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Abstract Transgenic plants of Arabidopsis thaliana (L.)
Heynh. (ecotype Columbia) expressing the antisense
AtMECT gene, encoding 2-C-methyl-D-erythritol
4-phosphate cytidylyltransferase, were generated to
elucidate the physiological role of the nonmevalonate
pathway for production of ent-kaurene, the latter being
the plastidic precursor of gibberellins. In transformed
plants pigmentation and accumulation of ent-kaurene
were reduced compared to wild-type plants. Fosmido-
mycin, an inhibitor of 1-deoxy-D-xylulose 5-phosphate
reductoisomerase (DXR), caused a similar depletion of
these compounds in transgenic plants. These observa-
tions suggest that both AtMECT and DXR are impor-
tant in the synthesis of isopentenyl diphosphate and
dimethylallyl diphosphate and that ent-kaurene is
mainly produced through the nonmevalonate pathway
in the plastid.
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Abbreviations DMAPP: dimethylallyl diphosphate Æ
DXP: 1-deoxy-D-xylulose 5-phosphate Æ DXR: DXP
reductoisomerase Æ GA: gibberellin Æ IPP: isopentenyl
diphosphate Æ MECT: 2-C-methyl-D-erythritol 4-phos-
phate cytidylyltransferase Æ MEP: 2-C-methyl-D-erythri-
tol 4-phosphate Æ MS: Murashige and Skoog medium Æ
MVA: mevalonate Æ WT: wild type

Introduction

Isoprenoids are an important group of compounds that
play a critical role in plant growth and development, and
are also involved in the way plants adapt to changes
towards environmental stimuli (Gray 1987). Many of
the isoprenoids are derived from farnesyl diphosphate
(FPP) or geranylgeranyl diphosphate (GGPP) through
condensation and cyclization reactions, with these
intermediates having common precursors, such as iso-
pentenyl diphosphate (IPP) and dimethylallyl diphos-
phate (DMAPP; Cunillera et al. 1997; Okada et al.
2000). Gibberellins (GAs) are diterpene plant hormones
that are also derived from GGPP. To initiate GA bio-
synthesis, GGPP is converted to ent-kaurene by two
terpene cyclases, GA1 (copalyl diphosphate synthase)
and GA2 (ent-kaurene synthase). Current evidence
suggests that ent-kaurene is the plastidic precursor of
GA biosynthesis, since these cyclases are localized in the
plastids (Sun and Kamiya 1994; Yamaguchi et al. 1998).
The GA biosynthetic pathway after ent-kaurene pro-
duction is well documented (Yamaguchi and Kamiya
2000; Helliwell et al. 2001), but the stage before GGPP
production remains ambiguous due to the complexity of
the pathway in plants.

Plants can synthesize IPP via the mevalonate
(MVA) and the nonMVA pathways; the latter was
recently discovered in some eubacteria (Rohmer et al.
1993; Rohdich et al. 1999; Herz et al. 2000; Kuzuyama
et al. 2000a, b, c; Luttgen et al. 2000; Takagi et al.
2000). Isotope-feeding experiments indicated that the
nonMVA pathway is located in the plastid (Schwender
et al. 1996; Arigoni et al. 1997; Lichtenthaler et al.
1997), and is involved in pigment biosynthesis in
plants. Since the nonMVA pathway is responsible for
IPP and DMAPP biosyntheses in the plastid, and ent-
kaurene is derived from IPP and DMAPP, the regu-
lation of this pathway may affect ‘downstream’ GA
biosynthesis due to alterations in the levels of IPP and
DMAPP.
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Figure 1 shows the possible sequence of events in the
nonMVA pathway. 1-Deoxy-D-xylulose 5-phosphate
(DXP) reductoisomerase (DXR) and 2-C-methyl-D-ery-
thritol 4-phosphate (MEP) cytidylyltransferase (MECT)
catalyze the second and third steps in that DXP is
converted to 4-(cytidine 5¢-diphospho)-2-C-methyl-D-
erythritol (CDP-ME) via MEP. However, as DXP is a
precursor of both thiamine and pyridoxol in Escherichia
coli (Sprenger et al. 1997), DXR and MECT are con-
sidered to be more-specific enzymes for IPP biosynthesis
in the nonMVA pathway. In this case, studying the steps
downstream from DXP synthesis is essential to under-
standing the nonMVA pathway in plants.

Although several genes that are involved in the non-
MVA pathway in plants have been cloned (Schwender
et al. 1999; Estevez et al. 2000; Rohdich et al. 2000b), there
are still steps that have not been elucidated in the IPP
biosynthetic pathway. Moreover, the physiological role of
this pathway in plant hormone biosynthesis has not been
studied. Recently, the MECT gene homologue (ispD)
from Arabidopsis was cloned and its function analyzed
(Rohdich et al. 2000a). Here, we have studied the in vivo
function of the AtMECT gene by generating a population
of transformedArabidopsisplants containingAtMECT in
antisense orientation, and have compared these plants
with Arabidopsis plants treated with fosmidomycin, a
specific inhibitor of DXR.

Results and discussion

To obtain the Arabidopsis MECT gene, a possible
cDNA sequence that has high similarity to E. coli
MECT was amplified by reverse transcription (RT)-
PCR using the oligonucleotide primers YacM-S
(5¢-GCATGCATGGCGATGCTTCAGACGAATCTT
GG-3¢) and YacM-A (5¢-CTGCAGTCATGAGTCCTC
GCTCAAGATTCTCTC-3¢). The amplified fragment
was cloned, sequenced, and used in subsequent experi-
ments. The sequence of the cloned AtMECT gene (ac-
cession number AB037877) was identical to that of the
ispD gene (Rohdich et al. 2000a, accession number
AF230737). Northern blot analysis confirmed that the
expression of AtMECT was elevated in aerial parts in-
cluding leaves, stems and flowers, but not in the root
(data not shown). The pattern of AtMECT expression
was similar to that of CLA1, which is involved in chlo-
roplast development, suggesting that AtMECT has an
important role in isoprenoid biosynthesis in the plastid.

We also investigated the in vivo functions of
AtMECT using the AtMECT antisense line of Arabid-
opsis. The construct carried the AtMECT cDNA in
antisense orientation, driven by the CaMV 35S pro-
moter on a pBI121 vector (Clontech) and was intro-
duced into Arabidopsis by Agrobacterium-mediated
infiltration (Bechtold et al. 1993). Thirty transgenic
plants (T1 generation) were resistant to kanamycin
selection. All transformed plants carried the anti-
AtMECT gene and were deficient in pigment production

compared with wild-type (WT) plants (Fig. 2A–C).
About 30% of transformed T2 plants, showed an albino
phenotype (lines 3-1, 3-2) and died shortly before an-
thesis. Plants that exhibited the albino phenotype were

Fig. 1 Biosynthesis of IPP in the nonMVA pathway. 1 Pyruvate, 2
D-glyceraldehyde 3-phosphate, 3 1-deoxy-D-xylulose 5-phosphate
(DXP), 4 2-C-methyl-D-erythritol 4-phosphate (MEP), 5 4-(cytidine
5¢-diphospho)-2-C-methyl-D-erythritol (CDP-ME), 6 2-phospho-4-
(cytidine 5¢-diphospho)-2-C-methyl-D-erythritol (CDP-ME2P), 7
2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MECDP). The sub-
sequent reaction leading to the formation of IPP (8) or DMAPP (9)
from MECDP remains to be elucidated. Fosmidomycin specifically
inhibits the production of MEP. The homologous genes cloned
from Arabidopsis thaliana are shown in parentheses
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collected from heterozygous T2 seeds and used for
subsequent experiments as severe phenotypic lines
(Fig. 2B, F right). Conversely, moderate lines that

showed a mild pale-green phenotype (lines 1-1, 1-2) were
more vigorous in growth than albino plants and pro-
duced mature seeds. Although the moderate lines were
relatively small and looked wilted compared with WT
plants, homozygous T3 populations were selected and
used for further analysis (Fig. 2C, F left).

The suppression of AtMECT mRNA in the antisense
plants was confirmed by RT-PCR, followed by Southern
hybridization. The expected 900-bp cDNA fragment of
AtMECT and the 613-bp control fragment of ACT2,
encoding the actin protein (An et al. 1996), were detected
in WT plants (Fig. 2G). Expression of AtMECT was
poor in the antisense severe line (line 3-1) and slightly
more elevated in the moderate line (line 1-1). The ACT2
transcript was detected in both antisense lines and WT
plants. These results indicate that the expression of
AtMECT mRNA was severely suppressed at the tran-
script level by the antisense mRNA, and that suppres-
sion of AtMECT was linked to the phenotype of the
antisense plant.

Fosmidomycin, a specific inhibitor of DXR, inhibits
the production of MEP in bacteria (Kuzuyama et al.
1998) and reduces pigment production in plants (Zeidler
et al. 1998), and was therefore used to confirm the
phenotypic results obtained from the transgenic anti-
sense plants. In culture, WT plants treated with 10–4 M
fosmidomycin had an albino phenotype similar to the
severe line expressing the antisense AtMECT gene
fragment (Fig. 2D). Plants treated with 10–5 M fosmi-
domycin had a pale-green to pale-yellow phenotype,

Fig. 2A–G Phenotypes of the antisense AtMECT-transformed
plants. Plants of Arabidopsis ecotype Columbia were grown under
continuous light at 22 �C on an MS-based medium (GIBCO-BRL)
or on soil. Transformed plants were produced by vacuum
infiltration using 28-day-old stock plants. Antisense transformed
plants were selected on semi-solidified MS medium supplemented
with 100 lg/ml kanamycin, such plants were transferred to soil to
obtain seed. Homozygous plants were identified by a 100%
segregation of kanamycin-resistant plants in the T3 generation.
A 3-week-old WT plant. B 3-week-old antisense plant (severe line).
C 3-week-old antisense plant (moderate line). D 3-week-old WT
plant treated with 10–4 M fosmidomycin. E 3-week-old plant
treated with 10–5 M fosmidomycin. F 5-week-old plants grown on
soil. Four independent lines of the antisense plant were compared
with a single WT plant. G Expression of the AtMECT transcript
was examined by quantitative RT-PCR and expression levels were
compared using the ACT2 gene (positive control). Isolated total
RNAs used for the RT-PCR were treated with DNaseI (Promega)
to eliminate contamination from genomic DNA. First-strand
cDNA was synthesized from 1 lg of total RNA using an oligo
d(T)12 primer by SuperscriptII reverse transcriptase (GIBCO-BRL)
at 42 �C for 50 min. Subsequent PCR reactions were performed
using the poly-T primed cDNAs as a template along with the
primers for AtMECT (YacM-S, YacM-A) and ACT2 (Act-S, 5¢-
CCTCATGCCATCCTCCGTCTTG-3¢; Act-A, 5¢-GCAAGAAT
GGAACCACCGATC-3¢). PCR products were separated on a
1.0% agarose gel. A Southern blot was performed using a
radiolabeled probe of AtMECT, and then, stripped and re-probed
with a radiolabeled ACT2 cDNA (Sambrook et al. 1989). Results
were visualized by a BAS2500 Imaging Analyzer. WT Wild-type
plant, AS1-1 moderate antisense plant, AS3-1 severe antisense
plant
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similar to the moderate line of antisense AtMECT, and
the growth rate was more vigorous than that of plants
treated with 10–4 M fosmidomycin (Fig. 2E).

Chlorophylls (Chls) a and b and total carotenoids
were quantified in fosmidomycin-treated WT and
AtMECT antisense transformed plants (Table 1), ac-
cording to the method of Lichtenthaler (1987). Antisense
plants exhibiting the severe phenotype (line 3-1), showed
a reduction in both total Chl (Chl a+b) and carotenoid
contents to about 7% and 14%, respectively, of the WT
level. The moderate antisense transformed plant (line
1-1) showed a reduction in Chl a+b and carotenoids to
38% and 53% of the WT level, respectively. Fosmido-
mycin-treated WT plants also showed a reduction in
these pigments, similar to the severe antisense lines.

Since the early steps of GA biosynthesis occur in the
chloroplast (Sun and Kamiya 1994; Yamaguchi et al.
1998), it is possible that a decrease of IPP in the plastid
could affect ent-kaurene biosynthesis together with pig-
ment production. Endogenous ent-kaurene content is
regulated at an extremely low level and cannot be
detected in WT plants. In a previous study, treating
Arabidopsis plants with uniconazole, a specific inhibitor
of ent-kaurene oxidase, resulted in ent-kaurene being
accumulated to a detectable level (Zeevaart and Gage
1993). Therefore, we measured the accumulation level of
ent-kaurene in both WT and antisense transformed
plants by GC-MS according to the methods of Großel-
indemann et al. (1991), but in this case, using unico-
nazole as an inhibitor of ent-kaurene oxidase. It was
found that treatment with 10–4 M fosmidomycin effec-
tively decreased the accumulation of ent-kaurene in both
the WT and the antisense moderate line 1-1 (Table 2). In
the antisense severe line 3-1, the accumulation of ent-
kaurene was much lower than in line 1-1, indicating that
the level of ent-kaurene accumulation was related to an
increase in severity of the antisense effect of AtMECT.
Thus, a decrease in plastidial IPP, which is caused by the
suppression of the nonMVA pathway, also affected the
endogenous level of ent-kaurene in the plastid. In this
case, the suppression within the nonMVA pathway
correlates well with the decreased level of ent-kaurene
accumulation. This result also supports the idea that the
early steps of GA biosynthesis begin in the plastid using
IPP from the nonMVA pathway.

From these observations, we expect the GA content
in the antisense plant to have decreased due to the re-
duction in the level of ent-kaurene. Our results show that
the antisense plant exhibited an albino phenotype and
both a slow growth rate and a reduction in plant height
compared with WT plants. The application of GA to the
antisense plant could not complement its small pheno-
type (data not shown), probably due to the reduction in
photosynthetic activity of the plant. In addition, the
application of uniconazole to the antisense plant pro-
duced a more severely dwarfed plant than the untreated
anti-AtMECT transformed plants (data not shown).
This result possibly indicates that the endogenous level
of active GAs in the uniconazole-treated plants was
lower than in the antisense suppressed plant. It has also
been reported that the chloroplast membranes possess
permeability to IPP during plastid development (Heintze
et al. 1990), and that plastids isolated from cell suspen-
sions of Muscat can take up IPP (Soler et al. 1993).
Therefore, a very small quantity of IPP, possibly via the
cytosolic MVA pathway, would be sufficient to produce
the ent-kaurene used for biosynthesis of an appropriate
level of active GAs. In this case, blocking of the non-
MVA pathway is not sufficient for complete suppression
of ent-kaurene biosynthesis.

In conclusion, we have demonstrated that suppression
of the AtMECT gene and inhibition of DXR protein in
the nonMVA pathway affect ent-kaurene biosynthesis
and pigment biosynthesis in the chloroplast. Due to a
limitation in the number of samples available for GC/
MS analysis, we could not determine GA contents, and
so our studies focused on the accumulation of ent-kau-
rene. Our results cannot exclude the possibility that
incomplete chloroplast development caused by sup-
pression of the nonMVA pathway may itself affect ac-
cumulation of ent-kaurene. However, as the antisense
AtMECT plant can grow to some extent on the MS
medium with sucrose, ent-kaurene is likely to be accu-
mulated in developing plastids of the antisense plant
whose level of ent-kaurene accumulation is less than that
of WT plants. Further studies using isotopic precursors
of the MVA and nonMVA pathways will be necessary to

Table 1 Pigment quantification in WT and antisense transformed
plants of Arabidopsis thaliana. Pigments were extracted from leaves
of 15-day-old plants, cultured on semi-solidified (0.8% agar) MS-
based medium (Murashige and Skoog 1962), and quantified ac-
cording to the method by Lichtenthaler (1987). Fosmidomycin was
used at 10–4 M. Data are means ± SE of three experiments

Samples Pigment (mg (g FW)–1)

Chl a Chl b Chl a+b Carotenoids

WT 578±9 230±16 807±11 176±6
WT/fosmidomycin 58±4 29±2 87+7 25±1
Antisense line 1-1 219±8 84±3 303±11 94±2
Antisense line 3-1 39±1 17±1 55±2 26±1

Table 2 ent-Kaurene contents of WT and antisense transformed
Arabidopsis plants grown in the presence or absence of fosmido-
mycin. Seeds were sown on semi-solidified MS-based medium.
After 14 days, plants were transferred to MS-based medium sup-
plemented with 10–7 M uniconazole. Following 6 days treatment
with uniconazole, the plants were harvested (approx. 0.5 g FW)
and frozen in liquid nitrogen prior to analysis. ent-Kaurene levels
were measured according to Großelindemann et al. (1991), except
uniconazole was used instead of paclobutrazol. Fosmidomycin was
used at 10–4 M. Data are means ± SE of three experiments

Samples ent-Kaurene (ng (g FW)–l)

WT 510.5±13.5
WT/fosmidomycin 204.6±12.8
Antisense 1-1 468.3±82.3
Antisense line 1-1/fosmidomycin 99.2±9.8
Antisense line 3-1 118.3±10.0
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elucidate the contribution of the nonMVA pathway to
the biosynthesis of plant hormones.
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