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Abstract
Traditional histopathology, characterized by manual quantifications and assessments, faces challenges such as low-throughput 
and inter-observer variability that hinder the introduction of precision medicine in pathology diagnostics and research. The 
advent of digital pathology allowed the introduction of computational pathology, a discipline that leverages computational 
methods, especially based on deep learning (DL) techniques, to analyze histopathology specimens. A growing body of 
research shows impressive performances of DL-based models in pathology for a multitude of tasks, such as mutation pre-
diction, large-scale pathomics analyses, or prognosis prediction. New approaches integrate multimodal data sources and 
increasingly rely on multi-purpose foundation models. This review provides an introductory overview of advancements in 
computational pathology and discusses their implications for the future of histopathology in research and diagnostics.
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Introduction

The way histopathology analyses are carried out remained 
similar for close to two centuries. This classic way typically 
involves manually assessing specific patterns of injury (e.g., 
diffuse infiltration of neutrophilic granulocytes) or counting 
histological objects (e.g., mitoses). However, these manual 
quantifications and assessments can be cumbersome, low-
throughput, error-prone, and subject to inter-observer var-
iability—a hindrance to developing both diagnostics and 
research further.

The introduction of digital pathology is a transformative 
development for overcoming these challenges and develop-
ing pathology further towards precision medicine. Digital 
pathology has enabled the introduction of computational 

methods to pathology, a discipline termed computational 
pathology [1]. Broadly speaking, computational pathol-
ogy encompasses computational methods used to analyze 
patient specimens for diseases. A main branch and topic of 
this review is computational histopathology that focuses on 
computational methods applied to digital histopathology 
images.

Benefits in computational histopathology mainly arise 
from using artificial intelligence (AI), especially deep learn-
ing (DL)–based techniques. DL is a subspecialty of machine 
learning (ML, a subspecialty of AI) that makes use of arti-
ficial neural networks (ANNs) [63]. ANNs, in short, are 
multilayer functions that progressively transform input data 
to produce a desired output. During training, the internal 
parameters of an ANN are automatically updated in an itera-
tive process to produce outputs that are increasingly similar 
to the ground truth (i.e., the desired output) [63]. This is 
typically done using a training algorithm that takes actions 
to minimize a loss function. This paradigm allows train-
ing ANNs to map a multitude of input–output relationships, 
meaning ANNs can be trained to perform a task without 
being explicitly programmed for it. While that is exciting, 
it is important to keep in mind that DL model predictions 
are not of a causal nature, but are correlations based on the 
relations between input and output that were established in 
the DL model during training.

This article is part of the special issue on Artificial Intelligence in 
Pflügers Archiv—European Journal of Physiology.
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Typical applications of ANNs in pathology include clas-
sification (assigning a categorical label to data, e.g., hepato-
cellular carcinoma to a histopathology image) [23], segmen-
tation (pixel-level classification; partitioning an image into 
discrete groups of pixels, typically corresponding to objects, 
e.g., glomeruli and tubules) [45], and regression (assigning 
a continuous value to an image, e.g., gene expression) [28].

Significant progress has been achieved using DL-based 
solutions in histopathology, e.g., inferring molecular altera-
tions with high precision directly from whole slide images 
(WSI) [55], predicting the origin of cancers of unknown 
primary [68], predicting therapy response in colorectal can-
cer [33], or identifying morphometric biomarkers [3, 45].

In this review, we highlight a selection of studies applying 
deep learning to digital histopathology to achieve a variety of 
goals. We focus on major applications, i.e., histomorphometry, 
classification, and regression (Table 1 provides a selection of 
major studies on these applications in computational pathology).

Histomorphometry

The hypothesis that form follows function has been exten-
sively investigated in medical specialties such as anatomy or 
physiology. In principle, investigating the shape of a struc-
ture of interest can lead to a deeper understanding of its 
specific function. Tissue analysis based upon the form of 
tissue compartments or structures to derive novel insights 
into their functionality has been practiced for over 40 years 
[21]. However, these measurement and quantification tasks 
were mostly done manually, e.g., using digital planimeters 
[34] or drawing tubes mounted on microscopes [70]. Thus, 
these techniques were limited by their time-consumptive 
nature, technical capabilities, and inter-observer variabil-
ity [22]. Computational pathology algorithms have evolved 
rapidly over the recent years, especially fueled by the digi-
talization of tissue slides (Fig. 1). Multiple commercial 
and open source software for image analysis have imple-
mented histomorphometry workflows, e.g., MATLAB [99] 
or ImageJ—Fiji [25]. Whether these workflows are based on 
readily available plugins, self-coded macros, or in-built deep 
learning algorithms, they all perform the task of semantic 
segmentation to delineate structures of interest.

Semantic segmentation

Histopathology segmentation tasks represent the precise 
delineation of complex tissue structures. Segmentation 
models produce pixel-level image masks for desired struc-
tures and compartments in WSIs. These masks allow for the 
extraction of hand-crafted features by further algorithms. 
Features represent different attributes of the structure of 
interest and can range from simple and explainable distance 

or area measures to complex readouts of texture (e.g., 
entropy, contrast, homogeneity) or image moments which 
range beyond the capabilities of the human eye. Extracted 
features can then be associated with clinical data such as lab-
oratory values [67], be implemented in disease or outcome 
prediction models [117], and in downstream bioinformatics 
analyses [45] (Fig. 2). Feature importance for specific tasks 
can be computationally investigated, potentially allowing to 
identify novel associations between form and function.

The quality and meaningfulness of features are inherently 
dependent on precise segmentation masks. To generate pre-
cise segmentation results, models need to learn based on a 
ground truth, i.e., the human prespecification on how struc-
tures of interest should be outlined, which often remains a 
laborious task. Therefore, an inherent challenge for segmen-
tation in high-throughput settings, where manual control is 
not feasible, is continuous quality control of the segmentation 
output. Methods such as reverse classification accuracy [87] 
or anomaly detection [36] can help to automatically assess 
segmentation accuracy. As segmentation models require 
manual oversight as well as handcrafted annotations enhanc-
ing the learning process, they have to be adapted to each 
specific research setting. However, this also allows for con-
siderable flexibility, as segmentation models can be applied 
to various resolutions and imaging modalities, such as bright-
field, fluorescence, or electron microscopy. Depending on 
the respective task, this enables the segmentation of various 
levels of tissue architecture such as functional units, compart-
ments, extracellular space, or nuclei.

Kidney

Kidney microanatomy consists of many diverse and complex 
structures such as glomeruli, different sections of tubules, the 
interstitium, and vessels. In recent years, considerable efforts 
have been made to accurately segment these structures in 
human and animal specimens for different histological stains, 
laying the groundwork for histomorphometry analysis [13, 44, 
45, 50]. In diabetic nephropathy, one of the most prevalent 
causes of chronic kidney disease, segmentation models could 
accurately assess glomerulosclerosis as well as interstitial 
fibrosis and tubular atrophy (IFTA), which represent important 
hallmarks of chronic kidney disease [39]. The model’s quan-
tification of IFTA reached high agreement with experienced 
renal pathologists (intra-class correlation coefficient of 0.94 
when including the ANN as an observer) while being more 
time-efficient compared to human manual annotations.

Furthermore, detailed histomorphometry analysis can 
reveal alterations of tissue architecture that were not cap-
tured by functional and laboratory parameters. Klinkham-
mer et al. implemented two common murine chronic kid-
ney disease models to analyze kidney disease recovery [59]. 
Interestingly, while kidney function measured by glomerular 
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Table 1  Selection of digital 
pathology studies stratified by 
organ, task, and application 
setting, e.g., cancer, non-cancer, 
or transplant. Studies are sorted 
by year of publication

Organ Task Setting Study

Kidney Classification Cancer Ghaffari et al. (2023) [38],
Ghaffari et al. (2022) [61],
Lu et al. (2021) [69]

Regression Shao et al. (2021) [94],
Wulczyn et al. (2020) [115]

Histomorphometry Non-cancer Hölscher et al. (2023) [45],
Lucarelli et al. (2023) [67],
Klinkhammer et al. (2022) [59],
Bouteldja et al. (2021) [13],
Jayapandian et al. (2021) [50],
Ginley et al. (2021) [39]

Transplant Yi et al. (2023) [117]
Classification Transplant Kers et al. (2022) [58]

Heart and vasculature Histomorphometry Non-cancer Droste et al. (2023) [25],
Peirlinck et al. (2019) [80],
Fayyaz et al. (2018) [31],
Fry et al. (2014) [35]

Classification Transplant Seraphin et al. (2023) [93]
Liver and intestine Classification Cancer Wagner et al. (2023) [108],

Försch et al. (2023) [33],
Chen et al. (2020) [18],
Liao et al. (2020) [65],
Kather et al. (2019) [57]

Regression Shao et al. (2021) [94],
Wulczyn et al. (2020) [115],
Saillard et al. (2020) [88],
Kather et al. (2019) [56],
Skrede et al. (2020) [98]

Non-cancer Bosch et al. (2021) [12]
Histomorphometry Non-cancer Taylor-Weiner et al. (2021) [105],

Suppli et al. (2019) [104]
Transplant Sun et al. (2020) [103]

Connective tissue Histomorphometry Non-cancer Recker et al. (2020) [85], Reyes-
Fernandez et al. (2019) [86],

Evenepoel et al. (2017) [30],
Behets et al. (2015) [8],
Smith et al. (2014) [99],
Osman et al. (2013) [77]

Brain Regression Non-cancer Marx et al. (2023) [71]
Histomorphometry Non-cancer Boeckh-Behrens et al. (2016) [10],

Boeckh-Behrens et al. (2016) [9]
Lung Classification Cancer Kanavati et al. (2020) [54],

Gertych et al. (2019) [37],
Coudray et al. (2018) [23]

Histomorphometry Wang et al. (2017) [109]
Regression Shao et al. (2021) [94],

Wulczyn et al. (2020) [115],
Yao et al. (2020) [116]

Reproductive system Histomorphometry Cancer Whitney et al. (2018) [113],
Leo et al. (2016) [64]

Regression Shi et al. (2023) [95],
Wulczyn et al. (2020) [115]

Breast Histomorphometry Cancer Amgad et al. (2023) [3]
Classification Wang et al. (2022) [111],

Wang et al. (2021) [110],
Qu et al. (2021) [83],
Ektefaie et al. (2021) [27],
Arujo et al. (2017)
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filtration rate normalized back to baseline 2 weeks after 
recovery, histomorphometry analysis of tubular architecture 
in more than half a million tubules revealed persisting dila-
tion and atrophy of tubules leading to further nephron loss.

Liver

In liver histology, histomorphometry is mainly implemented 
for quantification of steatosis, i.e., fat accumulation in liver 
cells, and fibrosis. Both are important histopathological 
features of tissue remodeling pathways in steatohepati-
tis leading towards liver cirrhosis. Accurately quantifying 
liver steatosis and fibrosis allows for monitoring of disease 
progression and even therapy response for novel drugs. 
In a reanalysis of three randomized clinical trials includ-
ing core-needle biopsy samples from 3662 patients with 
non-alcoholic steatohepatitis (NASH), Taylor-Weiner et al. 
developed a novel score summarizing fibrosis patterns on 
patient level termed the Deep Learning Treatment Assess-
ment (DELTA) liver fibrosis score which accurately cap-
tures changes in tissue remodeling after anti-fibrotic therapy 
[105]. Broad implementation of the DELTA liver fibrosis 
score could facilitate standardized and reproducible assess-
ment of treatment response in future trials regarding anti-
fibrotic agents for liver disease. Liver steatosis quantifica-
tion can also be implemented in liver transplant workflows, 
allowing for better organ allocation. Sun et al. developed 

a deep learning-based segmentation model for quantifying 
steatosis in frozen liver donor sections which could out-
perform the estimations of an on-service pathologist thus 
potentially leading to 9% fewer unnecessarily discarded liver 
transplants [103].

Heart and vasculature

Cardiomyocyte morphology is a key factor for understanding 
the pathophysiology of heart failure. Segmentation of car-
diac myocytes in a murine model of transaortic constriction 
(TAC) as well as in autopsy samples of humans with aortic 
(valve) stenosis revealed similar increases in cardiomyocyte 
area and decreases of capillary contacts per area of cardio-
myocytes signaling myocyte hypertrophy and microvascular 
rarefaction in pressure overload-induced heart failure [25]. 
Histomorphometry of cardiomyocyte hypertrophy on an 
electron microscopy scale in a guinea pig TAC model could 
also be linked to changes in intra- and transcellular electric 
conductance [35]. Fry et al. demonstrate how, although the 
topological arrangement of cells is retained in left ventricu-
lar hypertrophy, an increase in lateral cell-to-cell connections 
and intercalated disk space leads to altered three-dimensional 
cardiac action potential conduction velocity. Myocyte hyper-
trophy can not only lead to altered electrophysiology but 
also result in hemodynamic changes. In a multi-scale com-
putational model of heart failure including cardiomyocyte 

Table 1  (continued) Organ Task Setting Study

Prostate Classification Cancer Raciti et al. (2023) [84],
Bulten et al. (2022) [15],
Pantanowitz et al. (2020) [78],
Bulten et al. (2020) [16]

Fig. 1  Digital pathology ecosystem encompassed in standard tissue 
analysis workflows. Regular tissue processing is followed by digitali-
zation of tissue slides into whole slide images (WSIs). WSIs are the 
main data resource for digital pathology ecosystems in which they 
are stored, associated with other input data in the laboratory informa-

tion system (LIS), and analyzed by machine or deep learning algo-
rithms. Eventually, clinicians are provided with a bundle of extensive 
resources including the digitized tissue slide for informed decision 
making. ML, machine learning; DL, deep learning
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histomorphometry, ventricular volume overload in pig hearts 
was directly associated with lengthening of cardiac myocytes 
leading to a decrease in measured ejection fraction during 
echocardiography [80].

Not only cardiac remodeling but also vascular remodeling 
in pulmonary hypertension is known to contribute to heart 
failure. Fayyaz et al. investigated vessel histomorphometry 
for pulmonary arteries, veins, and small indeterminate ves-
sels in human autopsy or surgery specimens [31]. Interest-
ingly, the severity of pulmonary hypertension and presence 
of heart failure were more determined by increases in intimal 
thickness of veins and small indeterminate vessels rather 
than the remodeling of arteries.

Soft tissue

Similar to the analysis of cardiac myocytes, skeletal muscle 
fibers can also be analyzed by histomorphometry allow-
ing for characterization of different fiber types and muscle 
metabolism [99]. Quantifying the fiber size of human deltoid 
and pectoral muscle enables spatial analysis of location-spe-
cific muscle morphometry revealing different age-, sex-, and 
myopathy-related patterns of atrophy and hypertrophy [86].

In fatty tissue, segmentation of adipocytes has been widely 
established due to their rather simple shape and configura-
tion. Osman et al. developed a MATLAB algorithm for high-
throughput batch quantification of white fat morphology in 
high-fat diet-fed mice [77]. They precisely demonstrate how 
adipocytes significantly increase in size in high-fat diet-fed 
mice, although this increase is overestimated when using 

manual annotation methods. The authors propose that this is 
due to changes in adipocyte shape which cannot be accurately 
assessed by manual annotation methods.

Blood clots

In recent years, interest has sparked in analysis of cerebral 
blood clots retrieved during mechanical thrombectomy 
which can provide diagnostic insights into clot etiology as 
well as patient outcome [10]. This field can be enhanced by 
automated histomorphometric composition analysis. Auto-
mated quantitative analysis of the relative fractions of clot 
components (red or white blood cells, platelets, and fibrin) 
could differentiate between clot compositions of cardioem-
bolic and noncardioembolic etiology in a retrospective study 
of 145 stroke patients. Further analysis of cryptogenic stroke 
thrombi revealed similar composition characteristics to car-
dioembolic thrombi, but distinct from noncardioembolic 
thrombi, supporting the hypothesis that many cryptogenic 
strokes are in fact cardioembolic [9].

Subcellular structures

Next to analysis of compartments or structures, histomor-
phometry can also expand to the level of subcellular orga-
nelles, mainly the segmentation and quantification of nuclei. 
Histomorphometry of nuclei is especially interesting for can-
cerous tissue. Nuclear features such as chromatin clumping 

Fig. 2  Histomorphometry techniques for different organ systems 
including analysis applications. Convolutional neural networks 
(CNNs) are applied to image patches of organ histology for segmen-

tation of regions of interest. These image masks are then used for 
calculation of morphometric features which can be implemented in 
downstream analyses. CNN, convolutional neural network
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have been identified as predictive of patient risk, overall sur-
vival, and recurrence in various cancer types such as breast 
[3, 113] or lung cancer [109].

Also considerable efforts have been made to enable seg-
mentation of cellular organelles in electron microscopy. 
Heinrich et al. were able to segment over 30 different classes 
of cellular organelles, e.g., endoplasmic reticulum, micro-
tubules, or ribosomes on nanometer level in reconstructed 
three-dimensional electron microscopy images [43]. This 
opens up a whole new resolution of histomorphometry anal-
ysis providing insights into spatial interactions and organelle 
architecture.

Pathomics

Due to the wide range of different features to characterize 
segmented tissue, feature extraction can generate large data 
frames containing thousands of segmented structures and 
all extracted features for each respective structure. These 
large data frames resemble datasets generated by molecular 
omics workflows, such as single cell transcriptomics and can 
be used for dimensionality reduction or trajectory inference 
analysis (Fig. 2). Hence, the term of pathomics has been 
proposed to characterize the data mining of histopathology 
images [14, 32, 42, 45]. Pathomics enables precise char-
acterization of whole tissue architectures, but can also be 
applied to cancer specimens. Mining of pathomics data from 
cancer cells and their microenvironment allows for precise 
quantification of stromal, nuclear, or immune features thus 
enabling new prognostic biomarkers for breast [3] or colon 
cancer [32]. Pathomics is inherently spatial due to the trace-
able location of all segmented structures and could provide 
a missing link on how molecular processes influence tissue 
architecture and organ function [14].

Downstream analysis of datasets can be augmented by 
various readily available machine learning techniques. 
By linking pathomics with clinical and histopathological 
context, combined datasets can be applied to multivariate 
analyses for discovery of novel associations or developing 
for clinical practice. Established machine learning applica-
tions include support vector machines which find an optimal 
hyperplane that best captures the maximum differences of 
provided groups of interest. Depending on the dimensional-
ity of the datasets, the hyperplane resembles a line (two-
dimensional), a plane (three-dimensional), or more abstract 
geometric shapes (n-dimensional). Furthermore, tree-based 
models such as random forests, boosted trees, and classifica-
tion and regression trees as well as more traditional statisti-
cal models such as linear, logistic, ridge, and lasso regres-
sion can be applied to pathomics data. For discovery of novel 
associations, k-means or hierarchical clustering algorithms 
can group statistically similar data points together and are 
already widely known in other omics fields. Pathomics has 

already been combined with other established omics such as 
genomics [3] or transcriptomics [104] in large-scale multi-
omics studies and multiple applications and platforms exist 
for analyzing pathomics data [46, 82]. In the future, fur-
ther bioinformatics methods have to be implemented to link 
multi-omics datasets to relevant patient-level outcomes [52].

Classification

Formulating a diagnosis in digital pathology can be framed 
as a classification task, i.e., assigning one or several cat-
egorical label(s) to WSIs. Consequently, many studies in 
computational histopathology have focused on end-to-end 
classification tasks [55, 68, 96]. In most studies, the ground 
truth used for training ANNs consists of WSI-label pairs, 
meaning that one or several WSI are associated with a cat-
egorical label, e.g., “Clear Cell Renal Cell Carcinoma” 
(Fig. 3). However, due to hardware constraints and data 
size, WSIs are typically tessellated into smaller image tiles. 
Because of that, not every image tile contains histological 
features that are diagnostic for the case label, e.g., when only 
a small part of the slide contains cancerous tissue.

An often used approach to tackle this challenge is called 
multiple instance learning (MIL). In short, not every image 
tile in MIL inherits the case label, but the entire collection 
of tiles making up a WSI gets assigned a label. In a binary 
classification setup, this means that the entire collection of 
tiles is negative, if all tiles in the collection are negative, 
and positive, if at least one tile in the collection is positive 
[17]. This allows for efficient processing of WSIs in weakly 
supervised settings (e.g., one label per slide), which is bene-
ficial for dataset generation, since weak labels are inherently 
easier to retrieve than strong labels. MIL and other classifi-
cation techniques have been investigated for a multitude of 
pathology classification tasks in several organs. Although 
there are some exceptions [58, 93], most classification stud-
ies in computational pathology are concerned with cancer 
specimens. Due to the sheer number of studies published in 
the field, we had to limit ourselves to a selection of studies 
applying DL-based tools to major cancer types and pan-
cancer approaches.

Deep learning–based classification of lung cancer

With an estimated 2.2 million new cases in 2020, carcinomas 
of the lung are among the most common types of cancer in both 
men and women and are the leading cause of cancer deaths 
[102]. Classification of histopathological images as normal 
or lung carcinoma (any type) was shown to be feasible using 
ANNs with AUROCs above 0.973 in a study using 4,704 WSI 
of lung histopathology [54]. This study investigated both a fully 
supervised and a weakly supervised approach, showing that 
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the weakly supervised approach consistently showed better 
performance than the fully supervised approach [54]. Another 
study investigated prediction of mutations in the following 
genes: KRAS, TP53, EGFR, STK11, FAT1, and SETBP1 with 
AUROCs higher than 0.733 [23]. STK11 mutations could be 
predicted with the highest accuracy (AUROC 0.85). In addi-
tion, the authors investigated ANNs for distinguishing between 
lung squamous cell carcinomas and adenocarcinomas, a task 
for which they achieved high accuracy (AUROC of 0.97) [23]. 
Lung adenocarcinomas can present with different growth pat-
terns. A lightweight (i.e., less complex) ANN was shown to be 
trainable to distinguish solid, cribriform, micropapillary, and 
acinar growth patterns of lung adenocarcinomas [37]. However, 
the primary use case of such a model would likely be delineat-
ing areas with different growth patterns, but the resolution of 
the classification heatmaps here is not on pixel level, but on tile 
level, which would lead to an inaccurate delineation, a limita-
tion that could be circumvented using a segmentation model.

Deep learning–based classification of prostate 
cancer

With an estimated 1.41 million new cases in 2020, pros-
tate cancer is one of the most common types of cancer 
worldwide and a significant burden to global health [118]. 
Diagnostic criteria of prostate carcinomas are well defined, 
and its grading scheme—the Gleason grades—is defined 

by tissue architecture [48]. The combination of case abun-
dance and well-defined histopathology makes prostate can-
cer an ideal entity for developing computational pathology 
tools. Automated Gleason grading was demonstrated in a 
large study including 5759 biopsies from 1243 patients 
[16]. The model showed excellent agreement with the 
ground truth (quadratic Cohen’s Kappa of 0.918), indi-
cating its usefulness for clinical diagnostics [16].

High accuracy of prostate cancer and perineural invasion 
detection was achieved in another study [78]. Importantly, 
this was the first study reporting identification of a prostate 
cancer case by a DL system that was missed by a patholo-
gist [78]. In the large Prostate cANcer graDe Assessment 
(PANDA) challenge that included approximately 11,000 
WSI, many teams achieved accuracies on par or better than 
pathologists (e.g., sensitivity for tumor detection of 99.7% 
with specificity of 92.9%), mostly using end-to-end tech-
niques with case level information only [15]. Given these 
impressive performances, it is not surprising that there are 
several commercial DL-based tools to be used in prostate 
cancer histopathology diagnostics that were already shown 
to help increase sensitivity and specificity of diagnostics [84].

Deep learning–based classification of breast cancer

Breast cancer is the most common invasive cancer in women 
with approximately 2.3 million new cases in 2020 [5]. 

Fig. 3  Deep learning–based classification of histopathology and 
approaches to interpreting the basis for classification. A Whole slide 
images (WSIs) are tessellated into image tiles. In a multiple instance 
setting, typically, a pre-trained deep learning model is used as a fea-
ture extractor that transforms each image tile into a high level feature 
vector which is used by another model to formulate a prediction. B 

These predictions are usually opaque, but techniques exist to make 
them interpretable (explainable artificial intelligence (XAI)). Among 
the most popular XAI techniques in pathology are saliency maps, 
trust scores, prototype examples, and concept attribution. We thank 
Yu-Chia Lan, M.Sc., for providing a saliency map visualization for 
this figure
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Although the primary goal in computational breast pathol-
ogy has been to detect and outline tumors both in mammary 
tissue and lymph nodes [26], histopathology classification 
studies using DL-based tools were performed relatively early 
as well [4, 112].

Automatic classification of lobular versus ductal inva-
sive carcinoma of the breast with an accuracy of 94% was 
achieved with a neural network on tissue microarray cores 
[24]. Similarly, another study achieved an area under the 
receiver operating characteristics curve (AUROC) of > 95% 
in independent cohorts for breast cancer subtype classifica-
tion using ANNs on WSI [27].

DeepGrade, an ensemble of multiple neural networks, 
could be used to re-stratify breast cancer cases classified as 
G2 (Nottingham grading system), corresponding to interme-
diate differentiation [111]. The DeepGrade-based stratifica-
tion (Grade 2 high/low) was an independent predictor of 
patient survival, indicating usefulness of such stratification 
[111].

Point mutations in RB1, CDH1, NOTCH2, and TP53 
(AUROCs > 0.729) could be directly inferred from histol-
ogy using a classification DL network [83]. Another study 
showed that using an ANN, a germline BRCA1/2 mutation 
could be predicted directly from digital histopathology 
[110]. Although these molecular predictors are of inter-
est, the accuracy is not high enough to use them instead of 
molecular investigations.

Deep learning–based classification of colorectal 
cancer

Predicting microsatellite instability (MSI) from WSI of colo-
rectal cancer specimens using DL was one of the early land-
mark studies in computational pathology [57]. In the mean-
time, this was reproduced multiple times using a variety of 
approaches. DL-based MSI prediction tools have reached 
clinical grade performance (sensitivity of 0.99 and negative 
predictive value of 0.99), allowing the use of such models as 
screening tools before performing molecular analyses [108].

In addition to deficiencies in mismatch repair genes, 
other mutations were also shown to be predictable from 
WSIs of colorectal cancer specimens, including APC, 
KRAS, PIK3CA, SMAD4, and TP53 [49]. However, the 
predictive performance in this study was not high enough 
(AUROC 0.693–0.809) to justify using the model in clinical 
or research practice for this specific task.

The consensus molecular subtype (CMS) of colorectal can-
cer is a gene expression–based subtyping system with biologi-
cal interpretability and prognostic implications [41]. The CMS 
was predicted directly from WSIs with good accuracy (AUROC 
0.84) using an ANN [97]. Cox-proportional hazards analyses 
revealed similar predictive performances for the molecular and 
image-based CMS classification [97]. Thus, such an image-based 

classification could help cut costs for molecular analyses while at 
the same time providing similar predictive performances.

A multimodal DL-based approach using different immu-
nostains (CD4, CD8, CD20, CD68) was used to predict the 
relapse free survival status after 3 years in a multicenter cohort 
of colorectal cancer patients (n > 1000) with good accuracy 
[33]. Data from these stains were integrated into a score 
termed AImmunscore by the authors, which proved to be a 
strong and independent predictor of prognosis in colorectal 
cancer patients [33].

Multi‑cancer classification studies

In addition to studies focusing on DL applications for one type of 
cancer, several studies investigated DL approaches for multiple 
cancer types. Cancers of unknown primary (CUP), i.e., mani-
festations of cancerous tissue the origin of which is not known, 
are a major diagnostic challenge. In a landmark study, Lu et al. 
developed a DL model to simultaneously predict whether a 
tumor is primary or metastatic and predict its site of origin [68]. 
The model reached a top-1 accuracy of 0.83 and a top-3 accu-
racy (meaning the correct class is in the three predictions with 
the highest probability score) of 0.96, which is excellent [68]. 
Such a model could potentially have a major assistive impact for 
pathologists. An in-depth analysis of the usefulness of predic-
tions in a prospective setting when pathologists cannot guess 
the site of origin from morphology would be highly interesting.

In an elegant study, an ImageNet-pretrained Xception 
model that was fine-tuned on colorectal cancer histopathology 
was used to extract features from WSI tiles of lung adenocar-
cinomas, head and neck squamous cell carcinomas, and colo-
rectal carcinomas [20]. The tiles were then classified into four 
groups of clusters using unsupervised clustering (K-means) 
on a subset and nearest neighbor analysis on the remaining 
tiles. Tiles from different clusters correspond to different tis-
sue areas and, interestingly, had different predictive values for 
mutation prediction, allowing the authors to guess which tissue 
parts are most informative about mutations [20]. This allows 
for the development of a more interpretable approach to muta-
tion prediction than classic end-to-end approaches.

Approaches to interpretability of end‑to‑end 
classification models in computational 
pathology

Predictions made by a DL-based system are typically 
opaque, i.e., the basis for the prediction is unclear to the 
user. The field of explainable AI (XAI) aims to develop 
methods that help interpret and consequently understand 
the basis of model predictions (for an in-depth review 
on XAI in pathology, see [81]). Major XAI approaches 
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include saliency maps, trust scores, prototypes, and con-
cept attribution (Fig. 3).

Saliency maps are typically displayed as overlays 
indicating an estimation of the relevance of an area in 
the image to the model prediction. A major computa-
tional approach for producing saliency maps are gradient 
weighted class activation maps (Grad-CAM) [91]. Using 
these heatmap-like visualizations, a user can evaluate 
whether highlighted areas include morphologically typical 
variations for the predicted class (Fig. 3). However, when a 
task is performed for which no typical morphological vari-
ations are described (e.g., predicting certain mutations), 
evaluation of saliency maps can be challenging. Indeed, 
evaluation of saliency maps is prone to several sources of 
bias, for example, positive confirmation bias of pathologist 
expectation [29].

Trust scores help evaluate how confident a model pre-
diction is. Given high model accuracy, this can be helpful 
for clinical implementation, e.g., to design a strategy for 
triaging cases which potentially do not require review by a 
pathologist, or cases that require review or to assist physi-
cians in weighing the model prediction in their decision-
making. However, confidence scores can be high for wrong 
predictions, which limits their validity. This is impres-
sively demonstrated using adversarial attacks [38], where 
sometimes subvisual changes introduced to an image com-
pletely change the predicted class.

Prototypes are representations of instances (e.g., an image 
tile) that are “archetypal,” i.e., highly representative for the 
model classes. Often, the most predictive tiles from the 
patients with the highest prediction scores are depicted (e.g., 
in [58, 74]). However, synthetic generation of prototypical 
instances potentially allows more flexible interpretation of 
prototypes [66].

Concept attribution methods aim to estimate the relevance 
of manually defined features or concepts for model prediction 
[72]. These can range from local instance features, such as 
the circularity of a nucleus to more broad and potentially less 
understandable features, such as the image texture. It is nec-
essary to select these concepts up front, which is a significant 
source of bias. However, novel unsupervised methods based 
on latent space deconvolution might provide a less biased 
approach to finding relevant concepts [40], although to our 
knowledge and at the time of writing this review, this has yet 
to be evaluated in histopathology.

These XAI techniques are important components of com-
putational pathology techniques. They help evaluate bases 
for predictions and might be used to uncover new statistical 
correlations between images and a desired output. Impor-
tantly, they can help uncover spurious correlations or batch 
effects, e.g., when an ANN focuses on the background, not 
the tissue, while delivering good results. As such, they are 
helpful tools to build trust in model predictions.

Deep learning regression in pathology

Time‑to‑event regression

Regression techniques in digital pathology often encompass 
time-to-event regression, i.e., analyzing the length of time 
until the occurrence of a predefined endpoint. The most 
prominent applications are in cancer histopathology, espe-
cially predicting overall survival [56, 94, 98, 115, 116]. The 
implemented models are often based on end-to-end image 
regression and can predict the desired endpoint directly from 
the image input, thus not being dependent on the extraction 
of hand-crafted morphometric features. However, similar 
approaches include classification of patients into risk groups 
which are then implemented as a covariate in a Cox regres-
sion model [95]. Other than predicting overall survival, there 
have been multiple studies on predicting cancer recurrence 
in breast cancer [95] or hepatocellular carcinoma [88].

Linear and logistic regression

Nevertheless, regression is not limited to time-to-event 
analysis, but also includes prediction of quantitative param-
eters. This can be especially interesting when deep learning 
models are able to predict quantitative clinical characteris-
tics or pathophysiological alterations from histology. Recent 
studies have hypothesized that this approach holds advan-
tages over classification workflows due to the continuous 
nature of measurements. Classification approaches often 
lead to dichotomization of the desired output value which 
results in a significant loss of predictive performance. Kather 
et al. demonstrate that a regression model for predicting 
homologous recombination deficiency, i.e., a biomarker for 
genome instability, outperformed traditional classification 
approaches in five of seven cancer types with similar predic-
tive performance for the other two subtypes [28].

Similar to approaches in cancer pathology, multiple 
instance learning can be leveraged to accurately predict 
continuous brain age from post-mortem hippocampal sec-
tions [71]. The predicted brain age (HistoAge) unveiled 
novel determinants of age-related functional decline such 
as increased model attention to the C2 hippocampal subfield. 
HistoAge also showed significant associations with clinical 
features of cognitive impairment that were not found based 
on epigenetic methylation analysis.

Additionally, liver histology analysis could accurately 
predict the hepatic venous pressure gradient, an important 
physiological parameter for the estimation of portal hyperten-
sion in liver disease [12]. The proposed analysis method of 
liver biopsies from patients with compensated liver cirrho-
sis could quantify important hemodynamic changes which 
otherwise can only be determined by invasive interventional 
radiography.
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Routine implementation in research 
and diagnostics

To implement computational pathology approaches in rou-
tine biomedical research and clinical pathology, several 
aspects must be considered. The most important aspects 
for implementation in both research and diagnostics likely 
are accuracy and reproducibility of model predictions [60] 
which resemble the common quality criteria for biomedical 
tests and research. However, ease of use is similarly impor-
tant for distribution of deep learning applications in biomed-
ical research, since many biomedical researchers lack the 
specific bioinformatics expertise needed to deploy trained 
models without dedicated available software.

Open source software that enables researchers to train 
and deploy deep learning models on their own with mini-
mal or no coding expertise required are thus very valuable. 
Examples of such softwares include QuPath [6], which, e.g., 
has a StarDist [89] and a Cellpose [101] extension that can 
be used to perform DL-based cell segmentation. Another 
prominent example is napari [2], which has over 100 exten-
sions [47] and can be used to access ImageJ features [92], 
which is highly interesting due to the broad use of ImageJ 
[90] in the biomedical community. A few other examples 
include CellProfiler [62], ilastik [100], or Orbit Image Anal-
ysis [76]. Given such tools, researchers can design their own 
deep learning–based biomedical image analysis pipelines 
without the need to code, potentially even using open source 
software assisting with downstream analysis of the generated 
data, such as CellProfiler Analyst [51] or Trigon [46].

To enable comparability of study results, standardization is 
needed. This is however largely lacking for studies perform-
ing pathomics analyses [14]. For the analysis of bone density 
and structure, histomorphometry is already a well-established 
application. Here, validated protocols and recognized defini-
tions of structures have already been published [30]. Especially 

for renal osteodystrophy and osteoporosis, bone histomorpho-
metry has been widely recognized as a valuable method for 
evaluating skeletal remodeling in clinical trials [8, 85]. Fur-
ther efforts have to be made for reaching a consensus analysis 
workflow for other tissues as well to enable similar successes.

Before clinical implementation, a number of development 
and validation stages should ideally be completed (Fig. 4). 
Currently, the major hurdles for clinical diagnostic use and 
implementation are limited digitalization of pathology insti-
tutes and the lack of prospective evidence, although some 
studies emerge that investigate deep learning models in 
pathology prospectively [7]. Prospective evidence is needed 
to robustly prove a benefit of using deep learning models 
both for pathology diagnostics and for clinicians receiving 
new information (e.g., prognostic information generated by 
a model). That being said, another significant hurdle is the 
lack of reimbursement for using deep learning models in 
diagnostic pathology in many countries, which means, costs 
associated with buying software must be amortized through 
gaining efficiency. One reason for the lack of reimbursement 
might be that designing a reimbursement strategy for using 
image analysis tools in clinical medicine is challenging. Still, 
reimbursement concepts are increasingly emerging [79].

Foundation models in computational 
pathology

Medical deep learning and also computational pathology 
show a trend towards using foundation models, i.e., mod-
els that are pre-trained on a wide range of data that can be 
adapted to perform many different downstream tasks (for 
an in-depth report on foundation models, see [11]). Prob-
ably the most well-known example of a foundation model 
is ChatGPT, based on a generative pre-trained transformer 
model [75]. In medicine, foundation models have been used 

Fig. 4  Workflow for implementation of computational pathology 
algorithms into clinical routine practice. Accurately formulating a 
clinical question, generating meaningful input data, and selecting 
an appropriate model architecture for the desired task are crucial 
for then developing a precise and robust algorithm. Computational 
pathology algorithms should ideally be validated in external inde-

pendent cohorts and further evaluated in randomized controlled tri-
als to demonstrate their impact on patient outcomes. After successful 
implementation in clinical workflows, algorithms need to be continu-
ously monitored and adapted to the collected real-world data which 
provides important long-term longitudinal information to further 
improve model performance
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primarily for non-imaging data [114], with a prominent 
example being the AlphaFold model [53].

In computational pathology, foundation models are only 
starting to appear. This is likely due to the fact that collecting 
a large and diverse enough dataset of WSI still poses a chal-
lenge. Still, some foundation models already exist in com-
putational pathology. Virchow is a model that was trained on 
1.5 million WSI of H&E stained tissue sections [107]. This 
model can be used to develop a cancer detection model with 
a very high accuracy (AUROC of 0.949 across 17 cancer 
types). While that is impressive, the Virchow model is not 
openly available, limiting its useability for the biomedical 
community. UNI is another foundation model for computa-
tional pathology [19]. UNI was shown to surpass the previ-
ous state of the art in several computational pathology tasks, 
e.g., tumor lymphocyte detection, assessed in the Champ-
Kit benchmark [19]. A major advantage of UNI is that it 
is available for research purposes (for modes of access, 
see [19]), which will accelerate computational pathology 
research. CONCH is a visual-language foundation model 
for computational pathology developed by the same group 
that developed UNI [19]. CONCH was developed using 1.17 
million text-image pairs. The intuition behind additionally 
using text is that image descriptions contain key information 
that might be hard to extract for a machine learning model 
automatically only from the image. The fact that pathologists 
can extrapolate from a few examples of image-text pairs 
might be seen as supportive for that intuition. CONCH out-
performed several previous approaches across many tasks, 
such as image classification or segmentation [19]. CONCH 
is available for research purposes as well.

Outlook

Computational pathology transformed, transforms, and 
will further transform the way pathology diagnostics and 
research is being done. We assume that the current trend 
towards generalist foundation models will continue. These 
models will likely foster the development of more accu-
rate specialist models that might even come with a text 
interface. Importantly, generalist multimodal models could 
be useful for integrating the vast amount of multimodal 
medical data produced everyday and perform a number of 
tasks. An interesting new paradigm is generalist medical 
AI (GMAI), i.e., multimodal foundation models that can 
perform many different medical specialist tasks without 
explicit training [73]. GMAI models would enable interac-
tive procedures, in which physicians, e.g., perform analysis 
of a WSI image together with a GMAI model by querying 
the model using text- or voice-based input and receiving 
text-, voice-, or image-based outputs with explanations. 
While there currently is no GMAI model available, such a 

development does not seem far off given the current pace 
of research in foundation models. However, given the large 
number of parameters in these models, the computational 
overhead and consequently energy consumption of these 
models is potentially enormous and should be considered 
before large-scale implementation [106].

Conclusion

The evolution of histopathology from manual, error-prone 
analyses to the advent of digital pathology and the intro-
duction of computational pathology, particularly compu-
tational histopathology, has revolutionized the way pathol-
ogy specimens are analyzed. The use of AI, specifically 
deep learning–based techniques, further enhances trans-
formation of pathology, e.g., enabling automated high-
throughput classification, segmentation, and regression as 
well as multimodal data integration with high precision, a 
significant advance towards precision medicine and decod-
ing the pathologic basis of diseases.
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