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Abstract In the past 30 years enormous progress was
made in plant membrane biology and transport physi-
ology, a fact reXected in the appearance of textbooks.
The Wrst book dedicated to ‘Membrane Transport in
Plants’ was published on the occasion of the ‘Interna-
tional Workshop on Membrane Transport in Plants’
held at the Nuclear Research Center, Jülich, Germany
[Zimmermann and Dainty (eds) 1974] and was fol-
lowed in 1976 by a related volume ‘Transport in plants
II’ in the ‘Encyclopedia of plant physiology’ [Lüttge
and Pitman (eds) 1976]. A broad spectrum of topics
including thermodynamics of transport processes,
water relations, primary reactions of photosynthesis, as
well as more conventional aspects of membrane trans-
port was presented. The aim of the editors of the Wrst
book was to bring advanced thermodynamical con-
cepts to the attention of biologists and to show physical
chemists and biophysicist what the more complex bio-
logical systems were like. To bundle known data on
membrane transport in plants and relevant Welds for
mutual understanding, interdisciplinary research and
clariWcation of problems were considered highly
important for further progress in this scientiWc area of
plant physiology. The present review will critically
evaluate the progress in research in membrane trans-
port in plants that was achieved during the past. How
did ‘Membrane Transport in Plants’ progress within
the 30 years between the publication of the Wrst book

about this topic (Zimmermann and Dainty 1974), a
recent one with the same title (Blatt 2004), and today?
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Abbreviations
ABA Abscisic acid
aK+ K+ activity in the xylem sap
CCCP Carbonyl cyanide m-chlorophenylhydrazone
D-arab D-arabinose
Em Membrane potential
GFP Green Xuorescent protein
glc Glucose
L-arab L-arabinose
L-rham L-rhamnose
MgPPi Inorganic pyrophosphate
Pi Inorganic phosphate
Px Xylem pressure
QTL Quantitative trait loci
TPP+ Triphenylphosphate
TRP Trans-root potential

Thermodynamics and electrochemistry of membrane 
transport

In 1974, the selective permeability of biological mem-
branes was compared to synthetic ion-exchange resins
which have been developed and studied because of
their technological value in electrically driven mem-
brane separation processes such as electro-dialysis. As
a result theoretical Xux equations have been formu-
lated and used to describe the functioning of mem-
branes in general. These equations describing the
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membrane potential, Donnan potential, ionic mobili-
ties, transmembrane Xuxes, Xux coupling, active trans-
port, osmotic eVects, streaming potentials and
unstirred layers can now be found in basic physical–
chemical literature and some physiology textbooks.

Water transport and osmotic processes

The theory of water transport across plant membranes
and coupling between solute and water Xow based on
non-equilibrium thermodynamics was applied to
describe swelling and shrinking of Chara cells (Dainty
et al. 1974). Osmoregulation-dependent carbohydrate
metabolism or glycerol content at that time was studied
with the Xagellates Ochromonas and Dunaliella (Kauss
1974; Ben-Amotz 1974). A topic which is still hot, since
tolerance to heat-, cold-, and salt stress of higher plants
also depends on the ability to synthesize compatible
solutes (Grallath et al. 2005). To directly measure the
cell pressure (turgor) of giant algae and higher plant
cells, the turgor pressure probe was developed (Zim-
mermann et al. 1969). Data recorded with the turgor
pressure probe and its derivative, the xylem pressure
probe (Balling et al. 1988), in relation to those
obtained with the Schollander pressure bomb (Schol-
lander et al. 1965) keep alive controversial discussions
about the mechanism of water transport in trees
already for decades (Wei et al. 2000; Zimmermann
et al. 2000, 2004; Angeles et al. 2004; see http://
www.biozentrum.uni-wuerzburg.de/physikomedica/
aktuelles/streitgespraeche.html). Meanwhile, the
nature of the water pores in biological membranes was
demystiWed by the identiWcation of water-conducting
membrane proteins and encoding genes (see Nobel
price 2003 to Peter Agre; Maurel et al. 1993; Kam-
merloher et al. 1994; SchäVner 1998; Maurel and Chri-
speels 2001; King et al. 2004; Tornroth-HorseWeld et al.
2006). Furthermore, new inventions were developed
such as coupled pressure potential- and ion activity
measurements that allows the continuous and simulta-
neous monitoring of changes in ion activity, pressure
and potential in, e.g., individual xylem vessels (Fig. 1;
Wegner and Zimmermann 2002, 2004).

Electrical properties of membranes

On the basis of their discovery of the reversible break-
down in 1973, Zimmermann et al. (1974) developed a
method to inject foreign materials into living cells with-
out deterioration of cellular functions and membrane.
This patented method is nowadays well known as

“electroporation” and used for the transfer of solutes
and DNA for transfection of cells.

In 1974, membrane transport was mainly studied
with electrophysiological techniques and Xux studies
on the basis of radioisotopes on intact plants, tissues,
plant cell or algae cultures and single giant algae. In
addition, membrane vesicles isolated from plant organs
served as a model to elucidate membrane ion and
metabolite transport. The electrical properties of mem-
branes such as of root membranes were determined by
microelectrode impalement under current clamp con-
ditions. The membrane potential, reXecting the assem-
bled behaviour of all electrogenic transporters, was
recorded in response to the environment. Upon
changes in the ionic composition of the nutrient solu-
tion and addition of the inhibitors, the membrane
potential altered in a characteristic manner. From
these changes the contribution and properties of indi-
vidual transporter classes were deduced. Thereby the
presence of H+ pumps, SO4

2¡ , PO4
3¡ , Cl- transporters,

etc., and in some cases even their stoichiometry was
predicted. With giant algae like Chara and Nitella, the
water net alga Hydrodictyon, Wlamentous fungi like
Neurospora crassa or rhizoids of liverwort Riccia Xui-
tans voltage-clamp was applied and the membrane

Fig. 1 EVect of light irradiation on the K+ activity in the xylem
sap (aK+), xylem pressure (Px) and trans-root potential (TRP) re-
corded in a vessel of a 29.7-cm-long root of a 20-day-old intact
maize plant. The root was impaled 28.6 cm above the root tip at
laboratory light irradiation (about 10 �mol m¡2 s¡1; relative
humidity = 51%, T = 22°C). About 20 min after the impalement,
the plant was subjected repeatedly to light irradiations of
300 �mol m¡2 s¡1 (down arrow) with intermittent periods of low
light irradiations (up arrow). From Wegner and Zimmermann
with copyright permission of Blackwell Publishing (2002)
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current studied directly. Thereby the charge carriers
could be identiWed. Furthermore the kinetics of current
activation, de-, and inactivation was determined and
associated with distinct transporter types.

JaVe et al. (1974) studied “Transcellular currents
and ion Xuxes through developing fucoid eggs” using
the common seaweed Pelvetia fastigiata as a model.
Membrane potential- and osmotic changes were
recorded together with K+ and Cl- uptake and plasma
membrane permeability changes. Later similar pio-
neering studies of Brownlee’s lab (Brownlee et al.
1998) recorded fertilization currents and identiWed var-
ious ion channel types including membrane stretch-
induced ones. Thereby a Ca2+ gradient was found in
the tip of polarized growing Fucus eggs (Taylor et al.
1996; Brownlee et al. 1998). Similar relations and sev-
eral molecular aspects have been identiWed in polar
growing root hairs (for review see Bibikova et al.
2004). One should also mention the use of vibrating
microelectrodes to monitor the extracellular current
Welds of polar growing cells (Kühtreiber and JaVe 1990;
Pierson et al. 1994; Tegg et al. 2005).

Coster and Smith (1974) performed high-resolution
membrane capacitance measurements on Chara coral-
lina with focus on pH eVects. As a result they predicted
“In biological membranes such Wxed charges could
arise from the ionization of -NH2 and -COOH groups
of basic and acidic amino acids in the membrane pro-
teins, and the Wxed charge concentration would thus be
pH dependent.” In the 1980s the Wrst plant K+ channels
were identiWed in the plasma membrane of guard cell
protoplasts (Fig. 2a; Schroeder et al. 1984) while in the
1990s plant K+ channels localized in the plasma mem-
brane and sensitive to pH changes have been cloned
and their protonatable domains and residues identiWed
(Fig. 2b; Anderson et al. 1992; Schachtman et al. 1992;
Sentenac et al. 1992; Hoshi 1995; Ketchum and Slay-
man 1996; Marten et al. 1999; Hoth et al. 1997, 2001;
Lacombe et al. 2000; Geiger et al. 2002). Recent capac-
itance measurements (gating charge movement) asso-
ciated with the opening and closing of the Arabidopsis
guard cell K+ channel KAT1 provided new insights
into the gating of plant inward rectiWers (Fig. 2c;
Latorre et al. 2003).

Active transport I: ion pumps

Slayman (1974) wrote “Over the past 10 years our
understanding of the nature of biological membrane
potentials and the relation of those potentials to
metabolism, to transport of ionic substances, and to the
transport of uncharged substrates has undergone a

major revolution”. Stimulated by Mitchell’s prediction
(1961), membrane processes in mitochondria, chloro-
plasts and halobacteria were studied and conWrmed the
chemiosmotic hypothesis. Furthermore, Slayman
(1974) postulated “It is now clear that the animal-type
Na+/K+ transport system is very rare among non-ani-
mal cells and tissues, if it exists there at all.” Indeed in
the past two decades the molecular structure of H+

pumps rather than that of Na+/K+ pumps was identiWed
in plants subdivided into gene families and associated
with diVerent membrane types such as plasma mem-
brane P-type-, vacuolar V-type and F1/Fo-type ATP-
ases/synthases. When the mitochondrial F1/Fo-ATPase
was crystallized (Abrahams et al. 1993, 1994), the
structural basis for understanding the conversion
between chemical and metabolic energy was laid (see
Nobel price 1997 to Sir John Ernest Walker). Since
1985 diVerent groups succeeded in monitoring pump
currents generated by the animal Na+/K+ ATPase
(Gadsby et al. 1985; Fendler et al. 1985; Lafaire and
Schwarz 1986; Nakao and Gadsby 1986). The Wrst
direct recordings of ATP-driven H+ currents were per-
formed in plants when the patch clamp technique was
applied to isolated vacuoles (Hedrich et al. 1986).
Later it was shown by similar recordings that H+-ATP-
ases and H+-PPiases co-reside in the same vacuole
(Fig. 3a; Hedrich et al. 1989; for analysis of PPiases see
also Davies et al. 1992; Obermeyer et al. 1996). The
prediction of Nelson (1992) that V-type ATPases can-
not operate in the inverse proton-driven ATP synthesis
mode was challenged by recordings on vacuoles where
via patch pipettes the vacuolar lumen was clamped to
pH 4.5. At 0 mV, pH 7.5 in the bath (“cytosol”) and
presence of ATP, protons were pumped into the vacu-
ole while ATP replacement by ADP and Pi triggered
outward H+ pump currents (Fig. 3b; Gambale et al.
1994). Thus H+ Xuxes through the V-type ATPase can
drive ATP synthesis and vice versa. Under most physi-
ological conditions, however, ATP drives protons
through the V-type ATPase into the vacuole lumen.

Balke et al. (1974) as well as Leigh et al. (1974)
reported about the cation sensitivity of the plasma
membrane ATPase of oat and maize roots, respec-
tively. In their studies on membrane vesicles the
authors attempted to identify why monovalent cat-
ions and anions can stimulate ATP-driven H+ pump-
ing. Since vesicles represent a thermodynamically ill-
deWned system, H+ pumping results in pH change of
the vesicle lumen and charging of the membrane. The
latter could be balanced by potassium uptake or
anions slipping through leaks or anion channels.
Owing to cytoplasmic K+ concentrations in the
100 mM range, K+-dependent stimulation of the H+
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ATPase does not represent a mechanism of regula-
tion in vivo. At about ten times higher Ca2+ concen-
trations as in the cytoplasm, the H+ ATPase was
inhibited by 100% (Kinoshita et al. 1995). Neverthe-
less, the physiological relevance of this Ca2+-depen-
dent inhibition is still scant too. In the meanwhile,
however, charge balancing K+- and anion channels
have been identiWed (for review see Amtmann et al.
2004; Dreyer et al. 2004a, b).

Besides pumping protons, in plant cells membrane-
bound ATPases have been shown to transport other
cations such as Ca2+, Na+ (in the moss Physcomitrella
patens, Benito and Rodriguez-Navarro 2003) and
heavy metals. The molecular mechanism of plant
heavy metal transport is at its very beginning and thus
basis for bioremediation even more so. A view on this
open Weld is given by Rosser and Dominy (2004). In
comparison more is known about plant Ca2+-ATPases

(for review see López-Marqués et al. 2004). The fact
that P. patens harbours a bacteria-like Na+ pump
allowing the moss to survive even severe salt stress
leads to the questions whether higher plants lost this
pump, or mosses received it more recently (past mil-
lion years) by horizontal gene transfer from bacteria.
The answers to this question may come from genome
analyses of algae, equisetae, ferns and other mosses
than P. patens. A new class of ATPases named ABC
transporters was even shown to transport substrates of
diverse structure including herbicides, glutathionylated
compounds, glucuronides and malonylated chlorophyll
catabolites (Rea et al. 1998; for review see Martinoia
et al. 2002). Gradmann and Klemke (1974) proposed a
Cl- pump to operate in giant cells of the marine alga
Acetabularia mediterranea. So far, this hypothesis was
not yet approved by isolating the gene and studying the
Cl- pump function of the gene product.

Fig. 2 First recording of a plant K+ channel in the plasma
membrane (a) and characterization of KAT1 (b, c), one of the
Wrst cloned plant K+ channel, heterologously expressed in
Xenopus laevis oocytes. a Recordings of K+-selective channel
currents in an inside-out membrane patch from Vicia faba
guard cell protoplasts. The membrane potential Em was held at
+ 40 mV and stepped by 100-ms-lasting voltage pulses to
potentials in the range from + 90 to ¡80 mV. In all records the
pulse starts at the upward-pointing arrow and stops at the
downward-pointing arrow. The experiments were performed
in the presence of symmetrical high K+ solutions (225 mM).
From Schroeder et al. (1984) with copyright permission by Na-
ture Publishing Group’s (http://www.nature.com/). b Proper-
ties of the KAT1 currents. Upper traces: representative KAT1

macroscopic currents recorded in the cell-attached conWgura-
tion on Xenopus oocytes in response to 4-s voltage pulses to
¡80 to ¡180 mV in 10-mV increments and then to ¡50 mV.
Lower traces: representative KAT1 single-channel openings
elicited in response to voltage pulses from 0 to ¡180 mV in the
inside-out conWguration. Reproduced from Hoshi (1995) with
copyright permission by The Rockefeller University Press. c
Gating currents induced by KAT1 channels. Upper trace rep-
resents ON gating currents measured at ¡180 mV. Lower
trace gives the OFF gating currents recorded at 0 mV after a
¡180 mV pulse. Grey lines are biexponential Wts with the indi-
cated fast and slow time constants. Reproduced and modiWed
from Latorre et al. (2003) with copyright permission by The
Rockefeller University Press
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Active transport II: ion-dependent cotransport

At the end of the 1960s light-dependent glucose assimi-
lation of Chlorella vulgaris was demonstrated (Tanner
and Kandler 1967; Tanner 1969; Komor and Tanner
1971; Komor 1973; Komor and Tanner 1974a). It was
observed that glucose uptake is active (H+-gradient
coupled) and glucose inducible. This sugar accumula-
tion has been partly correlated to the large diVerence
in the Km values for glucose uptake and release (0.2
and 21 mM, respectively). The membrane potential
measurements on the basis of the lipophilic cationic
TPP+ distribution (TPP+: triphenylphosphate) were
performed with Chlorella and further provided initial
evidences for electrogenic sugar transport (Komor and
Tanner 1976). The Chlorella glucose transporter has
never been observed to function in vivo as a facilitator
except in the presence of nystatin, a sterol-interacting
polyene antiobiotic (Komor et al. 1974). Therefore it
was suggested that hexose/H+ symporters do not only
depend on the proton gradient and/or the membrane
potential but possibly also on the lipid composition of
the membrane. Thus Komor and Tanner laid the basis
for understanding sugar transport coupled to primary
energy sources and membrane lipid surrounding.

Among others Slayman (1974) predicted “It should
be possible with cotransport systems of this type to
hyperpolarize the membrane by driving H+ ions out-
ward along a large gradient of non-metabolizable sug-
ars or amino acids.” Studies on lower plants and
bacteria already provided Wrst evidences that such a
process is possible in principle (Komor and Tanner
1974b; Bentaboulet et al. 1979). The proof of concept
in higher plants, however, was still awaited. Recently,
Carpaneto et al. (2005) tried to bite the bullet. Follow-
ing expression of the H+/sucrose carrier ZmSUT1
(Aoki et al. 1999) in Xenopus oocytes, Carpaneto et al.
(2005) excised giant inside-out patches from the oocyte
plasma membrane. Upon variation of the pH-gradient,
magnitude and direction of sucrose-gradient and mem-
brane potential, the authors could demonstrate the
reversibility of the sucrose carrier under ‘sink’ condi-
tions (Fig. 4a). Thereby it was shown that – as expected
from a perfect thermodynamic machine – the sucrose
gradient can drive H+ Xow. Like for H+-coupled glu-
cose transport in Chlorella, Km values for sucrose
uptake and release diVered by factor of about 100. Fol-
lowing the basic studies of Tanner and Komor (see
above), the Chlorella hexose uptake system HUP was
cloned and HUP was functionally expressed in yeast

Fig. 3 a, b Proton-translocating pyrophosphatase and ATPase
on the same vacuolar membrane. a Voltage-clamp recording of
pump currents from a whole vacuole. The membrane was
clamped to 0 mV. Application of 100 �M pyrophosphate (MgPPi)
to the extracellular solution generated »2.5 pA which increased
to 11.5 pA when 5 mM MgATP was present in addition. Repro-
duced from Hedrich et al. (1989). b Inward and outward H+ cur-
rents through the vacuolar ATPase following application of
“cytosolic” 5 mM MgADP and its replacement by 5 mM ATP in

the presence of 10 mM KPi and a proton gradient across the vac-
uolar membrane (pHbath = 8, pHvacuole = 4). Reproduced and
modiWed from Gambale et al. (1994) with kind permission of
Springer Science and Business Media (1994). Note that in con-
trast to the present convention, the potentials given in a and b re-
ferred to the inner vacuolar membrane side rather than to the
cytosolic membrane side resulting in current responses with
opposite direction
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(Sauer and Tanner 1989; Sauer et al. 1990). Later met-
abolically engineered yeast was used by Frommer’s
group to identify the Wrst sucrose carrier from higher
plants (Riesmeier et al. 1992). The Arabidopsis thali-
ana genome harbours gene super families for hexose
and sucrose uptake whose subfamily members often
are expressed in a cell type- or organelle-speciWc man-
ner (for review see Williams et al. 2000; Büttner and
Sauer 2000; Lalonde et al. 2004). This, however, is only
the tip of an iceberg, since recently the Wrst members of
sugar alcohol transporters have been identiWed, some
of which transport sugars too (Fig. 4b; Noiraud et al.
2001; Gao et al. 2003; Ramsperger-Gleixner et al. 2004;
Reinders et al. 2004; Klepek et al. 2005; for review see
Bush 2004).

Light-dependent changes of membrane potential

For studying this topic, Felle and Bentrup (1974) used
the aquatic liverwort R. Xuitans, since it resembles the
electrophysiological phenomena of higher plants. Its
large cells facilitate microelectrode techniques, and its
rhizoid cells protruding into the milieu lend themselves
favourable to impedance measurements. Up to three

electrodes were inserted into single rhizoid cells of
intact liverwort (Felle and Bentrup 1974). Thereby it
was shown that the membrane potential in the light is
less responsive to K+ changes than in the dark. In the
light, however, the hyperpolarized membrane potential
was sensitive to H+. Hansen (1974) made the attempt
to quantitatively describe the action of light on the
membrane potential to separate diVerent light eVects
and biochemical reactions involved. Using the patch
clamp technique, Assmann et al. (1985) could show
that blue light activates the H+ pump of the guard cell
plasma membrane (cf. Roelfsema et al. 2004 for studies
with intact guard cells). This activation is mediated via
blue light perception by the photoreceptors phot 1 and
2 and in turn binding of 14-3-3 protein to the phosphor-
ylated H+-ATPase (Kinoshita et al. 2001, 2003; Ueno
et al. 2005; for review see López-Marqués et al. 2004).

Weisenseel and Haupt (1974) as well as Schäfer
(1974) characterized the phytochrome system that
along with other photoreceptors plays a role in photo-
morphogenesis. The red and blue light syndrome is
now part of photobiology chapters in textbooks and
developed into a Weld of its own. It became apparent
that not only proton pumps but also the activity and
transcription of ion channels can be indirectly

Fig. 4 a, b Ion-dependent cotransport. a Changes in cytosolic su-
crose feedback on the magnitude and direction of ZmSUT1 cur-
rents. ZmSUT1 currents were recorded in inside-out giant
patches derived from Xenopus oocytes in the presence of 5 mM
(left graph) and 0.5 mM external sucrose (right graph). Schematic
representations above each graph depict the proton and sucrose
concentrations; cytosolic and external pH was 7.5 and 5.6, respec-
tively, and sucrose concentrations were elevated from 0 to 50,
100, 200, and 500 mM as indicated. The membrane potential was

clamped to 0 mV. From Carpaneto et al. (2005) with kind permis-
sion of ASBMB Journals. b Arabidopsis sugar alcohol permease
homolog AtPLT5 transports a range of monosaccharides. Xeno-
pus laevis oocytes, injected with AtPLT5 mRNA were clamped to
¡40 mV. Currents were recorded in the presence of diVerent sub-
strates as indicated by bars (D-arab: D-arabinose, L-rham: L-rham-
nose, L-arab: L-arabinose, glc: glucose). Reproduced and modiWed
from Reinders et al. (2004) with kind permission of ASBMB
Journals
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regulated upon blue light. A transient blue light-
induced depolarization prior to inhibition of hypocotyl
elongation seems to be partly caused by blue-light
stimulated anion channels (Spalding and Cosgrove
1989; Cho and Spalding 1996). The initial, rapid growth
inhibition was shown to depend on the blue light recep-
tor phototropin (phot) which is responsible for Ca2+

transients (Baum et al. 1999; Folta and Spalding 2001).
Light-controlled Cl- channels were also observed in
mesophyll cells of pea (Elzenga and Van Volkenburgh
1997). Stoelzle et al. (2003) demonstrated that Ca2+

channels are activated by blue light via the phot1/2-
dependent signalling pathway while Fuchs et al. (2003)
could show that blue light triggers the activity of a par-
ticular K+ channel gene in the maize coleoptile. This
process which Wnally leads to phototropic bending of
this organ is mediated via the phytohormone auxin
(Philippar et al. 1999). It should be mentioned, how-
ever, that only very recently directly blue or green
light-activated ion channels have been identiWed in
Chlamydomonas (Nagel et al. 2002, 2004). These chan-
nelrhodopsins (ChR) represent channels which har-
bour a rhodopsin molecule as a chromophore. Since
vision of all mobile organisms seems to be based on
rhodopsin, plants when becoming sessile may have lost
rhodopsin-based signalling.

The eVect of photosynthetic radiation on mem-
brane potential responses of the giant chloroplast
enclosing membranes in mesophyll cells was studied
by applying microelectrodes on Peperomica metallica
by Vredenberg (1974) as well as on the hornwort
gametophytes from Phaeoceros leavis by Davis
(1974). Schönknecht et al. (1988) applied the patch
clamp technique to giant thylakoid blebs from P. met-
allica and identiWed depolarization-activated anion
channels. Voltage-dependent anion channels were
also found in the thylakoid membrane of the alga
Nitellopsis obtusa (Pottosin and Schönknecht 1995).
Whether or not these anion channels may account for
light-dependent depolarization and represent a ClC
gene product (see below) await future analysis. Flash
spectroscopy, taking advantage of light-dependent
thylakoid intrinsic electrochromic shifts, were used by
Junge et al. (1974) to unravel photosynthetic electron
transport and ATP synthesis. Though the photosyn-
thesis research has a long-standing background hold-
ing its own ‘International Congress of Photosynthesis’
for already 40 years, transport of metabolites and ions
(other than protons) across the inner and outer enve-
lope, however, remained part of both Welds ‘Plant
Membrane Transport’ and ‘Photosynthesis’ (Kunze
et al. 2002; Weber and Flügge 2002; Weber et al. 2005;
Vothknecht and Soll 2005).

Solute transport in algae and cell suspension cultures

Raven (1974) and Wagner (1974) studied the energy-
and pH dependence of 36Cl- inXux and eZux in Hydro-
dictyon africanum and Mougeotia, respectively. In
1996, pH and ATP-dependent anion channels have
been identiWed (Schulz-Lessdorf et al. 1996; for review
see Barbier-Brygoo et al. 2000) and genes encoding for
H+-coupled NO3

¡  symporters have now been cloned
for a wide range of higher plant species including
Hordeum vulgare (Trueman et al. 1996), Nicotiana
plumbaginifolia (Quesada et al. 1997), Glycine max
(Amarasinghe et al. 1998) and A. thaliana (Filleur and
Daniel-Vedele 1999; Zhuo et al. 1999). Although the
latter also transports chloride, the nature of the pre-
dicted H+/Cl- symporter (Sanders 1980) is still scant. In
this context it should be mentioned that some ClCs can
function as Cl-/H+ antiporters (Accardi and Miller
2004; Picollo and Pusch 2005). Findenegg (1974)
focussed on Cl- and HCO3

¡  uptake by Scenedesmus
obliquus and predicted as follows: “Carbonic anhydr-
ase may act as a permease for these ions in the plasma-
lemma”. This is clearly not the case. The genomes of
blue-green algae have been sequenced. There is no evi-
dence that the carbonic anhydrase represents a mem-
brane protein (for review see Hewett-Emmett and
Tashian 1996), but ClC-like anion channels have been
found in cyanobacteria and in planta (Hechenberger
et al. 1996; Lurin et al. 2000). ClC channels in mam-
mals are permeable to both Cl- and HCO3

¡  (for review
see Fahlke 2001).

Walker (1974) reviewed attempts to study “chloride
transport to the charophyte vacuole” and Davis (1974)
the H+ activities in Phaeoceros vacuoles. Since then the
vacuolar H+-ATPase consisting of 11 subunits has been
cloned and analysed (for review see López-Marqués
et al. 2004). Martinoia et al. (1985) who is well experi-
enced in the isolation of intact vacuoles assumed that
the vacuole membrane needs to be energized to medi-
ate Cl- and malate uptake (for review see Martinoia
et al. 2000). Recently, the Wrst dicarboxylate transporter
gene AttDT was identiWed (Emmerlich et al. 2003).
AttDT is localized in the vacuolar membrane and trans-
ports malate. Alike the situation for the plasma mem-
brane, we are still awaiting the identiWcation of the Wrst
vacuolar Cl- transporter. Possibly, ongoing plasma
membrane- and vacuole proteome studies (Carter et al.
2004) will identify the respective candidates.

NH4
+ transport was studied by Barr et al. (1974).

The replacement of K+ with NH4
+ in the K+ solution

at pH 5.7 caused a 45-mV-depolarization while the
application of NH4

+ in the presence of K+ had no eVect.
Meanwhile, it has been shown that inward-rectifying
123



732 Planta (2006) 224:725–739
K+ channels mediate NH4
+ Xux (Schachtman et al. 1992;

Dietrich et al. 1998; Becker et al. 1996 and references
therein). Thus, in the presence of K+, transport of NH4

+ is
suppressed and depolarization below the Nernst poten-
tial for K+ prevented. Furthermore, genes have been
cloned whose products facilitate the NH4

+ -selective
transport (for review see Loque and von Wiren 2004).
Ammonium uptake by the latter system appears to be
membrane potential-driven rather than H+-coupled
(Ludewig et al. 2002). Thoiron et al. (1974) studied
the sulphate permeability of Acer pseudoplatanus cell
suspension culture. Simonis et al. (1974) and Jeanjean
and Ducet (1974) examined phosphate uptake in
Anacystis nidulans and Chlorella pyrenoidosa, respec-
tively. The phosphate translocator protein located in
the inner chloroplast envelope was biochemically
characterized and the gene cloned by Flügge et al.
(1989). In the meanwhile, several solute transporter
types of the plasma- and organelle membranes have
been cloned, localized and functionally characterized
(for review see Hawkesford and Miller 2004; Weber
et al. 2005).

Kinetics of transport 

On the basis of the pioneering work of Epstein in the
1960s (Welch and Epstein 1968; Epstein 1972), Mertz
and Higinbotham (1974), Vange et al. (1974) and Cram
(1974) studied the kinetics of potassium-, sulphate- and
chloride uptake in more detail. As reported by Epstein
before, basically two phases could be separated: a high
aYnity and a low aYnity system. In the following years
it was argued that H+-driven K+ symporters mediate
high-aYnity transport and K+ channels mediate low-
aYnity transport. However, thermodynamically this
separation is not valid, since K+ channels transport
potassium ions driven by the electrochemical gradient
of this ion. As a result even at micromolar K+ concen-
trations K+ channels are capable of mediating K+

uptake at suYcient negative membrane potentials. The
proof of concept in vivo was provided by the growth
phenotype of the AKT1 channel mutant (Hirsch et al.
1998). Arabidopsis plants lacking the major root K+

channel barely grow in micromolar K+ solution. Thus,
wild-type roots which under this conditions are charac-
terized by membrane potential as negative as ¡240 mV
can accumulate potassium up to 100 mM on the basis
of channel-mediated transport. Additional unequivo-
cal evidence for channels mediating high-aYnity K+

uptake was provided by Brüggemann et al. (1999).
They showed by patch clamp studies on guard cell pro-
toplasts that K+ channels are active under these condi-

tions and transport this cation into the cell purely
driven by the electrical gradient. Since the K+ channel
KAT1 is predominantly expressed in Arabidopsis
guard cells, its gating behaviour was extensively char-
acterized (cf. Fig. 2c; Marten and Hoshi 1997, 1998;
Lacombe and Thibaud 1998; Tang and Hoshi 1999;
Latorre et al. 2003; Lai et al. 2005). Recently, Hertel
et al. (2005) observed KAT1 inactivation at sub-milli-
molar concentrations of extracellular K+ when
expressed in HEK cells. This result led to the conclu-
sion that KAT1 cannot act at micromolar K+ concen-
trations. In contrast, no evidences for KAT1
inactivation at extracellular nominal K+-free solutions
were obtained in A. thaliana guard cells (Brüggemann
et al. 1999).

Salt stress 

Jeschke (1974) focussed on the control of K+ and Na+

Xuxes and K+, Na+ selectivity of roots. From experi-
ments in the presence of the uncoupler CCCP he con-
cludes that “the decrease of the Na+ uptake in the
presence of K+ is consistent with the suggestion (Pit-
man and Saddler 1967) that the Na+ eZux pump at the
plasmalemma is involved not only in the selective K+

and Na+ transport but also in the selective accumula-
tion of K+ and Na+ by barley roots.” While screening
salt-sensitive mutants SOS1, a plasma membrane H+/
Na+ antiporter (Wu et al. 1996; Shi et al. 2000), and
NHX1, a vacuolar H+/Na+ antiporter (Apse et al.
1999), were identiWed. When overexpressed, both anti-
porters increased the salt tolerance of plants. Wheat
TaHKT1 primarily identiWed as a H+/K+ symporter
(Schachtman and Schroeder 1994) Wnally turned out to
transport K+ on the expense of the Na+ gradient
(Rubio et al. 1995). In A. thaliana HKT1 was proposed
to mediate Na+-driven Na+ uptake (Uozumi et al.
2000). Furthermore HKT1 was predicted to accom-
plish Na+ loading into the phloem sap in leaves and
Na+ release in roots (Berthomieu et al. 2003). In rice
several HKT1 genes linked to Na+ or K+ transport exist
(Horie et al. 2001; Maser et al. 2002; Garciadeblas et al.
2003), and a quantitative trait loci (QTL) seem to con-
Wrm a role of an HKT-type transporter in salt tolerance
(Ren et al. 2005). Thus the picture about Na+ recircula-
tion in plants is getting clearer.

Salt stress in particular and environmental stress in
general are transmitted in plants by changes in the
ABA concentration (Jia et al. 2002; Sauter et al. 2002;
Verslues and Zhu 2005). Pitman et al. (1974), Collins
(1974) as well as Van Steveninck (1974) monitored the
eVect of abscisic acid on root ion transport. More
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recent studies could demonstrate that ABA upregu-
lates transcription of GORK (epidermis, cortex and
stele; Ache et al. 2000; Becker et al. 2003) and downre-
gulates SKOR (stele; Gaymard et al. 1998). Both K+

channels, GORK homomers and GORK/SKOR heter-
omers, have diVerent properties (Dreyer et al. 2004a,
b). Thus the K+ release channels GORK and SKOR
are regulated in an opposite manner. GORK is acti-
vated in an ABI1-, ABI2- and calcium-dependent man-
ner. Recently Levchenko et al. (2005) could show in
intact Vicia faba plants that the guard cell anion chan-
nels are activated by cytosolic ABA (Km = 1–2 �M)
within 1 s. In earlier studies ABA-induced calcium
oscillations have been reported in guard cells mechani-
cally separated from their natural environment within
the leaf (for review see Schroeder et al. 2001). On the
basis of these studies models have been constructed
(Leonhardt et al. 2004). The predictions of these mod-
els can now be tested in intact plants (for review see
Roelfsema and Hedrich 2005).

Twenty years ago, at the botanical congress in
Vienna 1984, the chairman of the plant transport ses-
sion in his opening stated that in contrast to animals
plants do not need channels. At the end of the session
the Wrst patch-clamp recordings of single K+ channels
in the plasma membrane of guard cells were shown
(Schroeder et al. 1984; Fig. 2a). Thereafter it was
accepted that they exist, but this transporter class in
the plant Weld was regarded to be not important. In the
Annual Plant Reviews of 2004 (volume 15) almost 50%
of the content deals with ion channels. Why? In the
past 20 years, this Weld progressed very rapidly. Owing
to the progress in molecular biology and genome
sequencing projects, genes for diVerent transporters
often belonging to large gene families have been iden-
tiWed (Arabidopsis Genome Initiative 2000; Schwacke
et al. 2003; Tuskan et al. 2004; International Rice
Genome Sequencing Project 2005). Instead of ‘the’
expected sugar transporter or ion channel often several
members of gene families together provide for the
transport function. Thus the loss of a particular family
member (e.g. AKT1, DND1, DND2; Hirsch et al. 1998;
Yu et al. 1998, 2000) could but must not result in a
strong phenotype (e.g. KAT1, AKT2/3; SPIK; Denni-
son et al. 2001; Szyroki et al. 2001; Deeken et al. 2002;
Mouline et al. 2002). Following directed mutagenesis
and using chimera between structural related but func-
tional distinct transporters, the structure–function rela-
tionships have been unravelled. On the basis of the
fusions of the transporters of interest with Xuorescing
proteins (GFP and chimera thereof) together with
high-resolution microscopy, their cellular and subcellu-
lar localization was determined. Interaction screens in

the following years will help to Wnd regulator proteins
and allow to position this class of membrane proteins
in existing signalling networks. In the next decade
besides channels, carriers and pumps membrane recep-
tors will come into focus. With the latter it will be excit-
ing to learn how ligand binding will trigger
trans(membrane) protein signal transport.

The authors apologize for not having mentioned all
important studies in the past and thus suggest reading
Volume 15 of the Annual Plant Reviews (Blatt 2004)
and other reviews from Assmann (2003), Talke et al.
(2003), Véry and Sentenac (2003), Fehr et al. (2004),
Pratelli et al. (2004) and Deutschle et al. (2005).
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