
PROGRESS REPORT
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The loss of green color during chlorophyll degradation—
a prerequisite to prevent cell death?
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During plant senescence, chlorophyll (Chl) is degraded
to non-fluorescent Chl catabolites (NCCs; Fig. 1a).
These linear tetrapyrroles accumulate in the vacuoles of
senescing cells and, in many plant species, represent the
final products of Chl catabolism (Matile et al. 1988;
Kräutler 2003). Despite the billions of tons of Chl dis-
appearing this way every year and the fascinating
autumnal color change of deciduous trees resulting from
it, most reactions underlying conversion of Chl to NCC
have only recently been elucidated (for recent reviews,
see Hörtensteiner 1999; Takamiya et al. 2000; Kräutler
2003). Chl breakdown is a multi-step pathway (Fig. 1a)
aiming to increase pigment solubility and to abolish the
photodynamic properties of Chl by complete disruption
of the conjugated p-electron system. Taking this into
account, Chl breakdown can be apostrophized as Chl
detoxification (Hörtensteiner 1999).

As inferred from the structures of NCCs (Kräutler
et al. 1991), the most remarkable structural change is the
oxygenolytic opening of the porphyrin macrocycle of
Chl. This reaction is catalyzed by the joint action of two
enzymes, pheophorbide a oxygenase (PaO) and red Chl
catabolite reductase (RCCR) converting pheophorbide
(pheide) a to a primary fluorescent Chl catabolite
(pFCC; Fig. 1a; Rodoni et al. 1997a). Several lines of
evidence suggest that the two enzymes interact during
catalysis, thereby channeling the first porphyrin cleavage

product, red Chl catabolite (RCC). Thus, in vitro, RCC
does not accumulate in the absence of PaO. In addition,
RCCR is sensitive to oxygen, although PaO requires O2

for incorporation into pheide a (Rodoni et al. 1997a;
Wüthrich et al. 2000). PaO has been demonstrated to be
a non-heme iron-containing monooxygenase, that spe-
cifically introduces one oxygen atom of O2 at the a-
methine bridge of pheide a (Hörtensteiner et al. 1995,
1998). In addition, PaO is specific for pheide a with
pheide b inhibiting in a competitive manner (Hörten-
steiner et al. 1995). PaO is located at the inner envelope
membrane of senescing chloroplasts (Matile and Schel-
lenberg 1996). In contrast, RCCR is a soluble chloro-
plast protein (Wüthrich et al. 2000), suggesting that the
site of conversion of pheide a to pFCC is at the stromal
periphery of the envelope. RCCR stereospecifically re-
duces the C1/C20 double bond of RCC, thereby forming
two possible C1 stereoisomers of pFCC. The source of
RCCR determines which one is formed; thus, for
example, RCCR of Arabidopsis thaliana produces a
different isomer than RCCR isolated from tomato
(Hörtensteiner et al. 2000b).

Exploiting the biochemical characteristics of PaO, 21
candidate genes for PaO in Arabidopsis were identified
recently by using functional genomics (Pružinská et al.
2003). One of them, Accelerated cell death 1 (Acd1), was
subsequently shown to exhibit PaO activity in vitro after
expression in Escherichia coli. The properties of the
heterologously expressed protein were identical to native
PaO. In contrast, a homologue of ACD1, At4g25650,
did not exhibit PaO activity (Pružinská et al. 2003).
Thus, Acd1 encodes Arabidopsis PaO (AtPaO). AtPaO is
a Rieske-type iron–sulfur cluster-containing oxygenase.
In Arabidopsis, five Rieske-type oxygenases are present
which have rather diverse functions (Gray et al. 2002).
Besides PaO and At4g25650, the function of which is
unknown, chlorophyll a oxygenase (CAO; Tanaka et al.
1998) and choline monooxygenase (CMO; Rathinas-
abapathi et al. 1997) contain Rieske centers. In addition,
Tic55, a component of the protein import machinery at
the inner envelope (TIC) also belongs to this group of
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oxygenases (Calibe et al. 1997), although an enzymatic
(oxygenase) activity has not been demonstrated in this
case. Rieske-type oxygenases are widely distributed in
pro- and eukaryotes. In all cases, electrons necessary to
drive the redox cycle of the Rieske center irons are
provided from reduced ferredoxin (Fd; Schmidt and
Shaw 2001). Accordingly, PaO, CAO and CMO are Fd-

dependent enzymes (Schellenberg et al. 1993; Rathinas-
abapathi et al. 1997; Tanaka et al. 1998). Fd is kept in
the reduced state by the activity of a reductase. In higher
plants, the nature of this reductase is unknown so far,
but possibly Fd-NADPH oxidoreductase (FNR) is in-
volved. It has been shown that another protein of the
protein import machinery at the inner envelope, Tic62, is
able to bind FNR (Küchler et al. 2002).

The RCCR gene has been identified using classical
protein purification and PCR-based cloning strategies
(Rodoni et al. 1997b; Wüthrich et al. 2000). RCCR is a
novel protein that does not have high homology to other
reductases, but is distantly related to a family of Fd-
dependent bilin reductases, necessary for the biosyn-
thesis of phycobilins and the phytochrome chromophore
(Frankenberg et al. 2001). In contrast to other Fd-
dependent enzymes, RCCR and the bilin reductases
appear to lack a metal or flavin cofactor. Thus, electron
transfer is believed to occur directly from reduced Fd to
the respective substrates (Frankenberg and Lagarias
2003). In this respect, RCCR would rather be active as a
‘‘chaperone’’, mediating the interaction of Fd and RCC
(at this stage still bound to PaO), and controlling the
regio- and stereoselective reduction (Kräutler 2003).
When comparing the amino acid sequences of different
RCCRs, no obvious domains can be identified that
could be responsible for the stereospecificity. Therefore,
chimeric proteins that were composed of portions of
RCCR from tomato and Arabidopsis were produced in
E. coli and their stereospecificity analyzed. It turned out
that a Phe-to-Val exchange at position 218 was sufficient
to change the stereospecificity of the Arabidopsis RCCR
(I. Anders and S. Hörtensteiner, unpublished). Inter-
estingly, Phe218 lies adjacent to a stretch of four amino
acids that is absent in the bilin reductases (Frankenberg
et al. 2001).

The rather complex PaO/RCCR reaction represents a
key step of the entire Chl catabolic pathway. Thus, PaO
activity is restricted to senescence (Schellenberg et al.
1993; Hörtensteiner et al. 1995), whereas activities of
other enzymes of the pathway, such as chlorophyllase
(catalyzing the initial removal of phytol from Chl) or
RCCR are constitutive (Trebitsh et al. 1993; Rodoni
et al. 1997a; Jakob-Wilk et al. 1999). Surprisingly, both
PaO mRNA and protein are present in non-senescent
leaf tissue (Gray et al. 2002; Pružinská et al. 2003). Al-
though PaO expression is up-regulated to some extent
upon senescence induction, at the same time the increase
in activity is a magnitude higher (Pružinská et al. 2003).
From this it is concluded that PaO is regulated on the
posttranscriptional level as well. So far, the nature of
this proposed regulation has not been elucidated.

The joint reaction of PaO and RCCR is responsible
for the loss of green pigment color. In this respect, it is
most important for Chl detoxification during senes-
cence. The importance of Chl catabolism for plant sur-
vival can be inferred from the analysis of Chl catabolic
mutants. Different mutants have been identified that are
defective in either PaO or RCCR. These include Ara-

Fig. 1 a Pathway of chlorophyll degradation during senescence.
Depicted are the structures of the Chl catabolites pheophorbide a
(pheide a), red Chl catabolite (RCC), primary fluorescent Chl
catabolite (pFCC), and non-fluorescent Chl catabolite (NCC). The
key reaction is catalyzed by the joint action of pheide a oxygenase
(PaO) and RCC reductase (RCCR) without release of the
intermediate, RCC. Relevant carbon atoms and the a-methine
bridge that is cleaved by PaO are labeled. R1, R2 and R3 in the
NCCs indicate species-specific differences (Kräutler 2003). b Leaves
from wild-type maize at a senescent stage (left) and from lls1
showing a lesion mimic phenotype (right)
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bidopsis accelerated cell death 1 (acd1; Greenberg and
Ausubel 1993) and maize lethal leaf spot 1 (lls1; Gray
et al. 1997), in which the maize homologue of AtPaO is
affected (Fig. 1b), and Arabidopsis acd2, which is
defective in RCCR (Greenberg et al. 1994; Mach et al.
2001). All of these mutants develop cell death lesions on
their leaves in an age-dependent fashion. The phenotype
is similar to the induction of defense reactions in path-
ogen resistance; thus, respective mutants are termed le-
sion mimic mutants (Mach et al. 2001). The affected
genes were believed to be involved in a cell death sup-
pression mechanism either directly (affecting a signal
cascade?) or through, for example, the removal of toxic
molecules (Greenberg and Ausubel 1993; Gray et al.
1997). In favor of the latter was the finding that in lls1 a
cell death-inducing signal was derived from plastids and
lesion formation was light dependent (Gray et al. 2002).
Indeed, both PaO and RCCR mutants accumulate Chl
catabolites (pheide a in lls1 and acd1, and RCC in acd2)
upon dark-induced senescence. In addition, the content
of these catabolites positively correlates with cell death
progression of the respective mutants (Pružinská et al.
2003; A. Pružinská and S. Hörtensteiner, unpublished
results). Thus, in these mutants, the accumulation of
photoreactive Chl catabolites can be suggested to cause
the production of reactive oxygen species that in turn
induce cell death (Mach et al. 2001). Surprisingly, other
mutants have been described that do not develop an
apparent cell death phenotype although they also accu-
mulate pheide a due to reduced PaO activities (Vicentini
et al. 1995; Thomas et al. 1996). Besides pheide a, these
mutants also accumulate chlorophyllides, indicating that
they have a genetic defect that is different from acd1 or
lls1. On the other hand, several lesion mimic mutants
have been identified that are affected in genes of Chl
biosynthesis (Hu et al. 1998; Meskauskiene et al. 2001;
Ishikawa et al. 2001).

Altogether, it can be concluded that functional Chl
metabolism, i.e. biosynthesis, turnover and degradation,
is important to prevent the accumulation of photody-
namic intermediates. Furthermore, it becomes obvious
that Chl degradation via the PaO/RCCR pathway is a
vitally important process during plant senescence. Quite
likely it is also involved in cellular responses to a variety
of stresses that are linked to Chl breakdown, such as the
hypersensitive reaction. The photodynamic properties of
Chl enable the conversion of light energy to chemical
energy during photosynthesis, but during senescence,
photodynamism may turn into a threat. Thus, parallel to
the ‘‘invention’’ of Chl and the evolution of oxygenic
photosynthesis, plants evolved a mechanism for the
detoxification of Chl. In unicellular photosynthesizers,
such as Chlorella protothecoides, RCCR is absent and,
consequently, RCC-like compounds are excreted into
the medium (Engel et al. 1991; Hörtensteiner et al.
2000a). However, the development of multicellular
plants required, in addition to PaO, the appearance of
RCCR to enable the safe disposal of Chl catabolites
inside the vacuole.
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