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Abstract The roots of most extant plants are able to
become engaged in an interaction with a small group
of fungi of the fungal order Glomales (Glomeromy-
cota). This interaction—arbuscular mycorrhizal (AM)
symbiosis—is the evolutionary precursor of most other
mutualistic root-microbe associations. The molecular
analysis of this interaction can elucidate basic princi-
ples regarding such associations. This review summa-
rizes our present knowledge about cellular and
molecular aspects of AM. Emphasis is placed on
morphological changes in colonized cells, transfer of
nutrients between both interacting partners, and plant
defence responses. Similarities to and differences from
other associations of plant and microorganisms are
highlighted regarding defence reactions and signal
perception.
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Abbreviations AM: Arbuscular mycorrhiza(l) Æ
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Introduction

Mycorrhizas are intimate and, in most cases, mutualistic
associations of plant roots and fungi. They are crucial in
the ecology and physiology of terrestrial plants, sup-
porting plants under biotic (e.g. pathogen infection) or
abiotic stress (e.g. nutrient or water deficiency).
Exchange of nutrients—mineral nutrients supplied by
the fungal microsymbiont versus carbohydrates pro-
vided by the plant—is considered to be the main benefit
for the symbiotic partners (Smith and Read 1997).
According to the phylogenetic position of these partners
and according to the symbiotic structures, several types
of mycorrhiza have been defined such as arbuscular
mycorrhiza (AM), ectomycorrhiza, ericoid mycorrhiza,
and orchid mycorrhiza.

The interaction reviewed in this article, arbuscular
mycorrhiza (AM), is characterized by highly branched
haustorium-like fungal structures within root cortical
cells. It is formed by fungi from the order Glomales
(Glomeromycota) and refers to more than 80% of all
terrestrial plant species, including angiosperms, gymno-
sperms, pteridophytes, lycopods, and mosses. Only a few
plant species, e.g. members of the Brassicaceae, Caryo-
phyllaceae, Chenopodiaceae, or Urticaceae, do not
engage in AM interactions (Smith and Read 1997;
Vierheilig et al. 1996).

Because of the ancient origin of the symbiosis, which
can be traced back to the Ordovician (Redecker et al.
2000), conservation of key mechanisms in molecular
regulation can be anticipated. As a result of increasing
availability of molecular tools, first steps have been ta-
ken towards understanding the molecular complexity of
such mechanisms. Specific changes in root morphology
and unique physiology during AM development suggest
the existence of AM-specific regulatory pathways lead-
ing to the induction of AM-specific genes. The occur-
rence of defence responses in AM plants and the analysis
of legume mutants defective in AM and symbiotic
nitrogen fixation, however, indicate the existence of
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common signal transduction pathways regulating AM,
rhizobial, and pathogenic interactions (Dumas-Gaudot
et al. 2000; Duc et al. 1989; Wegel et al. 1998).

The fungal partner

The fungi involved in AM symbiosis are obligate bio-
trophs. They reproduce asexually, forming multinucleate
spores. Unusual polymorphism of ribosomal RNA in
individual spores has led to the concept of internuclear
variation in single spores, defining AM fungi as het-
erokaryotic organisms (Trouvelot et al. 1999; Kuhn
et al. 2001). Heterokaryosis has been assumed to be of
decisive importance to ecology and application of AM
fungi. This concept, however, has recently been chal-
lenged by experiments suggesting that single spores
contain a uniform population of nuclei characterized by
intranuclear polymorphism (Pawlowska and Taylor
2004).

The systematic position of the order Glomales has
always been problematic as no sexual form of the fungi
is known. Phylogenetic analysis of 18S rRNA sequences
(Simon et al. 1993) and of various protein sequences
(Heckman et al. 2001) suggests the ancient origin of the
Glomales and no close relation to the Zygomycetes,
where the Glomales had traditionally been grouped.
Accordingly, it has been proposed that the fungi be
placed into a new phylum of their own, the Glomer-
omycota (Schüßler 2001; Schüßler et al. 2001). The
ancient phylogenetic origin of the Glomales is confirmed
by fossil findings, with symbiotic structures within fossil
roots from the Devonian (about 400 Mio years ago;
Remy et al. 1994; Taylor et al. 1995) and fossilized
glomalean spores from the Ordovician (about 460 mil-
lion years ago; Redecker et al. 2000).

In summary, these findings suggest a coevolution of
AM fungi with the first land plants, pre-dating this
association to all other plant–fungal interactions except
for the lichens. This coevolution easily explains the
nearly ubiquitous distribution of the AM symbiosis, in
the plant kingdom as well as global ecosystems.
While this review focuses on the plant side of the AM
interaction, molecular work regarding the fungal partner
has been summarized, e.g. by Franken and Requena
(2001).

Model plants in AM research

The use of themodel legumesMedicago truncatula (barrel
medic) andLotus japonicus has led to significant advances
in our knowledge about the plant partner of the AM
interaction. The genomes of M. truncatula and L. japo-
nicus have been mapped physically and genetically
(Hayashi et al. 2001; Kulikova et al. 2001; Kato et al.
2003) and are currently sequenced (http://www.geno-
me.ou.edu/medicago.html; http://www.kazusa.or.jp/
lotus/). A number of research groups have contributed

EST sequences (see e.g. Asamizu et al. 2000; Bell et al.
2001; Lamblin et al. 2003), which are deposited in freely
accessible internet databases (TIGRMedicago truncatula
Gene Index (MtGI): http://www.tigr.org/tigr-scripts/tgi/
T_index.cgi?species=medicago; Medicago truncatula
Data Base (MtDB): http://www.medicago.org/; TIGR
Lotus japonicus Gene Index (LjGI): http://www.tigr.
org/tigr-scripts/tgi/T_index.cgi?species=l_japonicus; Ka-
zusa Lotus japonicus EST-database: http://www.ka-
zusa.or.jp/en/plant/lotus/EST/). These sequences have
been used for performing Electronic Northern analysis
(see, for example, Journet et al. 2002) and for construct-
ing DNA microarrays for the analysis of differentially
expressed genes (Liu et al. 2003; Wulf et al. 2003). Inde-
pendent of these EST databases, differentially expressed
transcripts have been searched using various plants and
screening methods (Martin-Laurent et al. 1997; Burleigh
and Harrison 1997; Murphy et al. 1997; Krajinski et al.
1998; van Buuren et al. 1999; Liu et al. 2003; Wulf et al.
2003). These approaches in combination with targeted
approaches resulted in the elucidation of mycorrhiza-in-
duced transcripts involved in the composition of the
cytoskeleton (Rhody et al. 2003), in establishing the rhi-
zobial interaction (Chabaud et al. 2002), the transporta-
tion of water (Krajinski et al. 2000), isoprenoid
biosynthesis (Walter et al. 2002; Hans et al. 2004), and
in the regulation of oxygen concentrations (Uchiumi et al.
2002).

Regarding the proteomic level, there are a number of
reports documenting differential protein patterns in
mycorrhizal and non-mycorrhizal roots (Pacovsky 1989;
Schellenbaum et al. 1992; Arines et al. 1993; Garcia-
Garrido et al. 1993; Dumas-Gaudot et al. 1994; Simo-
neau et al. 1994; Samra et al. 1997; Benabdellah et al.
1998; Dassi et al. 1999; Fester et al. 2002; Repetto et al.
2003). Using specific antibodies, Wyss et al. (1990)
identified some of the induced proteins as nodulins.
Using N-terminal sequencing techniques, Benabdellah
et al. (2000) found an induced H+-ATPase and Slezack
et al. (2001) found an induced chitinase. The large
amount of EST data available for M. truncatula and
L. japonicus now allows the identification of low-abun-
dant protein spots using MALDI-TOF analysis (Watson
et al. 2003; Bestel-Corre et al. 2004), thus greatly facili-
tating the identification of proteins of interest in these
plants.

Further tools for molecular work encompass proto-
cols for transformation (Chabaud et al. 1996; Boisson-
Dernier et al. 2001) and a TILLING approach for
L. japonicus (Perry et al. 2003). Apart from mutants
generated by TILLING, mutants related to mycorrhizal
colonization have been described for pea (Pisum sati-
vum, Duc et al. 1989; Gianinazzi-Pearson et al. 1991;
Jacobi et al. 2003a, b), alfalfa (M. sativa; Bradbury et al.
1991), M. truncatula (Calantzis et al. 1998; Morandi
et al. 2000; Ané et al. 2004), L. japonicus (Wegel et al.
1998) and tomato (Lycopersicon esculentum; Barker
et al. 1998; David-Schwartz et al. 2001, 2003). The
analysis of such mutants has provided insight into
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signalling pathways between macro- and microsymbiont
(see below).

Cytological features of AM plant roots

Fungal development starts with the germination of
hyphae from resting spores. In the absence of a host
plant, AM fungi show only limited hyphal growth
whereas in the presence of root exudates growth and
branching of hyphae is strongly increased (Tamasloukht
et al. 2003). This presymbiotic fungal reaction is char-
acterized by the activation of specific genes followed by
subsequent physiological and morphological changes. In
return, germinating spores produce diffusible factors
which are perceived by plant roots leading to the
expression of specific genes even in the absence of direct
physical contact (Kosuta et al. 1998). The chemical
nature of both plant and fungal diffusible factors is not
yet known.

After the first physical contact between hyphae and
plant roots, the fungus forms appressoria and subse-
quently penetrates the root surface colonizing the inter-
cellular space of the root cortex. The plant actively
mediates at least two steps allowing the fungus to pene-
trate the rhizodermis (Demchenko et al. 2004): (1) anti-
clinal cell walls of two adjacent epidermal cells separate
from each other in the vicinity of fungal hyphae allowing
the intercellular passage of the hyphae; and (2) fungal
hyphae are allowed to pass intracellularly through an
exodermal cell and an adjacent cell from the outermost
cortical layer. After the subsequent penetration of the
innermost cortical layers, tree-like fungal structures (ar-
buscules) are formed within individual root cortical cells
by repeated dichotomous branching of fungal hyphae.
Except for species from the genera Scutellospora and
Gigaspora, all AM fungi form intra- or intercellular
storage organs, lipid-rich vesicles, to varying degrees in
late phases of the symbiosis (Smith and Read 1997).

The arbuscules are the key features of AM and are
responsible for nutrient exchange (see below). They
represent a dead end in the growth of AM fungi
(Bonfante and Perotto 1995), because they finally
senesce and collapse after 4–10 days of symbiosis
(Sanders et al. 1977). The fungal structures are then
degraded completely by the plant cell and the plant cell
recovers its original morphology (Jacquelinet-Jeanmou-
gin et al. 1987). This way, cortical cells are able to allow
a second fungal penetration and arbuscule formation.
The life cycle of AM fungi is completed by the formation
of extraradical spores, which may enter another colo-
nization process.

During colonization, the fungal arbuscule occupies a
major portion of the plant cortex cell, but is separated
from the cell protoplast by a part of the host plasma
membrane, the periarbuscular membrane. This mem-
brane completely surrounds the arbuscule, leading to up
to a fourfold increase of the surface of the plasma
membrane. Although it originates from the plant plasma

membrane, the periarbuscular membrane exhibits dif-
ferent properties. In particular, phosphate transporters
were shown to be located specifically in the periarbus-
cular membrane (Rausch et al. 2001; Harrison et al.
2002). Moreover, a high amount of H+-ATPase activity
(Gianinazzi-Pearson et al. 1991) accompanied by the
highly acidic nature of the space separating plant and
fungal plasma membranes has been found (Guttenber-
ger 2000). These findings are consistent with the
involvement of the periarbuscular membrane in the
active transport of nutrients between the symbiotic
partners (see below). The space separating plant and
fungal plasma membranes corresponds to a new apo-
plastic compartment and represents the symbiotic
interface. It is continuous with the peripheral plant cell
wall, but its structure differs from it (Peterson and
Bonfante 1994). Its components reflect the composition
of the wall of the host cell that is being invaded. Pectins,
xyloglucans, nonesterified polygalacturonans, arabino-
galactans, and hydroxyproline-rich glycoproteins have
been localized within this interface (Balestrini et al. 1994;
Perotto et al. 1994; Bonfante and Perotto 1995). The
mixture of primary plant cell wall components indicates
that the arbusculated cells maintain their ability to
synthesize and secrete cell wall material. This material,
however, does not assemble further to build up a
secondary wall (Peretto et al. 1995).

Colonization by an AM fungus induces dramatic
changes in the shape and number of organelles of root
cortical cells. As shown schematically in Fig. 1a, differ-
entiated cells of the root cortex are extensively reorga-
nized after penetration by an AM fungus (Bonfante and
Perotto 1995). The central vacuole is fragmented, the
volume of cytoplasm and the number of cell organelles
increase significantly, and the nucleus moves into a
central position. The nucleus of arbusculated cells
undergoes hypertrophy (Balestrini et al. 1994) and is
characterized by enhanced fluorochrome accessibility,
increased nuclease sensitivity, and chromatin dispersion
(Gianinazzi-Pearson 1996). These features reflect a
higher transcriptional activity of the plant genome in
colonized cells in comparison to non-colonized cells. The
increase in the amount of host cytoplasm and the
number of organelles surrounding the branching hyphae
was shown first by electron microscopy (Carling and
Brown 1982; Bonfante and Perotto 1995). The analysis
of organelles labelled by the green fluorescent protein
using confocal laser scanning microscopy provided new
details and led to the discovery of network-like organelle
structures in colonized cells. Such structures covering the
developing arbuscule can be observed for plastids
(Fig. 1b, Fester et al. 2001), mitochondria (unpublished
data), and the ER (Fig. 1c), indicating a strong activa-
tion of the metabolism in the colonized root cortical cell.
In the case of plastids, the networks are formed
by tubular extensions, which have been referred to as
stromules (stroma-filled tubules, Köhler and Hanson
2000). In Nicotiana tabacum, the first step in the
formation of these networks is the appearance of
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‘‘octopus’’- or ‘‘millipede’’-like plastid structures sur-
rounding the plant cell nucleus (Fester et al. 2001).

Plant cells respond to colonization by an AM fungus
by reorganization of microtubules and microfilaments
(for review see Timonen and Peterson 2002). Micro-
tubuli have been shown to undergo extensive remodel-
ling from the early stages of arbuscule development until
arbuscular collapse and senescence leading to different
types of microtubular patterns (Genre and Bonfante
1997, 1998; Matsubara et al. 1999). Beside a- and
b-tubulin, c-tubulin also seems to be involved in cellular
rearrangements as shown by the detection of microtu-
bule organizing centres along the nuclear envelope and
along the periarbuscular membrane (Genre and Bonf-
ante 1999). Cytoskeletal rearrangements were observed
not only in colonized cells but in adjacent cortical cells
as well (Blancaflor et al. 2001), indicating exchange of
signals prior to intracellular colonization. Accordingly,
an active role of the plant cytoskeleton in mycorrhiza-
tion appears more probable than a passive reaction to
the physical pressure created by the fungus at the plant
plasma membrane. The alterations of the microtubular
network are also reflected in the mycorrhiza-specific
up-regulation of an a-tubulin gene in mycorrhizal maize
roots (Bonfante et al. 1996). Expression studies of
the corresponding promoter:uidA fusions in tobacco

revealed that this gene is induced specifically in cells
containing developing arbuscules.

Transfer of nutrients between plants and fungi

Although the transfer of nutrients is not the only benefit
for the symbiotic partners, it certainly represents an
important factor of mycorrhizal interactions. Due to the
inherent properties of the symbiotic partners, all mutu-
alistic plant–microbe interactions essentially show the
same trading patterns and similar structural features.
Carbohydrates are provided by the plant in exchange for
mineral nutrients provided by the microsymbiont. The
nutrients have to be transported across the plant and the
microsymbiont plasma membrane. These processes, in
combination with the proteins identified to be involved
in the AM symbiosis, have been summarized in Fig. 2.
In contrast to the general pattern, some plants are able
to invert the actual flow of carbohydrates, turning the
mutualistic interaction into a parasitic one. This applies
to some AMs (Imhof 1999; Bidartondo et al. 2002), as
well as to ecto- and orchid mycorrhizas (Leake 1994).

Active transport of various metabolites across bio-
logical membranes is often powered by coupling the
transport to the concomitant transport of protons in the
same or in the opposite direction. This mechanism relies
on the existence of a proton gradient across the mem-
brane in question. Staining of mycorrhizal roots (Allium
porrum and Glomus versiforme) using neutral red and
Lyso-Sensor Green DND-189 revealed the existence of
an acidic compartment in the periphery of arbuscules
presumably identical with the periarbuscular space
separating the plant and fungal plasma membranes
(Guttenberger 2000). This acidification of the periar-
buscular space corresponds to proton gradients across
the fungal arbuscular and the plant periarbuscular
membrane powering transport processes across these
membranes. Enzymes responsible for the generation of
such an acidification—H+-ATPases—have been studied
for a long time (Marx et al. 1982; Gianinazzi-Pearson
et al. 1991). In recent years, genes of plant plasma
membrane H+-ATPases specifically induced in arbus-
cule-containing root cortical cells have been reported for
barley (Hordeum vulgare; Murphy et al. 1997), tobacco
(N. tabacum; Gianinazzi-Pearson et al. 2000), and barrel
medic (Krajinski et al. 2002). Fungal H+-ATPases
involved in symbiotic nutrient transfer have been char-

Fig. 1 Survey of the morphology of an arbuscule-containing root
cortex cell. a Scheme of a young arbuscule (red) within a root
cortex cell. The fungal hypha penetrates the cell wall (grey) and
undergoes branching leading to the formation of an arbuscule. The
arbuscule is surrounded by the plant cytoplasm (orange) which
contains high numbers of organelles (plastids – dark green,
mitochondria – purple, ER – yellow). Fungal hyphae and plant
cytoplasm are separated by the periarbuscular membrane (light
grey). The plant cell nucleus (blue) moves into the centre of the
arbuscule; the vacuole (light green) fragments after the arbuscule is
fully developed. b GFP-labelled plastids forming a network-like
structure, which covers the arbuscule. Mycorrhizal roots of stably
transformed tobacco plants, expressing a plastid-directed GFP
(kindly provided by M. Hanson, New York, USA), were analysed
by confocal laser scanning microscopy (CLSM). The superposition
of 20 optical sections is shown. Bar represents 10 lm. c Visualiza-
tion of ER in arbusculated cells. Mycorrhizal roots of transgenic
N. benthamiana plants expressing ER-targeted GFP (kindly
provided by D. Baulcombe, Norwich) were processed for immu-
nolocalization according to Hans et al. (2004). Cross-sections were
probed with anti-GFP antibody followed by a fluorescence-labelled
secondary antibody. Micrographs were taken by CLSM showing
GFP (green), DAPI-stained nuclei (blue) and fungal structures
stained with WGA-TRITC (red). The superposition of 28 optical
sections is shown. Bar represents 10 lm
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acterized by Ferrol et al. (2000) and Requena et al.
(2003).

Regarding the transport of individual nutrients, the
transfer of carbohydrates is thought to be the main
benefit for the fungal symbiotic partner. One major
factor explaining the obligate biotrophy of AM fungi
was the finding that extraradical hyphae of these fungi
are unable to take up carbohydrates. This has been
shown by the application of various 13C-labelled
compounds to split petri dishes harbouring Ri T-DNA-
transformed Daucus carota roots colonized by G. intra-
radices in one compartment and extraradical mycelium
of the fungus alone in the other compartment (Pfeffer
et al. 1999). The uptake of glucose and fructose by
intraradical fungal structures has been documented by
this study; however, the exact fungal structures respon-
sible for this uptake are still a matter of debate (Douds
et al. 2000). Fungal H+-ATPases, possibly involved in
the fungal uptake of carbohydrates from the apoplast,
were found to be predominantly located on arbuscular
trunks and intercellular hyphae, supporting an uptake of

carbohydrate by these structures (Gianinazzi-Pearson
et al. 1991). In pea mutants, however, where AM fungi
were unable to form arbuscules, the formation of
extraradical mycelium was strongly decreased as well,
arguing in favour of an arbuscular role in the uptake of
carbohydrates (Kling et al. 1996). The metabolic fate of
hexoses taken up by intraradical fungal structures was
determined by labelling experiments using mycorrhizal
D. carota root culture in split petri dishes. In short-term
experiments, glucose was mainly transformed to treha-
lose or glycogen (Douds et al. 2000). After longer
incubation periods, glucose was either used directly for
lipid biosynthesis or entered the pentose phosphate
pathway, thus providing the reduction equivalents nec-
essary for lipid biosynthesis (Pfeffer et al. 1999). Lipids
and glycogen are then transferred to the extraradical
mycelium (Bago et al. 2003), where the bidirectional
movement of lipid bodies can be observed in vivo (Bago
et al. 2002). Regarding the plant side, a cytosolic sucrose
synthase (Hohnjec et al. 2003; Ravnskov et al. 2003) and
a plasma membrane hexose transporter (Harrison 1996)
have been described to be specifically induced in AM
roots (Fig. 2). The corresponding induction of apo-
plastic and symplastic cleavage of sucrose probably
reflects the increased need for carbohydrates in symbi-
otic root cortical cells.

Phosphate is a mineral nutrient limiting plant growth
at many natural stands due to its poor solubility. AM
fungi transport phosphate from distant reservoirs to the
plant, extending the reach of plant root systems. Using
33P provided in soil compartments only admissible to
fungal hyphae and not to plant roots, it could be shown
that even under non-limiting phosphate supply and
without apparent growth effects of mycorrhizal coloni-
zation, colonized plant roots are reducing the activity of
their own phosphate uptake system and rely mainly on
their fungal symbionts for phosphate provision (Smith
et al. 2003). Phosphate transporters involved in the
uptake of phosphate from the external medium to fungal
hyphae have been cloned from G. versiforme (Harrison
and van Buuren 1995) and G. intraradices (Maldonado-

Fig. 2 Nutrient transfer in AM roots. Enzymes and transporters
described to be specifically induced in AM roots are indicated.
Membrane transport of most metabolites can be expected to be
pH-dependent and to be powered by the activity of plant (1) and
fungal (2) H+ -ATPases. Fungal H+ -ATPases have been described
not to be restricted to arbuscules, suggesting active transport at
intercellular hyphae as well. Sucrose from the phloem is either
cleaved by apoplastic invertases and taken up by the plant (3) or
fungal hexose transporters or imported into root cortical cells and
cleaved there by a cytoplasmic sucrose synthase (4). The fungus
transforms hexoses rapidly into trehalose, which is either metab-
olized by the pentose phosphate pathway, or used for the
biosynthesis of glycogen and lipids. These compounds are then
exported to fungal vesicles or to the external mycelium. The plant
cell takes up phosphate from the periarbuscular space using
specific, H+ -dependent plant phosphate transporters (5). Regard-
ing nitrogen supply, AM-induced plant nitrate transporters (6)
have been found, suggesting a similar transport mechanism as
referring to phosphate. On the other hand, the observation of
increased transcript levels of a fungal nitrate reductase (7) suggests
the transfer of nitrogen in a reduced form (as ammonium or in an
organic form). AA Amino acids
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Mendoza et al. 2001). Both transporters are similar to
members of the plant phosphate transporter family Pht1,
which contains high-affinity H+-dependent transporters
(Rausch and Bucher 2002). Transporters from the same
protein family are specifically expressed in AM roots and
have been cloned from Solanum tuberosum (Rausch et al.
2001), M. truncatula (Harrison et al. 2002), and Oryza
sativa (Paszkowski et al. 2002). Immunolocalization of
the phosphate transporter MtPT4 from M. truncatula
suggests its specific location in the periarbuscular mem-
brane. This localization characterizes MtPT4 as an
important transporter using the pH gradient established
across the periarbuscular membrane in order to take up
phosphate released from the fungal arbuscules to the
periarbuscular space (see Fig. 2).

Besides phosphate, a number of mineral nutrients
and most notably water are transported by AM fungi to
their host plants. In the case of nitrate, AM fungi play
an even more active role when compared to phosphate,
because they are able to liberate nitrate from complex
organic material within the soil (Hodge et al. 2001). Few
proteins involved in nitrate transport in mycorrhizal
roots have been found so far, amongst them a tomato
nitrate transporter with increased transcript levels in
AM colonized roots (Hildebrandt et al. 2002). In addi-
tion, a fungal (G. intraradices) nitrate reductase has been
cloned, which is expressed in AM roots and therefore
might be involved in the transfer of nitrogen as well
(Kaldorf et al. 1998).

Defence reactions of plant roots during colonization
by AM fungi

As described above, AM fungi extensively invade host
root tissues. The fact that the spread of mycelium occurs
only in the root cortex suggests that the host plant exerts
some kind of control over fungal proliferation, confining
it to specific root tissues. Defence processes, however,
which are usually triggered as a plant response to
microbial invasion are observed only in amodulated form
in AM roots. The current knowledge about this modu-
lated defence response has been summarized by a number
of reviews (Dumas-Gaudot et al. 2000; Garcı́a-Garrido
and Ocampo 2002). Most host plants show remarkably
little cytological reaction to appressorium formation or to
the first steps of root colonization (Gianinazzi et al. 1996).
Typical structural defence barriers such as papillae or
wall appositions containing callose, phenolic compounds,
or lignin are not elicited during plant responses to AM
fungi. Other elements of the plant defence response like
phenylpropanoid biosynthesis, enzymes involved in the
response against oxidative stress, and pathogenesis-re-
lated (PR) genes including hydrolytic enzymes have been
described for mycorrhizal roots. In most cases, however,
such defence responses of the plant are weak, transient,
uncoordinated, or strictly localized and therefore
differ from that in plant-pathogen interactions (Gian-
inazzi-Pearson et al. 1996).

The phenylpropanoid metabolism is activated in
typical AM interactions, but to a much lower extent
than in plant-pathogen interactions (Harrison and Dix-
on 1994; Volpin et al. 1994; Peipp et al. 1997). Tran-
scripts encoding enzymes of the flavonoid biosynthetic
pathway, phenylalanine ammonia lyase (PAL), and
chalcone synthase (CHS), but not the defence-specific
enzyme isoflavone reductase (IFR), are induced specifi-
cally in cells containing arbuscules in M. truncatula
(Harrison and Dixon 1994). It has been speculated that
this induction rather reflects the biosynthesis of flavo-
noid compounds stimulating the growth of AM fungi
than the biosynthesis of antimicrobial phytoalexins
(Harrison 1999). AM-specific alterations in the pattern
of anti-oxidative enzymes, such as catalase, peroxidase
and superoxide dismutase, indicate that the corre-
sponding genes might be expressed specifically during
the colonization process (Arines et al. 1994a, b; Blilou
et al. 2000; Lambais 2000). This activation corresponds
to the occurrence of reactive oxygen species in arbus-
culated root cortical cells (Salzer et al. 1999). The
expression of genes coding for PR proteins is strongly
reduced when compared to plant-pathogen interactions,
where PR proteins accumulate throughout infected root
tissues (Tahiri-Alaoui et al. 1993). In AM roots, a
structured wall material containing PR-1 protein and
hydroxyproline-rich glycoprotein is transiently depos-
ited around hyphae specifically in cortex cells containing
developing arbuscules (Gianinazzi-Pearson et al. 1992).
Regarding hydrolytic enzymes like chitinases and b-1,3-
glucanases which play a well-documented role in plant
development in general and in the inducible plant
defence response in particular (Boller 1987; Collinge
et al. 1993), only specific isoforms are expressed in AM
roots of various plant-fungal combinations (Lambais
and Medhy 1993, 1998; Blee and Anderson 1996; David
et al. 1998). Most of the data argue in favour of a direct
role in the formation/degradation of arbuscules. In
M. truncatula, however, the class III chitinase gene
family is expressed specifically in cells containing func-
tionally active arbuscules (Salzer et al. 2000; Bonanomi
et al. 2001). Accordingly, the induced chitinase has been
proposed to play a role during formation and func-
tioning rather than during degradation of arbuscules.
One possible function for chitinases could be the cleav-
age of fungal elicitors, contributing to an attenuation of
the defence response.

In summary, AM fungi fail to elicit the full cascade of
non-specific defence responses in host roots. The differ-
ential activation of defence-related genes may reflect the
partial elicitation of a general plant defence response to
early stages of fungal invasion that is subsequently
repressed as the symbiosis becomes established. This
could be due to several mechanisms (Dumas-Gaudot
et al. 2000): (1) low elicitation capacity of AM fun-
gal elicitors, (2) regulation by additional fungal inhibi-
tors, or (3) fungal compatibility factors which could
counteract elicitor activity. Whether AM fungi synthe-
size such molecules has yet to be demonstrated. Evi-
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dence for the involvement of plant genes in the modu-
lation of defence processes in AM has been obtained
from the study of mycorrhiza-resistant plant mutants.
Upon contact with AM fungi, the roots of myc� mu-
tants show higher levels of defence responses when
compared to the wild type. These responses include the
occurrence of characteristic defence molecules such as
phenolics, callose, and PR proteins (Gollotte et al.
1993).

Induced systemic resistance in AM plants

AM can effectively reduce root disease caused by a
number of soil-borne pathogens, such as Fusarium spp.,
Aphanomyces euteiches and Phytophthora spp. (Dumas-
Gaudot et al. 2000). Such a kind of bioprotection by
AM is similar to that of non-pathogenic microorgan-
isms, which can protect plants systemically against dif-
ferent pathogens without first causing symptoms. This
phenomenon has been called induced systemic resistance
(ISR; Park et al. 1997). Reviews covering the mechanism
of ISR by AM fungi (for overview, see Linderman 2000)
have focused on nutritional effects, sink competition
with infection sites, morphological changes in roots and
root tissues, changes in chemical constituents in plant
tissue, reduction of abiotic stress, and microbial changes
in the mycorrhizosphere.

Data about ISR caused by AM are highly contro-
versial. In general, mycorrhizal plants are more vigorous
due to alterations of photosynthesis, leaf hydration, leaf
osmotic potential, stomatal conductance, reproduction,
and transpiration (Smith and Read 1997; Augé 2001).
This could lead to an enhanced tolerance to pathogens,
but might also provide a better substrate for some
obligate pathogens (Meyer and Dehne 1986). Moreover,
defence responses, normally elicited by pathogens, are
suppressed in mycorrhizal plants (Guenoune et al. 2001).
As shown for infection of leaves of mycorrhizal tobacco
plants with Botrytis cinera, necrotic lesions appear ear-
lier and grow larger (Shaul et al. 1999). This could be
due to a systemic suppression of defence-related prop-
erties by AM leading to an increased susceptibility of
leaves.

In contrast to leaves of mycorrhizal plants, there are
reports of an induction of ISR by AM fungi in roots.
This phenomenon was first described in mycorrhizal pea
for the root pathogen A. euteiches (Kjoller and Rosen-
dahl 1996). Although the spread of A. euteiches in
mycorrhizal roots as analysed by staining was unaf-
fected, no symptoms of the infection were visible. It
could be clearly demonstrated that bioprotection by
G. mosseae against A. euteiches was dependent on a fully
established symbiosis with the presence of arbuscules
(Slezack et al. 2000). In the interaction of mycorrhizal
roots with Phytophthora parasitica, implications for
plant bioprotection could be drawn from the accumu-
lation of phenolic compounds in the plant cell wall
reflecting increased lignification (Cordier et al. 1998).

Lignification, considered as an important mechanism for
disease resistance (Morandi et al. 1984), may contribute
to reducing pathogen proliferation in mycorrhizal roots.
Furthermore, the systemic induction of mycorrhiza-in-
duced new isoforms of chitinase, chitosanase, glucanase,
and superoxid dismutase was suggested to be responsible
for reduced disease symptoms upon P. parasitica infec-
tions (Pozo et al. 1999, 2002).

In summary, various elements of ISR have been
observed in roots colonized by AM fungi. Signals in-
volved in the induction of ISR after formation of the AM
symbiosis are completely unknown. It has been assumed
that the low level of defence reactions upon mycorrhiza-
tion could be sufficient for priming (Dumas-Gaudot et al.
2000). Whether plant hormones such as jasmonic acid,
known to be involved in mycorrhization (Hause et al.
2002), could serve as putative endogenous signals in
mycorrhiza-induced ISR remains to be elucidated.

Signalling pathways in AM

In contrast to the broad host specificity of AM fungi,
successful infection with rhizobia, a phylogenetically
diverse group of Gram-negative bacteria, is generally
host-strain specific (Perret et al. 2000). This interaction is
almost completely restricted to leguminous plants and
results in the formation of a completely new organ, the
root nodule. In these nodules, the bacteria are hosted
intracellularly and find the ideal environment to reduce
atmospheric nitrogen to ammonia, a source of nitrogen
which can be used by the plant (for review see Mylona
et al. 1995; Long 1996). Rhizobia are recognized by
legumes via specific Nod factors (lipochitooligosaccha-
rides) and additional components, such as extracellular
polysaccharides, lipopolysaccarides, and secreted pro-
teins (Perret et al. 2000). Investigations of both AM and
nodule formation in legume species have revealed a
genetic overlap between both types of endosymbioses.

The first hints of a conservation of signal transduction
pathways came from the characterization of genes which
are expressed early in nodule development and in
mycorrhizal roots. Several genes have been identified
which are induced during both symbiotic interactions, e.g.
early nodulin genes (van Rhijn et al. 1997), the leghae-
moglobin gene VFLb29 (Frühling et al. 1997), and an
aquaporin encoding gene (Wyss et al. 1990). The most
convincing evidence, however, resulted from the charac-
terization of the so-called SYM mutants, which defined
novel, genetically controlled steps common to AM colo-
nization andnodule formation.A large collection of SYM
mutants of L. japonicus,M. truncatula, and P. sativus has
been isolated (for review, see Peterson and Guinel 2000).
Phenotypically, these mutants do not form functional
nodules after inoculation withRhizobia. A subset of these
mutants was also impaired in AM symbiosis.

The current knowledge about the signals necessary
for nodule and AM formation in legumes is summarized
in Fig. 3. Two nodulation-specific Nod factor receptor
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(NFR) kinases, NFR1 and NFR5, have been identified
in L. japonicus to act upstream of the common pathway
(Radutoiu et al. 2003; Madsen et al. 2003). These might
be involved in Nod-factor binding, because both kinases
contain LysM motifs in their extracellular domain.
Genes responsible for the first common step in the signal
transduction pathways necessary for the rhizobial and
AM symbiosis were identified by map-based cloning in
L. japonicus and M. truncatula. The genes code for
receptor-like kinases and are named SYMRK/NORK
(symbiosis receptor-like kinase/nodulation receptor
kinase; Endre et al. 2002; Stracke et al. 2002). Geneti-
cally, SYMRK/NORK acts downstream of the recog-
nition of microbial signalling molecules and upstream of
the activation of calcium spiking, which is one of the
earliest detectable root-hair responses (Stracke et al.
2002). Both receptors contain extracellularly located
leucine-rich repeats, which might be involved in the
perception of microbial signal molecules. It is not yet
clear, however, how SYMRK/NORK can integrate
fungal and bacterial signals. Whether this occurs directly
through the formation of SYMRK-NFR heterocom-

plexes or indirectly via secondary signals remains to be
elucidated.

Analysis of a different set of M. truncatula mutants,
also unable to establish nodulation as well as AM, and
designated as DMI (DOES NOTMAKE INFECTIONS;
Catoira et al. 2000; Ané et al. 2002), led to the discovery
of two additional points in the Nod-factor-activated
signal transduction pathway that leads to responses such
as root-hair deformations, expressions of nodulin genes,
and cortical cell divisions. DMI1 is required for Nod-
factor-induced calcium spiking, whereas DMI3 acts
downstream of calcium spiking. Cloning of DMI1
revealed a membrane-spanning protein containing one
domain showing homology to the ligand-gated cation
channel domain of archeae (Ané et al. 2004). This pro-
tein might participate in the formation of a receptor
complex for symbiotic signals and function in Nod-
factor-induced calcium oscillation this way (Ané et al.
2004). In contrast, DMI3 exhibits high similarity to
genes encoding calcium- and calmodulin-dependent
protein kinases (CCaMKs, Lévy et al. 2004). CCaMK
might respond directly to oscillations in calcium con-
centrations, resulting in a phosphorylation event (Lévy
et al. 2004; Mitra et al. 2004). This indicates that, most
likely, calcium spiking is an essential component of the
signalling cascade leading to successful mycorrhizal
colonization, although it has not been shown to occur in
the AM interaction.

Conclusions/perspectives

The use of the model legumes Medicago truncatula and
Lotus japonicus has significantly advanced molecular
research of mutualistic root-microbe interactions.

Fig. 3 Model of signalling pathways according to the genetic
analysis of SYM genes (adapted from Radutoiu et al. 2003;
Parniske 2004). NRF1 and NRF5 are receptor kinases specific for
Nod-factor recognition and mediate specific responses to Rhizobia.
SYMRK/NORK receptor kinases may be the earliest receptors
acting in the AM signalling pathway. Both are also involved in the
transduction of signals from Rhizobia. They activate, probably by
phosphorylation, DMI1, a predicted ion channel. This ion channel
is necessary for calcium spiking in root hairs interacting with
Rhizobia. Whether calcium spiking is also necessary for AM
formation is not yet clear. Nevertheless, DMI3, a calcium- and
calmodulin-dependent protein kinase (CCaMK), is involved in
both signalling pathways indicating that Ca2+ could also be a
messenger in mycorrhizal signalling
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Common key elements of symbiotic signalling have been
found in the AM and the rhizobial interaction, although
both interactions have developed at a different time and
with completely different partners. Because the AM
symbiosis is the most ancient root-microbe interaction
known, molecular research regarding this symbiosis can
be expected to reveal further basic symbiotic mecha-
nisms. The current sequencing programs regarding the
genomes of both legumes in combination with the tar-
geted generation of mutants will provide the basis for
further progress in this direction.

Acknowledgements We thank D. Strack for critical reading of the
manuscript and S. Schaarschmidt for help in preparing Fig. 3. We
apologize to those colleagues whose work was not cited because of
space limitations. Our work is supported by the Deutsche Fors-
chungsgemeinschaft (DFG) within the Focus Program ‘‘Molecular
Basics of Mycorrhizal Symbioses’’.

References
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Simon L, Bousquet J, Lévesque RC, Lalonde M (1993) Origin and
diversification of endomycorrhizal fungi and coincidence with
vascular land plants. Nature 363:67–69

Simoneau P, Louisy-Louis N, Plenchette C, Strullu DG (1994)
Accumulation of new polypeptides in Ri T-DNA-transformed
roots of tomato (Lycopersicon esculentum) during the develop-
ment of vesicular-arbuscular mycorrhizae. Appl Environ
Microbiol 60:1810–1813

Slezack S, Dumas-Gaudot E, Paynot M, Gianinazzi S (2000) Is a
fully established arbuscular mycorrhizal symbiosis required for
bioprotection of Pisum sativum roots against Aphanomyces
euteiches? Mol Plant-Microbe Interact 13:238–241

Slezack S, Negrel J, Bestel-Corre G, Dumas-Gaudot E, Gianinazzi
S (2001) Purification and partial amino acid sequencing of a
mycorrhiza-related chitinase isoform from Glomus mosseae-
inoculated roots of Pisum sativum L. Planta 213:781–787

Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, San
Diego

195



Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can
dominate phosphate supply to plants irrespective of growth
responses. Plant Physiol 133:16–20

Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T,
Tabata S, Sandal N, Stougaard J, Parniske M (2002) A plant
receptor-like kinase required for both bacterial and fungal
symbiosis. Nature 417:959–962

Tahiri-Alaoui A, Dumas-Gaudot E, Gioaninazzi S (1993) Immu-
nocytochemical localisation of pathogenesis-related PR-1 pro-
teins in tobacco root tissues infected in vitro by the black root
rot fungus Chalara elegans. Physiol Mol Plant Pathol 42:69–82

Tamasloukht MB, Sejalon-Delmas N, Kluever A, Jauneau A,
Roux C, Becard G, Franken P (2003) Root factors induce
mitochondrial-related gene expression and fungal respiration
during the developmental switch from asymbiosis to presym-
biosis in the arbuscular mycorrhizal fungus Gigaspora rosea.
Plant Physiol 131:1468–1478

Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular
mycorrhizae from early devonian. Mycologia 87:560–573

Timonen S, Peterson RL (2002). Cytoskeleton in mycorrhizal
symbiosis. Plant Soil 244:199–210

Trouvelot S, van Tuinen D, Hijri M, Gianinazzi-Pearson V (1999)
Visualization of ribosomal DNA loci in spore interphasic nuclei
of glomalean fungi by fluorescence in situ hybridization.
Mycorrhiza 8:203–206

Uchiumi T, Shimoda Y, Tsuruta T, Mukoyoshi Y, Suzuki A, Se-
noo K, Sato S, Kato T, Tabata S, Higashi S, Abe M (2002)
Expression of symbiotic and nonsymbiotic globin genes
responding to microsymbionts on Lotus japonicus. Plant Cell
Physiol 43:1351–1358

Vierheilig H, Iseli B, Alt M, Raikhel N, Wiemken A, Boller T
(1996). Resistance of Urtica dioica to mycorrhizal colonization:
a possible involvement of Urtica dioica agglutinin. Plant Soil
183:131–136

Volpin H, Elkind Y, Okon Y, Kapulnik Y (1994) A vesicular ar-
buscular mycorrhizal fungus Glomus intraradix induces a de-
fence response in alfalfa roots. Plant Physiol 104:683–689

Walter M.H, Hans J, Strack D (2002) Two distantly related genes
encoding 1-deoxy-D-xylulose-5-phosphate synthases: differen-
tial regulation in shoots and apocarotenoid-accumulating
mycorrhizal roots. Plant J 31:243–254

Watson BS, Asirvatham VS, Wang L, Sumner LW (2003) Mapping
the proteome of barrel medic (Medicago truncatula). Plant
Physiol 131:1104–1123

Wegel E, Schauser L, Sandal N, Stougaard J, Parniske M (1998)
Mycorrhiza mutants of Lotus japonicus define genetically
independent steps during symbiotic infection. Mol Plant-Mi-
crobe Interact 11:933–936

Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer
F, Franken P, Kuster H, Krajinski F (2003) Transcriptional
changes in response to arbuscular mycorrhiza development in
the model plant Medicago truncatula. Mol Plant-Microbe
Interact 16:306–314

Wyss P, Mellor RB, Wiemken A (1990) Vesicular-arbuscular
mycorrhizas of wild-type soybean and non-nodulating mutants
with Glomus mosseae contain symbiosis-specific polypeptides
(mycorrhizins), immunologically cross-reactive with nodulins.
Planta 182:22–26

196


	Sec1
	Sec2
	Sec3
	Sec4
	Sec5
	Fig1
	Fig2
	Sec6
	Sec7
	Sec8
	Sec9
	Fig3
	Ack
	Bib
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29
	CR30
	CR31
	CR32
	CR33
	CR34
	CR35
	CR36
	CR37
	CR38
	CR39
	CR40
	CR41
	CR42
	CR43
	CR44
	CR45
	CR46
	CR47
	CR48
	CR49
	CR50
	CR51
	CR52
	CR53
	CR54
	CR55
	CR56
	CR57
	CR58
	CR59
	CR60
	CR61
	CR62
	CR63
	CR64
	CR65
	CR66
	CR67
	CR68
	CR69
	CR70
	CR71
	CR72
	CR73
	CR74
	CR75
	CR76
	CR77
	CR78
	CR79
	CR80
	CR81
	CR82
	CR83
	CR84
	CR85
	CR86
	CR87
	CR88
	CR89
	CR90
	CR91
	CR92
	CR93
	CR94
	CR95
	CR96
	CR97
	CR98
	CR99
	CR100
	CR101
	CR102
	CR103
	CR104
	CR105
	CR106
	CR107
	CR108
	CR109
	CR110
	CR111
	CR112
	CR113
	CR114
	CR115
	CR116
	CR117
	CR118
	CR119
	CR120
	CR121
	CR122
	CR123
	CR124
	CR125
	CR126
	CR127
	CR128
	CR129
	CR130
	CR131
	CR132
	CR133
	CR134
	CR135
	CR136
	CR137
	CR138
	CR139
	CR140
	CR141
	CR142
	CR143
	CR144
	CR145
	CR146
	CR147
	CR148
	CR149
	CR150
	CR151
	CR152
	CR153
	CR154
	CR155
	CR156
	CR157
	CR158
	CR159
	CR160

