaPIMP1 promoter was suYcient to drive GUS activity in
tobacco leaf tissues infected with P. syringae pv. tabaci.
Cis-acting elements essential for activation in response to
P. syringae pv. tabaci infection may reside between
¡1,193 and ¡1,017 bp. Only a GT-1 element identiWed in

Fig. 4 RNA gel blot analysis of 
CaPIMP1 expression in leaf tis-
sues of pepper plants treated 
with ethylene, MeJA, ABA, SA, 
BABA, mechanical wounding, 
and low temperature. The rRNA 
in agarose gels was stained with 
ethidium bromide to show equal 
loading of RNA. Similar results 
were obtained in three indepen-
dent experiments. C healthy con-
trols
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the soybean calmodulin gene promoter activated by patho-
gen infection and NaCl stress was also found within the
CaPIMP1 promoter region from ¡1,103 to ¡1,098 bp
(Park et al. 2004). The presence of this GT-1 element
suggests that it may function in CaPIMP1 promoter activa-
tion in response to bacterial infection. Another GT-1 ele-
ment was also identiWed at ¡605 to ¡599 bp, indicating
that this GT-1 element may not be suYcient for CaPIMP1
promoter activation by P. syringae pv. tabaci infection.
Three W-boxes and one as-1 element were found within the
¡1017 CaPIMP1 promoter region. These elements have
been suggested to be binding sites for the SA-dependent
and pathogen-induced transcription factors WRKY and
TGA, respectively (Jupin and Chua 1996; Eulgem et al.
2000). However, promoter constructs containing these cis-
acting elements were not activated by P. syringae pv.
tabaci infection.

In this study, the minimal promoter region was demon-
strated to be diVerently located for CaPIMP1 activation by
abiotic elicitors, ABA, SNP, ethylene, and MeJA. The
ABA-responsive, bZIP transcription factor-binding
ACGT-box, and EREs were found in the CaPIMP1 pro-
moter region. The ¡593 bp deletion construct did not
respond to ABA treatment, although there are ABA-
responsive bZIP and MYB binding sites in this region

Fig. 5 Enhanced sensitivity to osmotic stresses and abscisic acid
(ABA) of CaPIMP1-OX transgenic Arabidopsis plants during germi-
nation and early seedling development. a Germination rates of wild-
type (WT) and transgenic lines #3, #4 and #5 on 1£ MS medium con-
taining 400 mM mannitol, 200 mM NaCl and 2.5 �M ABA 6 days af-
ter sowing. Germination was scored when the radicle tips had fully
emerged from the seed coats. The data are the mean § standard devia-
tions of three independent experiments in the evaluation of 100 seeds.
b Seedling development of wild-type and transgenic lines on 1£ MS
agar medium containing 400 mM mannitol, 125 mM NaCl and 10 �M
ABA 12 days after sowing
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Fig. 6 Enhanced tolerance to oxidative stress of CaPIMP1-OX trans-
genic Arabidopsis plants during germination and early seedling devel-
opment. a Germination rates of wild-type (WT) and transgenic lines on
1£ MS medium containing 100 �M methyl viologen (MV) 6 days after
sowing. The data are the means § standard deviations of three inde-
pendent experiments in the evaluation of 100 seeds. b Cotyledon for-
mation of wild-type (WT) and transgenic lines on 1£ MS medium
containing 0.8 �M MV 6 days after sowing. The data are the
means § standard deviations of three independent experiments in the
evaluation of 40 seedlings. c Seedling development of wild-type (WT)
and transgenic lines on 1£ MS medium containing 0.4 �M MV 6 days
after sowing. d MV tolerance of seedling plants of transgenic lines.
Wild-type and transgenic lines were germinated and grown in 1£ MS
agar medium in the absence of MV for 4 days. Seedlings were trans-
planted to liquid medium containing diVerent MV concentrations. Pho-
tographs were taken after exposure to MV for 12 days
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(Urao et al. 1993, 2000). This observation suggests that the
bZIP element identiWed within the CaPIMP1 promoter
may not function in the activation of CaPIMP1 deletion
promoters. Three EREs were found in the CaPMIP1 pro-
moter. A 5�-deletion of the CaPMIP1 promoter to
¡593 bp resulted in a gradual induction of ethylene-
responsive promoter activity, indicating that putative cis-
acting elements bound by transcriptional repressors may
exist between ¡1,193 and ¡593 bp. These transcriptional
repressors may tightly control CaPIMP1 gene expression
by ethylene-mediated signaling. Deletion of the promoter
to ¡417 bp drastically reduced ethylene-responsive pro-
moter activity. An ERE in the ¡257 bp fragment was suY-
cient to activate the promoter; however, a lack of putative
ERE(s) between ¡593 and ¡417 bp responsible for
CaPIMP1 promoter activation may reduce promoter activ-
ity. Interestingly, the ¡793 deletion retained the ERE at
the ¡640 bp site, leading to a gradual increase in promoter
activity. The GCC-box-like jasmonic acid-responsive ele-
ment or other jasmonic acid-responsive elements (Menke
et al. 1999; Xu and Timko 2004) were not found in the
CaPIMP1 promoter region. However, the CaPIMP1 pro-
moter was suYcient for MeJA-induced activation, sug-
gesting that there are unidentiWed novel jasmonic acid-
responsive cis-acting elements in the CaPIMP1 gene pro-
moter region. Synergistic and antagonistic interactions of
various cis-acting elements for CaPIMP1 promoter activa-
tion remain to be elucidated.

Plasma membrane proteins are involved in the recogni-
tion and transduction of endogenous hormonal signals (Bla-
keslee et al. 2005). CaPIMP1 expression may be dependent
on ethylene, MeJA, and ABA. However, SA had no eVect
on CaPIMP1 gene expression in pepper leaves. Induction
of disease resistance-related plasma membrane proteins by
plant hormones has not been reported. Cold-regulated
plasma membrane protein genes are induced in wheat and
rice by ABA treatment (Breton et al. 2003; Imai et al. 2005;
Morsy et al. 2005). Inducible CaPIMP1 may be eYcient at
mediating and enhancing plant defense responses against
abiotic stresses.

Environmental stresses, including wounding or expo-
sure to low temperature or high NaCl induced CaPIMP1
expression in pepper plants. Multispanning transmem-
brane proteins in several plant species have been shown to
be regulated by cold stress (Breton et al. 2003). Pathogen-
esis-related genes isolated from pepper plants were shown
to be induced by exogenous hormone treatment and envi-
ronmental stresses (Jung et al. 2003; Lee and Hwang
2005; Hong and Hwang 2005, 2006). Analysis of trans-
genic Arabidopsis overexpressing basic PR-1, chitinase,
lipid transfer protein, and the Cys2/His2 zinc-Wnger tran-
scription factor indicates that these pepper pathogenesis-
related proteins are involved in environmental stress tolerance

(Kim et al. 2004; Hong and Hwang 2005, 2006; Jung et al.
2005; Lee and Hwang 2006). Recently, we found that
CaPIMP1 is also rapidly induced by infection with X.
campestris pv. vesicatoria, and that CaPIMP1 overex-
pression in transgenic Arabidopsis alters disease resis-
tance (Hong et al. 2008). These studies support the
possibility that the CaPIMP1 protein is also involved in
abiotic stress signaling in pepper plants, as well as in dis-
ease resistance.

Overexpression of CaPIMP1 in transgenic Arabidopsis
results in increased bacterial resistance to P. syringae pv.
tomato, but enhanced disease susceptibility to the oomycete
biotroph Hyaloperonospora parasitica (Hong et al. 2008),
suggesting distinct roles for CaPIMP1 in diverse interac-
tions of pathogens with host plants. Interestingly, ectopic
expression of the CaPIMP1 gene in Arabidopsis also
caused altered responses to high osmotic stress and oxida-
tive damage during germination and seedling development
in this study. CaPIMP1 overexpression in transgenic plants
may negatively regulate ABA-related signaling, but posi-
tively enhance oxidative stress signaling. Interestingly,
negative eVect of CaPIMP1-overexpression on ABA-medi-
ated signaling was only shown at the seed germination
stage, which may be due to the diVerence in physiology
between germination and seedling growth. It is not evident
why overexpression of CaPIMP1 results in increased toler-
ance to oxidative stress. The CaPIMP1 gene may partici-
pate in oxidative burst-mediated disease resistance, which
is supported by previous studies of environmental stress
perception and of plant antioxidant systems (Foyer and
Noctor 2005). Oxidative damage in plants caused by MV
may be due to the excess generation of superoxide radicals,
which are normally detoxiWed into oxygen and hydrogen
peroxide (H2O2) by superoxide dismutase (Apel and Hirt
2004). Nevertheless, exogenous application of H2O2, caus-
ing oxidative stress, did not distinctively aVect the germina-
tion of CaPIMP1-OX Arabidopsis seeds and early seedling
development (data not shown), suggesting that CaPIMP1
may function diVerently against diVerent sources of reac-
tive oxygen species in plant cells.

In conclusion, we suggest that CaPIMP1 promoter
activation by pathogen infection and abiotic elicitor treat-
ment is suYcient to regulate both disease resistance and
abiotic stress tolerance in plants. The CaPIMP1 gene may
be involved in plant tolerance to a broad spectrum of plant
stresses. Further dissection of the CaPIMP1 promoter will
reveal the presence of unidentiWed cis-acting elements for
promoter activation by pathogen- and abiotic stimuli.
Together with our previous studies of altered disease
resistance of CaPIMP1-OX Arabidopsis, these Wndings
emphasize the need to continue elucidating the distinct
roles of CaPIMP1 in disease resistance and abiotic stress
tolerance.
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