Planta (2004) 218: 668—672
DOI 10.1007/s00425-003-1146-9

ORIGINAL ARTICLE

Pawe Bednarek - Jens Winter - Bjorn Hamberger
Neil J. Oldham - Bernd Schneider - Jianwen Tan
Klaus Hahlbrock

Induction of 3’-0f-p-ribofuranosyl adenosine during compatible, but not
during incompatible, interactions of Arabidopsis thaliana or Lycopersicon
esculentum with Pseudomonas syringae pathovar tomato

Received: 1 July 2003/ Accepted: 30 September 2003 / Published online: 18 December 2003

© Springer-Verlag 2003

Abstract All hitherto identified aromatic compounds
accumulating in leaves of Arabidopsis thaliana (L.)
Heynh. upon infection with virulent or avirulent strains
of Pseudomonas syringae pathovar tomato (Pst) were
indolic metabolites. We now report the strong accumu-
lation of a novel type of natural product, 3’-O-f-p-ri-
bofuranosyl adenosine (3’RA), exclusively during
compatible interactions. In contrast to the various ind-
olic metabolites, 3’RA was undetectable in incompatible
interactions of A. thaliana leaves with an avirulent Pst
strain, as well as in uninfected control leaves. A similar,
strong induction of 3’RA was observed in compatible
but, again, not in incompatible interactions of Pst with
its natural host, Lycopersicon esculentum. The strength of
the effect and its confinement to compatible interactions
suggests that it may be applicable as a diagnostic tool.
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Introduction

We have recently initiated investigations on the chemical
nature, induction modes, and — as a long-term goal —
defense-related functions of aromatic secondary metab-
olites in Pst-infected A. thaliana leaves (Hagemeier et al.
2001). The results obtained so far indicated that all
major induced compounds were indolic substances, with
the notable exception of one distinct type of metabolite
that was provisionally designated as compound X. This
compound represented one of the most prominent peaks
on HPLC chromatograms of soluble extracts from
compatible Pst/A. thaliana interactions, but was absent
in uninfected controls and remained undetectable in
incompatible Pst/A. thaliana interactions (Hagemeier
et al. 2001).

The strong accumulation of compound X exclusively
during compatible Pst/A. thaliana interactions, as well as
its apparent, non-indolic nature (as deduced from the
UV spectrum), prompted us to further investigate its
chemical structure, its mode of accumulation, and its
occurrence or non-occurrence in a different pathosys-
tem, i.e., during the interaction of Pst with its natural
host, L. esculentum.

Materials and methods

Plant material

Arabidopsis thaliana (L.) Heynh. ecotype Col-0 (Lehle Seeds,
Round Rock, USA), and Lycopersicon esculentum Mill. cv. Mon-
eymaker (Bruno Nebelung Kipenkerl-Pflanzenziichtung, Ever-
swinkel, Germany) plants were grown under 16-h light periods at
400 pmol photons m™2 s™' for 5 weeks at 22 °C and for 8 weeks at
26 °C, respectively.

Bacterial infections

Pseudomonas syringae pathovar tomato, strain DC3000 or strain
DC3000, carrying either the avirulence gene avrRpml (for



infections of A4. thaliana) or the avirulence gene avrPto (for infec-
tions of L. esculentum), were grown and infiltrated into A. thaliana
or L. esculentum leaves as described by Hagemeier et al. (2001).
Leaf samples (approx. 0.2 g) were collected 48 h post inoculation,
frozen in liquid N, and stored at —80 °C.

Extraction procedure and HPLC analysis

After addition of 50% aqueous methanol (v/v; 0.6 ml each), the
tissue was homogenized using zirconia beads (1 mm; Roth,
Karlsruhe, Germany) in a Mini-Beadbeater-8 (Biospec Products,
Bartlesville, USA) and centrifuged for 15 min at 20,000 g. The
residues were re-extracted in 0.6 ml methanol and supernatants
were combined where appropriate. The solvent was removed at
30 °C using a Speed-Vac (Eppendorf, Hamburg, Germany) and
the residue was re-dissolved in 80% aqueous methanol (v/v;
2 ul mg™" initial FW). Extracts (20 pl) were subjected to HPLC
on a Nucleosil C-18 column (EC 250/4, 120-5; Macherey &
Nagel, Diren, Germany) using 0.1% trifluoroacetic acid as sol-
vent A and 98% acetonitrile/0.1% trifluoroacetic acid as sol-
vent B at a flow rate of 1 mlmin™ at 24 °C (gradient of
solvent A: 100% at 0 min, 94% at 3 min, 80% at 13 min, 76% at
20 min, 20% at 33 min) and a Photodiode Array Detector 540 at
254 nm as part of the Bio-Tek System (Solvent Delivery System
522, Autosampler 565, Jet-Stream plus, Degasy DG 1210, soft-
ware CHROMA 2000; Bio-Tek, Neufahrn, Germany). For pre-
parative HPLC, a Nucleosil C-18 SP 250/10 120-5 column and
the respective part of the gradient were used under otherwise
identical conditions.

Nuclear magnetic resonance (NMR) spectroscopy

'H, 'H-'"H COSY (correlation spectroscopy), NOESY (nuclear
overhouser effect spectroscopy), HMBC (heteronuclear multiple
bond correlation), and HMQC (heteronuclear multiple quantum
coherence) spectra were recorded on an Avance DRX 500 NMR
spectrometer (Bruker, Karlsruhe, Germany) using an inverse
detection microprobe head (2.5 mm). Methanol-d, was used as a
solvent and trimethylsilane (TMS) as internal standard. NMR data
of compound X:

— "H NMR (500 MHz): § 8.40 (s, H-8), 8.21 (s, H-2), 6.00 (d,
J =43 Hz, H-1'), 5.05 (s, H-1"), 4.70 (dd, J =5.1, 4.3 Hz, H-2)),
443 (dd, J=5.1, 5.1 Hz, H-3'), 4.37 (dd, J=7.2, 4.5 Hz, H-3),
421 (ddd, J=5.1, 2.8, 2.3 Hz, H-4'), 4.04 (d, J=4.5 Hz, H-2),
3.98 (ddd, J=7.2, 3.1, 2.3 Hz, H-4’), 3.92 (dd, J = 12.5, 2.3 Hz,
H-5a), 3.82 (dd, J=12.5, 2.3 Hz, H-5a), 3.77 (dd, J=12.5,
2.8 Hz, H-5'b), 3.67 (dd, J=12.5, 3.1 Hz, H-5'b).

— BC NMR (125 MHz): § 153.3 (C-2), 150.0 (C-4), 142.0 (C-8),
109.4 (C-17), 91.2 (C-1), 85.0 (C-4'), 84.9 (C-4"), 78.9 (C-3), 76.8
(C-2)), 75.6 (C-2), 70.8 (C-3'), 62.4 (C-5'), 61.8 (C-5).

Mass spectrometry

Samples were analyzed by ESI-MS using a Hewlett-Packard
(Avondale, PA, USA) HP 1100 HPLC coupled to a Micromass
Quattro II (Waters, Micromass, Manchester, UK) tandem
quadrupole mass spectrometer (geometry quadrupole-hexapole—
quadrupole) equipped with an electrospray (ESI) source. The
capillary and cone voltages in ESI mode were 3.3 kV and 18 V,
respectively. Nitrogen was used for nebulization (151h™") and as
drying gas (250 1 h™! 250 °C). Source and capillary were heated at
80 °C and 250 °C, respectively. The mass spectrometer was
operated in conventional scanning mode using the first quadru-
pole. Positive-ion full-scan mass spectra were recorded over the
range from mj/z 50450 in a scan time of 1.5 s. Fixed precursor
ion (MS/MS) spectra (a daughter ion scan) were recorded by
setting the first quadrupole to transmit the parent ion of interest
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and scanning the product ions obtained after collision of parent
ions in the hexapole gas cell using the second quadrupole ana-
lyzer. Argon was used for collision-induced dissociations (CID) at
1.5x1073 mbar and the collision energy was varied from 16 to
25 eV for fragmentation. Synthetic standard was dissolved in
methanol and introduced into the spectrometer using a Rheodyne
valve. Ca. 5-10 pl of each sample was injected into the mobile
phase [50:50 (v/v) acetonitrile:water, flow of 0.05 ml min~'].
Separation of compounds was achieved on a reverse phase col-
umn (5 um C18 phase, 100 mm long, 4.1 mm i.d.; Supelco,
Bellefonte, USA) equipped with a precolumn (Supelco). Solvent
system and gradient program were used as indicated above. The
flow was maintained at 1.0 ml min~' at a column temperature of
30 °C. The UV detector was set at 254 nm.

Results

The data shown in Fig. 1 confirm and extend our pre-
vious, preliminary results on the induction of com-
pound X (Hagemeier et al. 2001). More precisely, they
(i) demonstrate again the highly predominant or even
exclusive accumulation of X in the compatible Pst/A.
thaliana interaction (Fig. la—c), (i) indicate that the in-
duced increase commences around 12 h post inoculation
and reaches a plateau around 48 h (Fig. 1d), and (iii)
reveal its chemical identity as 3’-O-f-p-ribofuranosyl
adenosine (Fig. le).

The chemical identity was established by MS and
NMR analysis. Mass spectra were obtained using the
electrospray ionization source (ESI). A quasi-molecular
ion at m/z 400, accompanied by the m/z 422 sodium ion
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Fig. la—e HPLC analysis, induction kinetics and chemical struc-
ture of compound X. a Mock-infected Arabidopsis thaliana leaf.
b Compatible Pst/A. thaliana interaction. ¢ Incompatible Pst/A.
thaliana interaction. d Time course of X accumulation during the
compatible Pst/A. thaliana interaction. Bars indicate deviations
from mean values obtained from three independent determinations.
e Chemical structure of X, as derived from MS and NMR analysis
of the HPLC-purified compound
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adduct, indicated that compound X contains an odd
number of nitrogen atoms. A series of product ion
spectra of X gave the following results. Fragmentation
of m/z 400 yielded, even at higher collision energy, a
rather simple mass spectrum that was dominated by m/z
268 and 136 ions, both of which presumably contained
an odd number of nitrogen atoms. The repeated differ-
ence by 132 Da was in accordance with two sequential
losses of furanoside moieties (CsHgOy4; see below).
Fragmentation of the aglycone ion, m/z 136, at a colli-
sion energy of 25 eV yielded the following product ion
spectrum [m/z (%)]: 136 (26), 119 (100), 109 (5), 94 (12),
92 (32), 67 (12). These data indicate a dominant loss of
17 Da (presumably NH;) and two losses of 27 Da
(presumably HCN).

The '"H NMR spectrum exhibited singlets of two
isolated protons at ¢ 8.40 and 8.21 and signals of two
pentose units. Striking similarities with the 'H NMR
spectrum of commercially available adenosine and with
literature data on 2'- and 5-f-ribosyl adenosine
(Markiewicz et al. 1998; Mikhailov et al. 1998) suggested
that compound X was a ribosyl adenosine. The 'H-'H
COSY and 2D heteronuclear correlation spectra
(HMBC and HMQC) enabled the assignment of all 'H
signals, of the carbon atoms of the two ribosyl units, and
of most of the carbon atoms of the adenine heterocyclus.
HMBC connectivities of H-1" (6 6.00) with C-4 (6 150.0)
and C-8 (6 142.0) and a strong NOE between H-1" and
H-8 (6 8.40) verified the attachment of the carbohydrate
unit to N-9. The nature of the interglycosidic linkage
was deduced from an HMBC correlation between H-1
(0 5.05) and C-3 (0 78.9). Owing to the glycosylation
shift (Agrawal 1992), this carbon resonance appeared
approximately 8-9 ppm downfield from that observed
for adenosine, for 2’- and 5’-f-ribosyl adenosines, and
for C-3 of the second ribosyl unit of compound X.
These data reveal X to be 3’-O-f-p-ribofuranosyl
adenosine.

Both findings, the selective accumulation of X in
compatible interactions and its chemical identity as an
adenosine derivative, were novel and unexpected. To our
knowledge, there has been no previous report on the
natural occurrence of 3’'RA, nor on a compound whose
induction is so strictly confined to compatible plant/
pathogen interactions. This two-fold novelty prompted
us to extend the analysis to a different pathosystem and
test whether 3’'RA is also induced in interactions of Pst
with its host plant, L. esculentum. The results (Fig. 2a—c)
demonstrate that, indeed, 3’RA accumulates strongly in
the compatible Pst/L. esculentum interaction but, again,
not in the incompatible interaction, and not in the mock-
infected control. At 48 h post inoculation, when the
accumulation during the compatible interaction
(Fig. 2b) had reached about half the level (approx.
0.4 nmol mg ") that had been observed at the same time
point for the compatible Pst/A. thaliana interaction
(approx. 0.8 nmol mg™'; Fig. 1b), little or no 3'RA was
detectable during the corresponding incompatible
interaction in this case either.
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Fig. 2a—c HPLC analysis of 3’RA induction in L. esculentum
leaves. a Mock-infected leaf. b Compatible Pst/L. esculentum
interaction. ¢ Incompatible Pst/L. esculentum interaction

Discussion

One of the most intriguing, unresolved questions in
plant pathology concerns the role of those numerous
soluble and wall-bound secondary metabolites that
accumulate rapidly, often to high levels, around patho-
gen infection sites. While the induction of wall-bound
compounds appears to be largely confined to a narrow
range of similarly substituted benzoic and cinnamic
acids and aldehydes that participate in the formation of
a physical barrier (Hahlbrock et al. 2003), the numerous
concomitantly accumulating, soluble metabolites usually
represent a rich, species-specific bouquet of compounds
from a great diversity of biosynthetic origins and with
largely unknown functions (Mansfield 2000; Dixon
2001). Some of them possess antibiotic activity, such as
the indolic phytoalexin camalexin (Rogers et al. 1996)
and various glucosinolate breakdown products in A.
thaliana (Tierens et al. 2001), or several terpenoid (Tja-
mos and Smith 1974) and polyacetylenic (de Wit and
Kodde 1981) phytoalexins in L. esculentum. However,
mechanistically defined or functionally decisive roles of
these compounds in pathogen defense have hardly been
demonstrated, save for a few, exceptional cases in both
A. thaliana (Thomma et al. 1999) and L. esculentum
(Suleman et al. 1996).

In nearly all pathosystems investigated so far, there
was no qualitative, but usually a considerable quanti-
tative, difference in the induction modes of these
compounds between compatible and incompatible
plant/pathogen interactions. For example, camalexin
was induced in both types of Pst/A. thaliana interac-
tion, but accumulated more rapidly and to much higher
levels in incompatible than in compatible interactions;
and none of the various co-induced indolic compounds
accumulated exclusively in one of the two types of
interaction, although the induction strengths and
kinetics differed in all cases (Hagemeier et al. 2001).
Similar observations had been made with the phytoal-
exins of L. esculentum (de Wit and Flach 1979), and
numerous other such examples have been reported. At
least during the initial stages of infection, the induction
usually proceeds more rapidly and more strongly in
incompatible than in compatible interactions. Hence,



the mode of 3’'RA induction, as observed in this study,
is exceptional in both respects: 3’RA accumulated ei-
ther exclusively or at least with a very high preference
in only one of the two types of interaction, and in
contrast to expectation, this was not the incompatible
but the compatible interaction.

Equally surprising was the induction of an adenosine
derivative among otherwise exclusively indolic metab-
olites in A. thaliana. It remains open at this stage of
analysis whether 3’RA is a bacterial or a plant product,
or a combination of both, particularly because it has
not been observed previously as a naturally occurring
compound in any type of organism. In any case, its
highly predominant or even exclusive accumulation
during compatible interactions of Pst with two widely
different plant species makes it an interesting target for
further studies on both its possible role in the infection
process and its potential as a diagnostic tool for the
molecular definition of particular Pst/plant interaction
types, especially in phenotypically doubtful cases. One
obvious possibility would be that the accumulation of
3’RA in the compatible interaction is associated with a
virulence mechanism of the pathogen, or conversely,
that its absence in the incompatible interaction either
indicates the lack of virulence of the pathogen or re-
sults from a resistance response of the plant. If true,
such a functional connection would remain valid even if
3’RA were an artificial product generated during the
extraction procedure, and the original, accumulating
metabolite were not 3'RA itself but a structurally re-
lated compound — a possibility that cannot be
excluded.

Irrespective of the precise function and metabolic
origin of 3’RA, its solitary, rapid and strong induction
among otherwise metabolically widely distinct com-
pounds, at least in A. thaliana, is another exceptional
phenomenon. Whether the indolics in A4. thaliana (Ha-
gemeier et al. 2001), the terpenoids (Tjamos and Smith
1974) or polyacetylenes (de Wit and Kodde 1981) in L.
esculentum, or yet other classes of compounds in other
plant species or families, they are always induced as a
rich bouquet of structural variants, apparently in sharp
contrast to 3’RA. Furthermore, all of them fall into the
large group of secondary metabolites, whereas the clas-
sification of 3'RA is doubtful in this regard. Various
ribofuranosyl nucleosides, but not 3’RA, have been de-
scribed as minor tRNA components (Keith et al. 1990;
Glasser et al. 1991; Luyten et al. 2000) and as the
prosthetic group of citrate lyase (Oppenheimer et al.
1979), and numerous bacterial nucleoside antibiotics
have been isolated and structurally identified (Isono
1991). However, we are not aware of the occurrence of
an adenosine derivative with structural similarity to
3’RA in plants or in plant pathogens. Moreover, the
obvious lack of co-induced, structurally related
compounds in Pst-infected A. thaliana leaves seems to
indicate a different kind of metabolic connection than
that, for example, of the various indole derivatives, thus
further substantiating the special role of 3’RA. Again,
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these considerations would hold true regardless of
whether 3’'RA is of plant or of bacterial origin.
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