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Abstract Soybean [Glycine max (L.) Merr.] contains two
proteins called vegetative storage proteins (VSPs) that
function as temporary storage reserves, but are also
closely related to plant acid phosphatases of the haloacid
dehalogenase (HAD) superfamily. This study examined
the biochemical basis for the relatively low catalytic
activity previously reported for these VSPs. The specific
activity of purified recombinant VSPa on GMP was
about 40-fold lower than for a related soybean root
nodule acid phosphatase (APase), which had a specific
activity of 845 U mg�1 protein. Conversion of Ser106 to
Asp increased VSPa activity about 20-fold. This Asp
residue is present in nodule APase and is a highly con-
served nucleophile in the HAD superfamily. Related
VSPs from cultivated soybean and from three wild
perennial soybeans, as well as a pod storage protein
(PSP) from Phaseolus vulgaris L. all lack the catalytic
Asp, suggesting they too are catalytically inefficient.
Phylogenetic analysis showed the VSPs and PSP are
more closely related to each other than to 21 other VSP-
like proteins from several plant species, all of which have
the nucleophilic Asp. This study suggests that loss of
catalytic activity may be a requirement for the VSPs and
PSP to function as storage proteins in legumes.
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Glutathione S-transferase Æ HAD: Haloacid
dehalogenase Æ pNPP: Para-nitrophenol phosphate Æ
PSP: Pod storage protein Æ RIP: Ribosome inactivating
protein Æ VSP: Vegetative storage protein

Introduction

A wide variety of plant species abundantly accumulate
proteins that function as storage reserves. The best
studied of these are the seed storage proteins synthesized
during seed development and then degraded during
germination (Derbyshire et al. 1976). Also well docu-
mented are numerous vegetative storage proteins (VSPs)
that accumulate in other plant tissues. These proteins are
often synthesized in sink tissues, such as developing
leaves, and then may be degraded within the same
growing season to contribute to the needs of developing
seeds or other plant sinks (Wittenbach 1983; for review,
see Staswick 1994). Other VSPs accumulate in over-
wintering tissues, such as tree bark (O’Kennedy and
Titus 1979), tubers and non-tuberous roots (for review,
see Bewely 2002), and can supply amino acids to reini-
tiate growth in the spring.

Proteins are generally classified as storage reserves
based on their abundance and pattern of accumulation
and degradation. Some have no other known biological
activity, but others are enzymatically active or have
other biological properties that can raise questions
about what their primary function is. For example,
certain lectins of bark tissue have been considered
storage proteins (Greenwood et al. 1986), but they may
also have other roles, such as plant defense (Peumans
and Van Damme 1995). The abundant potato storage
reserve patatin has lipid acyl hydrolase activity (An-
drews et al. 1988) and the sporamin tuber protein of
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sweet potato is related to trypsin inhibitors (Yeh et al.
1997). An abundant storage protein from the Andean
tuber crop oca has antimicrobial activity, which may
also be important for protection against pathogens
(Flores et al. 2002). A functional b-amylase also appears
to serve as a storage reserve in alfalfa taproots and it is
not clear that enzymatic activity has an important
function (Gana et al. 1998).

There are also storage proteins that are clearly de-
rived from active proteins based on sequence homology,
but they have lost some or all of their activity. Among
these is an abundant but inactive RNAse-like storage
protein from rhizomes of Calystegia sepium (hedge
bindweed; Van Damme et al. 2000) and bark lectin-like
proteins from Cladastris lutea (yellow wood) and Sam-
bucas nigra (black elderberry) that lack sugar-binding
capacity (Van Damme et al. 1995; Chen et al. 2002).
Loss of these biological properties may have occurred
because they were redundant and offered no selective
advantage, or because inactivation was required for the
protein to function as an abundant storage reserve.

Soybean (Glycine max) accumulates a limited number
of VSPs to high level in developing vegetative sink tis-
sues and these are later preferentially degraded. The
major soybean VSPs are VSPa and VSPb, two glyco-
proteins of about 27 kDa that are around 80% identical
in sequence (for review, see Staswick 1994). Consistent
with a storage role, the corresponding VSP genes are
regulated developmentally in a source/sink-dependent
manner, and are induced by the removal of seed pods
and by the availability of excess nitrogen (Mason and
Mullet 1990; Staswick et al. 1991; Mason et al. 1992;
Sadka et al. 1994). On the other hand, their induction by
stresses such as drought and high salt could suggest
other roles are also possible.

Soybean VSPa and b are related to tomato acid
phosphatase-1 (Aarts et al. 1991;Williamson and Colwell
1991). The VSPs occur as both homo and heterodimers
and have acid phosphatase activities on o-carboxyphenyl
phosphate ranging from 0.3 U mg�1 protein for VSPa
homodimer to 10 U mg�1 protein for the heterodimer
(DeWald et al. 1992). Compared to several other plant
acid phosphatases these values are somewhat low, raising
the question of the relevance of VSP catalytic activity.
Although VSP levels and total acid phosphatase activity
increased dramatically in leaves of depodded soybean
plants, VSPa and b accounted for no more than 0.1% of
the total acid phosphatase activity in these leaves (Stas-
wick et al. 1994). Rather, an unrelated 51-kDa phos-
phatase was responsible for most of the activity, having a
specific activity of 1,353 U mg�1 protein.

Soybean root nodules also contain an acid phos-
phatase with 69% sequence identity with the VSPs
(Penheiter et al. 1997; Penheiter 1998). Interestingly, the
specific activity of recombinant nodule acid phosphatase
(APase) on its optimal substrate (monophosphates) was
about 30-fold higher than that previously reported for
purified soybean VSPa/b, which was most active on
polyphosphates (DeWald et al. 1992; Penheiter et al.

1998). The VSPs and nodule APase contain three short
sequence motifs that suggest they belong to the bacterial
class-B family of acid phosphatases, which are members
of the haloacid dehalogenase (HAD) superfamily (Ko-
onin and Tatusov 1994; Penheiter 1998; Morais et al.
2000; Selengut 2001). In plant and bacterial class-B
APases the motif-I consensus sequence is FD[I,V]D[-
D,E]TXL. By analogy with the extensively characterized
bacterial L-2-HAD (Liu et al. 1995) it was suggested that
the first Asp in motif I is critical for enzyme activity
because it makes a nucleophilic attack on the substrate
phosphate (Penheiter 1998). However, the role of this
Asp has not been experimentally demonstrated for plant
APases. In L-2-HAD and in several related acid phos-
phatases, motif 1 is at the amino terminus (Selengut
2001), whereas it is near the center of the plant APases
and VSPs. This suggests that the structure of the bac-
terial and plant proteins is somewhat different. There-
fore, it is conceivable that one of the other acidic
residues of motif I could play the catalytic role.

Interestingly, the putative catalytic Asp is present in
nodule APase (Asp116), but it is substituted by Ser106 and
Gly106 in VSPa and VSPb, respectively. It was suggested
that the relatively low enzyme activity of soybean VSPs
might result from this substitution of Asp in motif I
(Penheiter 1998). Recombinant VSP has not been pre-
viously reported so it has not been possible to directly
compare its activity with recombinant nodule APase.

The purpose of this study was to investigate the
biochemical basis for the apparent low catalytic activity
of soybean VSPs. Specifically, we tested whether
restoring the putative catalytic Asp in motif I would
elevate the activity of VSPa when expressed as a gluta-
thione S-transferase (GST) fusion protein in Escherichia
coli. We also compared the sequence of VSP cDNAs
isolated from distant relatives of cultivated soybean and
evaluated the phylogenetic relationship among 25 other
plant proteins related to soybean VSPs.

Materials and methods

Plant and DNA material used

Perennial soybeans from the subgenus Glycine were
grown in a temperature-regulated greenhouse and young
leaves were collected for RNA extraction as described by
Staswick (1997). cDNA libraries were constructed in
lambda UNI ZAP-XR vectors (Stratagene) with reverse-
transcribed poly(A)-mRNA from G. falcata and
G. tomentella leaves. 32P-labeled VSPA and VSPB DNA
was used as a probe to screen the cDNA libraries. Low-
stringency hybridizations were done overnight at 55�C
and blots were washed twice with 1· SSC, 0.1% SDS
solution at 53�C. Plaques that produced positive signals
were selected and re-screened to homogeneity. After
confirming the clones’ relationship to the VSPA/B se-
quences by restriction endonuclease digestion, one
cDNA from each species was sequenced.
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A partial cDNA that included motif I for a VSP
homologue was obtained from G. curvata. Total RNA
was used with the 3¢ RACE System from GIBCO–BRL
according to the manufacturer’s instructions. The
VSPA-related fragment was amplified with primers for
sites flanking motif I that are relatively conserved in the
other VSPs (Fwd: 5¢ GTGGAAGCACACAACATC 3¢,
VSPA nucleotides 145–162; Rev: 5¢ TCTTCCTGACA-
AGAATA 3¢, VSPA nucleotides 485–502). PCR prod-
ucts were cloned into pGem-T-Easy vector (Promega)
and putative VSP clones were sequenced, translated and
aligned with other VSP sequences.

Preparation and expression of recombinant APase
and VSPA

The soybean [Glycine max (L.) Merr.] root nodule APase
and VSPA cDNAs were amplified by PCR with primers
designed to eliminate the amino terminal signal peptide
and incorporate XhoI sites compatible with the GST
fusion expression vector. The primers used for PCR of
APase were:

– Fwd, 5¢ GATCTCGAGATTCCGGAGGTATCAT-
GC 3¢;

– Rev, 5¢ TCACTCGAGTCAACTAATGTAGTACA-
TGGGATCAGG 3¢.

For VSPA the primers were:

– Fwd, 5¢ CCACTCGAGAACACTGGCTATGGTG 3¢;
– Rev, 5¢ GATCTCGAGCTACTGAATGTAGTA-

CAG 3¢.

The PCR products were cloned into pGem-T-Easy
vector, sequenced to verify their integrity, and then fused
into the XhoI site of pGEX-4T-1. The APase:pGEX-4T-
1 and VSPA:pGEX-4T-1 were transformed into E. coli
strain BL21. For expression, cultures in Luria-Bertani
(LB) medium containing 100 lg ml�1 ampicillin were
grown to OD600=0.6 and then induced at room tem-
perature with 0.5 mM isopropyl b-D-thiogalactopyr-
anoside (IPTG) for 4–6 h. Cells were harvested and
washed once in Mes–NaOH (pH 6.0), and were stored
as pellets at �80�C if not used immediately. Proteins
were evaluated by SDS–PAGE and the molecular
weights of the GST–APase and GST–VSPa fusions were
approximately 52 kDa, as expected.

PCR was also used to introduce a site-specific
mutation in VSPa converting Ser106 to Asp using the
wild-type VSPA as template. Because the targeted re-
gion was in the internal region of the cDNA, four oli-
gonucleotides were used to generate two PCR fragments
that could be joined by ligation at a common ClaI
restriction endonuclease site. Primers for the 5¢-end
cDNA fragment were:

– Fwd: 5¢ GATCTCGAGAACACTGGCTATGGTG 3¢;
– Rev: 5¢ ATCGATATCGAACACAAATGTGTCC-

TTGGG 3¢.

Primers for the 3¢-end cDNA fragment were:

– Fwd: 5¢ GTGTTCAGTATCGATGGCACCG 3¢;
– Rev: 5¢ GATCTCGAGCTACTGAATGTAGTA-

CAG 3¢.

The two PCR products were ligated into pGem-T-Easy,
verified by sequencing and the reconstructed insert was
then cloned into the XhoI site of pGEX4-T-1

Purification of GST fusion proteins

The GST–APase and GST–VSPa were partially purified
from sonicated E. coli extracts by ammonium sulfate
precipitation and ion-exchange chromatography.
Ammonium sulfate was added to 60% saturation and
the extract left on ice for 30 min. The precipitate was
collected by centrifugation (12,000 rpm, 20 min) and
resuspended in 4 ml of 50 mM Mes–NaOH (pH 6.0).
The suspension was desalted by dialysis at 4�C against
20 mM Tris–HCl, pH 8.0 (two exchanges, 6–12 h). The
dialyzed sample was then centrifuged at 15,000 rpm for
20 min. The supernatant was loaded onto a DEAE-50
cellulose column pre-equilibrated with 50 mM Mes–
NaOH (pH 6.0). The eluted sample was concentrated
osmotically and assayed for protein and APase activity.
Fractions were analyzed by SDS–PAGE on 12% mini-
gels (Bio-Rad) following the manufacturer’s procedures.
Protein concentrations were determined with the Bio-
Rad DC protein assay according to the protocol sup-
plied by the company. Activity of acid phosphatase was
examined by monitoring phosphate released from p-ni-
trophenol phosphate (pNPP) at 405 nm. Activity
determinations were routinely performed in triplicate at
room temperature in 0.05 M Mes–NaOH (pH 6.0)
containing 1 mM MgCl2.

Enzymes for the analysis of mutated VSPa were
affinity-purified with glutathione agarose. Induced cells
were pelleted, resuspended in 10 mM Tris–HCl, 5 mM
NaCl, and 3 mM MgCl2 at pH 7.5, and then sonicated.
Insoluble material was precipitated by centrifugation at
10,000 rpm for 10 min, and the supernatant was com-
bined with glutathione agarose beads for 30 min at 4�C
with continuous rotation. Beads were prepared in the
same buffer as used for cell lysis. Recombinant proteins
bound to the beads were washed 5 times with the same
buffer and then digested with Thrombin Protease
(Amersham) at 4�C for 6 h to release each protein from
the GST fusion. The protease-digested supernatant was
collected after centrifugation at 300 rpm for a few sec-
onds. Protein amount was estimated using the Bio-Rad
DC assay according to the manufacturer’s instructions;
bovine serum albumin was used as a standard. Proteins
were analyzed by SDS–PAGE on 12% minigels (Bio-
Rad) according to the manufacturer’s procedure.

Assays for enzyme activity

Phosphatase activity was determined by the method of
Fiske and Subbarow (1925) using a kit from Sigma
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following the manufacturer’s instructions. A variety of
phosphorylated compounds were used as substrates:
ADP, GMP, FMN, pNPP, P-tyrosine, and tripoly-
phosphate, each at 3 mM. Acid phosphatase reactions
were performed in triplicate at 37�C in 0.05 M Mes–
NaOH containing 1 mM MgCl2, pH 6.0. Kinetic mea-
surements were determined by activity assays at pH 6.0
with pNPP and GMP substrate concentrations ranging
from 0 to 6 mM. The kinetic parameters Vmax and Km

were evaluated by the Michaelis–Menten method.

Analysis of DNA and protein sequence

DNA sequencing was done by the University of Ne-
braska Genome Core Research Facility. DNA and
protein sequence was analyzed with SeqWeb v. 2 (Ac-
celrys). For phylogenetic analysis VSP-related plant
sequences were identified by blastP searches of the non-
redundant translated database using soybean VSPa
(AAA34020) and tomato APase-1 (AAA34135) as the
query sequences. Non-redundant sequences were judged
to be full length based on comparison with those known
to be complete (e.g. soybean VSPs, soybean nodule
APase, tomato APase-1). Phylogenetic relationships
were analyzed with Grow Tree using the default settings
(Kimura distance, neighbor distance, blossum62 scoring
matrix, gap penalty 8). The tree was displayed using the
Nexus output with Tree View 1.6.6 (http://taxon-
omy.zoology.gla.ac.uk/rod/rod.html). Sequences for the
motif-I region included those used for tree construction,
three partial sequences from the blastP search
(PPI309082, AY106317, CAB71336) and the partial
sequence we derived for G. curvata.

Results

The putative nucleophilic Asp is substituted in VSPs
from perennial soybeans

We first isolated cDNA clones from wild perennial rel-
atives of cultivated soybean in order to determine whe-
ther the absence of the putative catalytic Asp was unique
to the two G. max VSPs, or whether this was more
generally the case in the Glycine genus. Full-length
clones from G. falcata and G. tomentella had predicted
open reading frames encoding 253 amino acids, com-
pared with 254 for VSPa and VSPb from G. max.
Analysis with Grow Tree indicated the perennial pro-
teins were more closely related to VSPa than VSPb. The
proteins from G. falcata and G. tomentella shared 85%
sequence identity with each other and were each 81 and
76% identical with VSPa and VSPb, respectively. Based
on this evidence we have classified these as VSPa pro-
teins. Sequence identity with soybean nodule APase was
64 and 62% for the G. falcata and G. tomentella pro-
teins, respectively.

The sequence of 22 amino acids surrounding motif I
for each of these proteins is shown in Fig. 1, along with

the same region from previously characterized G. max
VSPs and from the VSP-like pod storage protein (PSP)
from Phaseolus vulgaris (Zhong et al. 1997). In addition,
a translated sequence from a partial cDNA from G.
curvata is also shown. Like the G. max VSPs, those from
all three perennial species lacked the putative catalytic
Asp, which in each case was substituted by a Ser residue.
The Asp is also substituted in PSP by Asn. Together
these are denoted as Group-I proteins. The sequence
from this region was also compared to that of 25 other
plant VSP/APase-like proteins. Included in this second
group are two enzymes that are known to have acid
phosphatase activity, the soybean nodule APase and
tomato Apase-1 (Aarts et al. 1991; Williamson and
Colwell 1991; Penheiter et al. 1997). All of the Group-II
proteins from eight different plant species contained the
Asp that is predicted to have a catalytic role. Two ara-
bidopsis genes have been called VSP1 and VSP2 based
on predicted amino acid sequence similarity with the
soybean VSPs (Utsugi et al. 1998), but the proteins they
encode have not been evaluated for their potential
enzymatic activity. The remainder are putative proteins

Fig. 1 Comparison of conserved motif I from soybean VSPs and
related plant APases. The invariant nucleophilic Asp of Group-II
proteins is substituted by the boxed residue indicated for each
Group-I protein (Ser106 in G. max VSPa). Invariant or highly
conserved Group-II residues are shaded and represented similarly if
present in Group I. Species designations are At, Arabidopsis
thaliana; Gc, Glycine curvata; Gf, Glycine falcata; Gt, Glycine
tomentella; Gm, Glycine max; Hv, Hordeum vulgare; Le, Lycopers-
icon esculentum; Os, Oryza sativa; Pv, Phaseolus vulgaris; Pp, Pinus
pinaster; Zm, Zea maize
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based on complete or partial database nucleotide se-
quences. In addition to the putative nucleophilic Asp,
two other residues conserved in Group-II proteins are
absent in Group I. These are Trp three residues up-
stream and Asp or Glu three residues downstream of the
putative nucleophilic Asp

Nodule APase expressed in E. coli is catalytically
active

Recovery of soybean VSPs and nodule APase in active
form from E. coli had not previously been reported. In
order to test the feasibility of obtaining these enzymes
from bacteria, VSPa and nodule APase were each ex-
pressed as GST fusion proteins. The constructs excluded
the signal peptide found in each full-length cDNA.
GST–APase and GST–VSPa were partially purified by
DEAE ion-exchange chromatography following precip-
itation with 60% ammonium sulfate (Table 1). The
specific activity of GST–APase was about
72 lmol min�1 mg�1 using 3 mM pNPP as the sub-
strate. This was similar to the activity reported previ-
ously for this enzyme expressed in yeast and purified in a
similar manner (66.7 lmol min�1 mg�1 with 5 mM
pNPP; Penheiter 1998). This result indicated that APase
could be recovered from E. coli in active form.

GST–APase was assayed for its pH optimum with
pNPP as substrate. Figure 2 shows that the enzyme had a
broad pH activity profile typical of acid phosphatases,
with a maximum occurring around pH 6.0. This is sim-
ilar to the pH optimum found for APase expressed in
yeast (Penheiter 1998). Therefore, all further kinetic
studies were carried out at this pH. To evaluate the
substrate specificity for GST–APase, several phosphor-
ylated substrates were tested (Table 2). The highest
activity was observed with the monophosphorylated
substrate 5¢-GMP, which was in agreement with previous
results for native and recombinant APase from yeast
(Penheiter 1998). Several other compounds (FMN, ADP,
and P-tyrosine) were also dephosphorylated, but at a
much lower rate than 5¢-GMP. In contrast, we found no
evidence that tripolyphosphate was hydrolyzed. Based
on these data, the kinetics for the two most active sub-
strates was determined and is shown in Table 3. Highest
affinity was observed for 5¢-GMP (Km=0.9 mM). The
observed Km value for pNPP was somewhat higher at

8.8 mM. The Vmax value for pNPP was greater than that
calculated for 5¢-GMP and the Vmax/Km values for pNPP
and 5¢-GMP were 279 and 1,926, respectively.

In contrast to GST–APase the VSPa fusion protein
possessed little phosphatase activity. The only significant
activity among the substrates tested was with GMP and
pNPP (22.6 and 3.2 U mg�1, respectively). This was
about 20-fold lower than for GST–APase with the same
substrates. Extracts from E. coli expressing GST alone
exhibited no detectable activity with any of these sub-
strates (data not shown), indicating that the low activity
observed for GST–VSPa was in fact due to the re-
combinant enzyme and not endogenous phosphatases
co-purified from E. coli. As observed for nodule GST–
APase, P-tyrosine, ADP and tripolyphosphate, were
poor substrates for GST–VSPa.

Previous studies showed that cyclic nucleotides
inhibited purified nodule APase (Penheiter 1998). To
determine the effect of this inhibitor on GST–APase,
enzyme activity was assayed in the presence of cAMP.
Substrate pNPP concentrations ranging from 2.5 to
20 mM, and two concentrations of inhibitor, 5 and
50 lM cAMP, were used. The Ki value of GST–APase
was about 15 lM (not shown), only slightly higher than
that determined for APase from nodule extract (12 lM;
Penheiter 1998). Collectively, these results indicate that
in all regards tested nodule GST–APase from E. coli
behaves similarly to native APase.

Mutation of VSPa increases its acid phosphatase activity

We next examined whether conversion of Ser106 to Asp
in VSPa would alter its phosphatase activity relative to
the wild-type protein. For this assay, highly purified
enzymes were recovered by isolation on glutathione
agarose followed by cleavage with thrombin to isolate
the enzyme from GST. Analysis of wild-type and mutant
VSPa, as well as nodule APase, by SDS–PAGE indi-
cated the major protein bands in each case had the ex-
pected molecular weights of approximately 27 kDa after
thrombin cleavage (Fig. 3). For each protein only minor
contaminants were evident.

The result of the assay of purified enzyme with five
phosphorylated substrates is shown in Table 4. The
activity for thrombin-cleaved APase on GMP was
845 U mg�1. This was the most active substrate, as

Table 1 Purification of soybean (Glycine max) nodule APase in Escherichia coli

Step Total proteina Total activitya,b Specific activitya Purification Recovery
(mg) (U) (U/mg) (-fold) (%)

Crude extract 251.0±19 6200±900 24.5±1 1.0 100
60% (NH4)2SO4 119.0±9 4413±548 37.2±1 1.5 71
DEAE 15.2±1 1088±58 72.1±4 3.0 18

aMean ± SD, n=3. 0.15 mg protein was used in each assay
bOne unit=1 lmol p-nitrophenol released from pNPP (3 mM) per minute at room temperature in 0.05 M Mes–NaOH (pH 6.0) +1 mM
MgCl2
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noted earlier for the partially purified GST–APase.
Wild-type VSPa cleaved from GST yielded 30- to 40-
fold lower activity on both pNPP and GMP. In contrast,
the conversion of Ser106 to Asp dramatically increased
the enzyme activity of VSPa on GMP to 439 U mg�1,
almost 20-fold higher than for wild-type VSPa and
about half that of nodule APase. VSPa Asp106 also
hydrolyzed pNPP at 35 U mg�1 and P-tyrosine at
20 U mg�1. This was about one-third of the level found
for nodule APase with pNPP as a substrate and about
10-fold higher than for wild-type VSPa on these sub-
strates. As for nodule APase, the mutant VSPa had no
detectable activity towards FMN or tripolyphosphate.
These results establish that the major reason for the low
catalytic activity of VSPa is the single amino acid sub-

stitution of Ser106 for the catalytic Asp found in this
family of APases.

Discussion

Penheiter et al. (1998) previously reported that nodule
APase expressed in E. coli as a His tag fusion was found
in inclusion bodies rather than as a soluble protein. Our
results show that expression of both VSPa and nodule
APase as GST fusions is a viable means to obtain these
enzymes in soluble and active form from bacteria. This
expression system permitted the rapid affinity purifica-
tion of the enzymes, which facilitated the study of VSPa

Fig. 2 The effect of pH on soybean (Glycine max) nodule APase
activity. Enzyme purified from Escherichia coli was assayed with
pNPP as a substrate at the indicated pH values. Activity is
expressed as percent of the value at pH 6. Mes–NaOH was the
buffer for pH 5 and 6, and Tris–HCl for pH 7–9

Table 2 Activity of soybean nodule APase, and VSPa fusions
against a variety of substrates

Substrates APasea,b VSPaa

(U/mg) (U/mg)

pNPP 72.1±4 3.2±1
ADP 28.0±2 0
GMP 473.3±9 22.6±1
FMN 26.3±1 0
O-P-Tyrosine 24.3±1 0.5±0.1
Tripolyphosphate 0 0

aOne unit=1 lmol p-nitrophenol released from pNPP (3 mM) per
minute at room temperature in 0.05 M Mes–NaOH (pH 6.0)
+1 mM MgCl2.
bMean ± SD, n=3. 0.15 mg protein was used in each assay

Table 3 Kinetic values of the soybean nodule APase fusion from
E. coli

Substrates Km
a Vmax

a,b Vmax/Km
a

(mM) (U/mg)

5¢-GMP 0.9±0.2 2160.5±99 1926.5±92
pNPP 8.8±0.6 2687.0±82 279.5±20

aMean ± SD, n=3. 0.15 mg protein was used in each assay
bOne unit=1 lmol phosphate released per minute at room tem-
perature in 0.05 M Mes–NaOH (pH 6.0) + 1 mM MgCl2

Fig. 3 Analysis of glutathione agarose-purified GST fusion pro-
teins. Major bands at about 27 kDa are wild-type nodule APase,
VSPa and mutated VSPaAsp106, as indicated. Position of molecular
markers is indicated to the left in kDa. Purified proteins were
loaded on 12% SDS–PAGE gels

Table 4 Phosphatase activity of purified proteins. Phosphatase
activity of soybean VSPa, mutant VSPa and nodule APase with a
variety of phosphorylated compounds (3 mM). Reactions were
assayed in triplicate using 0.05 mM Tris–NaOH (pH 6.0) + 1 mM
MgCl2

Substrate Activity (U/mg)a,b

APase VSPa Ser106Asp VSPa

pNPP 97±11 35±7 3.2±1
GMP 845±152 439±90 22.6±1
FMN 0 0 0
P-tyrosine 31±4 20±0.7 0.5±0.1
Tripolyphosphate 0 0 0

aOne unit=1 lmol of phosphate released per minute at room
temperature in 0.05 M Mes–NaOH (pH 6.0) + 1 mM MgCl2
bMean ± SD, n=3. 1 mg protein used in each assay
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by mutational analysis. The specific activity of the glu-
tathione-purified and thrombin-cleaved APase on GMP
was about 2-fold higher than that purified by ion ex-
change. The substrate specificity was also similar to that
found for the native enzyme, confirming that purifica-
tion by this method yields enzyme that is representative
of the natural enzyme. We were also able to directly
compare the activity of recombinant nodule APase with
that of VSPa, because the two enzymes were produced
and purified under identical conditions. Wild-type VSPa
had about 40-fold lower activity than nodule APase,
confirming previous indications that soybean VSP is a
relatively weak acid phosphatase. A recent study showed
that a marked down-regulation of the VSP genes,
resulting in only about 2% of the normal VSP protein,
had no adverse effect on plant growth or productivity
(Staswick et al. 2001). While this does not necessarily
mean that VSPs have no catalytic role, at least the role is
not essential and is possibly made redundant by other
enzymes. The same is apparently true for the storage role
that has been assumed for these VSPs.

Site-specific mutation of the first Asp of motif I in
bacterial L-2-HAD and in magnesium-dependent acid
phosphatase-1 from mouse has shown this residue is
critical for catalytic activity (Liu et al. 1995; Selengut
2001). The functional relevance of this residue had not
previously been determined in plant enzymes. This was
important to establish because all Group-II plant pro-
teins, including two demonstrated to be acid phospha-
tases, contain two additional acidic residues just down
stream of the proposed catalytic Asp in motif I (DxD[D/
E]). It was conceivable that one of these, rather than the
first Asp, might be structurally positioned to act as a
nucleophile in these enzymes. We found that substitu-
tion of Ser106 with Asp at the position corresponding
with the proposed catalytic Asp increased VSPa activity
nearly 20-fold, confirming its essential role in catalysis in
the plant enzymes. Interestingly, all Group-I proteins
also lacked the invariant Trp and the conserved acidic
residue found in Group-II proteins corresponding to
positions 103 and 109 in VSPa, respectively. It is possible
that these residues also enhance acid phosphatase
activity, perhaps affecting the substrate-binding site.

Although Asp106 is clearly of major importance, wild-
type recombinant VSPa did have low activity, as was
previously reported for native VSPs (DeWald et al.
1992). It is not clear why this is so if Asp106 is essential
for catalysis. All Group-I VSPs retain the Asp corre-
sponding to position 108 in VSPa. It would be of interest
to determine whether Asp108 can also act as the nucle-
ophile for catalysis in VSPs, if only inefficiently.
VSPaAsp106 had only half the activity of nodule APase.
It is possible that other residues in VSPa are also sub-
optimal for activity. The fact that the VSPb homodimer
purified from plants had a specific activity about 10-fold
higher than the VSPa homodimer (DeWald et al. 1992)
supports this possibility.

In contrast to the earlier finding of highest activity on
polyphosphates for native VSPa/b (DeWald et al. 1992),

we found no detectable activity on this substrate. One
possible explanation is that we evaluated only VSPa,
which presumably forms a homodimer in E. coli. The
native VSPa homodimer from plant extracts had much
lower activity overall than VSPa/b and was relatively
less active on polyphosphates than was the heterodimer.
We chose to investigate VSPa because it is the more
abundant of the two subunits in soybean during normal
plant growth. The previous analysis of native VSP
(DeWald et al. 1992) also did not include GMP, which
was the substrate giving the highest activity in our
analysis. It will be important in future studies to deter-
mine the level of activity and substrate specificity for the
b VSP that has had Asp106 restored. VSPbAsp106 could
be expressed alone in E. coli and along with
VSPaAsp106, in which case it could presumably form the
heterodimer as in soybean.

The sequence of VSPs from perennial soybeans had
not previously been reported. We characterized two new
VSP cDNAs and found they encode proteins with high
sequence identity to the G. max VSPs. The VSPs from
the perennial Glycine spp. are nearly identical in size to
the G. max VSPs and are expected to have signal pep-
tides of 29 amino residues. Previous analysis indicated
there was considerable apparent size heterogeneity
among proteins from the perennials that cross-reacted
with VSP antisera (Staswick 1997). Our results here
suggest that part of the heterogeneity on SDS–PAGE is
due to variable mobility caused by charge differences or
glycosylation, rather than differences in polypeptide
length. This is also the basis for the apparent size dif-
ference between G. max VSPa and VSPb. In the earlier
study, leaf extracts from G. falcata produced a single
VSP immuno cross-reacting band while G. tomentella
yielded two distinct bands. This suggests there may be a
second gene in G. tomentella, possibly a VSPb-type
protein as in G. max. Like the G. max VSPs, those from
the perennial species also lacked the first Asp residue in
motif I, suggesting that they are probably catalytically
inefficient as well. It appears that the loss of the catalytic
Asp originated before the domestication of Glycine max.
We would also predict that the enzyme activity of P.
vulgaris PSP would be low due to the absence of the
catalytic Asp in this protein as well.

A phylogenetic analysis of the full-length sequences
of 30 VSP and VSP-like plant proteins suggests that
catalytic inactivation of VSPs may not be a recent event
(Fig. 4). Of the currently known VSP-like plant proteins
the one most closely related to the Glycine VSPs is PSP
from P. vulgaris. Together, these constitute the Group-I
proteins described in Fig. 1. All of the Group-II proteins
have the nucleophilic Asp, including the G. max nodule
and pathogenesis-associated APases (Acc. No.
BAB86895), and are more distantly related to the VSPs
than is PSP. These relationships suggest that enzymatic
inactivation of an ancestral APase may have occurred
after the divergence of VSPs from soybean root nodule
APase, but before the divergence of Phaseolus from
Glycine. We cannot, however, rule out the possibility
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that PSP lost the nucleophilic Asp independently of the
soybean VSPs.

Our results document clearly that inactivity in VSPa
is due primarily to a single amino acid substitution in an
APase active site, because we have been able to restore
activity to this protein by mutation. It is somewhat
surprising that other residues necessary for catalysis had
not also diverged, since there would not seem to be a
reason to retain them in this inactive enzyme. It is pos-
sible that some of these must be maintained for proper
folding and protein stability. However, the low overall
level of sequence conservation among VSPs comprising
Group-I proteins, as well as in the Group-II VSP-like
acid phosphatases, indicates there is wide room for se-
quence variation in this family of proteins.

Other storage proteins also appear to be inactivated
by simple mutations, although in each case mentioned
below it has not been experimentally demonstrated that
repairing the proposed defect alone is sufficient to re-
store activity. For example, sequence comparison sug-
gested the RNase-like rhizome storage protein of
Calystegia sepium is inactive due to substitution of a
conserved His that is involved in catalysis in related
plant RNAses (Van Damme et al. 2000). Type-2 ribo-
some-inactivating proteins (RIP) can also function as
storage reserves. A critical component of their activity is
a B-chain polypeptide with agglutinating activity. Sam-
bucas nigra contains an abundant RIP-like protein that
is inactive apparently because its B-chain lacks critical
residues for agglutinating activity. Substitution of one of
these in a closely related active B-chain reduced binding
activity 50%, and a second mutation further lowered
activity (Chen et al. 2002). Structural modeling of a
lectin-like storage protein from Cladastris lutea also
suggested its inactivity is due to three extra amino acids
in the presumed carbohydrate-binding site (Van Damme
et al. 1995). In each of these cases it would be of interest

to correct the apparent defects in the inactive proteins
and determine whether this alone would restore activity,
or if additional residues must also be changed.

An intriguing question is whether loss of acid
phosphatase activity was required for the VSPs to
function as storage proteins, or whether they were re-
cruited for storage proteins because they were redun-
dant and not serving another critical role. Storage
proteins by definition accumulate to a high level. It may
be that over accumulation of an active phosphatase
would raise the cellular phosphate pool to toxic levels.
It is also possible that in their role as storage proteins,
legume VSPs have simply lost a non-essential function,
but that loss is not required. One way to address this
question would be to express the gene for activated
VSPaAsp106 in transgenic soybean under its native
promoter to determine whether VSPs with high cata-
lytic activity would be tolerated.

Because the complete genome is available we should
have identified all putative VSP-like proteins from ara-
bidopsis. None of the nine proteins that were found
lacked the nucleophilic Asp. This suggests that if any of
these are storage proteins their enzymatic inactivation is
not required or involves other amino acids not yet
identified. It has not been conclusively established that
arabidopsis contains proteins that function specifically
as storage reserves. Two genes have been called VSP1
and VSP2 based on sequence homology and some reg-
ulatory similarity with the soybean VSP genes. How-
ever, their relative abundance has not been well
characterized, so it is not clear whether they could have
a significant storage role. Retention of the catalytic Asp
in these proteins suggests they may be active enzymes. It
should also be noted that regulatory similarity with the
soybean VSP genes does necessarily imply they encode
storage proteins. For example, soybean VSPs respond to
several stress factors that may also trigger the produc-
tion of APases that function in stress response. Depod-
ding of soybean plants dramatically elevated acid
phosphatase activity from a 51-kDa protein, along with
the rise in VSP level. But the low abundance of the 51-
kDa protein indicates it is not a significant storage re-
serve (Staswick et al. 1994).

In summary, the five soybean VSPs from four distinct
species of Glycine sequenced to date, as well as a PSP
from P. vulgaris, all lack an Asp residue that we have
demonstrated is critical for high catalytic function in
VSPa. A single amino acid substitution replacing the
native Ser with Asp in VSPa increased its acid phos-
phatase activity about 20-fold, to a level similar to that
of nodule APase. This establishes that the major bio-
chemical basis for the low enzymatic activity of VSPa is
the substitution of this single amino acid residue, and
that other residues necessary for high enzyme activity
are retained in VSPa.
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