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Abstract
Oxygen sensors enable cells to adapt to limited oxygen availability (hypoxia), affecting various cellular and tissue responses. 
Prolyl-4-hydroxylase domain 1–3 (PHD1-3; also called Egln1-3, HIF-P4H 1–3, HIF-PH 1–3) proteins belong to the Fe2+- and 
2-oxoglutarate-dependent dioxygenase superfamily and utilise molecular oxygen (O2) alongside 2-oxoglutarate as co-substrate 
to hydroxylate two proline residues of α subunits of the dimeric hypoxia inducible factor (HIF) transcription factor. PHD1-
3-mediated hydroxylation of HIF-α leads to its degradation and inactivation. Recently, various PHD inhibitors (PHI) have 
entered the clinics for treatment of renal anaemia. Pre-clinical analyses indicate that PHI treatment may also be beneficial in 
numerous other hypoxia-associated diseases. Nonetheless, the underlying molecular mechanisms of the observed protective 
effects of PHIs are only partly understood, currently hindering their translation into the clinics. Moreover, the PHI-mediated 
increase of Epo levels is not beneficial in all hypoxia-associated diseases and PHD-selective inhibition may be advantageous. 
Here, we summarise the current knowledge about the relevance and function of each of the three PHD isoforms in vivo, 
based on the deletion or RNA interference-mediated knockdown of each single corresponding gene in rodents. This infor-
mation is crucial for our understanding of the physiological relevance and function of the PHDs as well as for elucidating 
their individual impact on hypoxia-associated diseases. Furthermore, this knowledge highlights which diseases may best be 
targeted by PHD isoform-selective inhibitors in case such pharmacologic substances become available.
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PHD1‑3‑mediated regulation of HIF

Prolyl-4-hydroxylase domain (PHD) proteins 1–3 are cellu-
lar oxygen sensors that have first been discovered to confer 
hypoxia sensitivity to the hypoxia-inducible factor (HIF) 
transcription factors [12, 36, 58–60]. The PHDs enable the 
tissue and cellular adaptation to hypoxia via HIF-mediated 
enhancement of the expression of selected genes [63, 132, 
161]. There are three known α (HIF-1α, HIF-2α and HIF-3α) 
and one HIF-β subunit, of which one α together with the β 
subunit form the dimeric HIF transcription factors HIF-1, 

HIF-2 or HIF-3 [39, 131, 132]. HIF-1α and HIF-2α are 
well-characterised, but less is known about HIF-3α. The fol-
lowing description focusses on HIF-1α as a best described 
example of the PHD-dependent regulation of HIF-α subu-
nits. In normoxia, PHD1-3 hydroxylate two proline residues 
of HIF-1α, Pro402 and Pro564 (Fig. 1) [63]. Prolyl hydroxy-
lated HIF-1α is recognised by the von Hippel-Lindau pro-
tein (VHL), which in turn recruits an E3 ubiquitin ligase 
[47, 63, 131, 132]. HIF-1α is then polyubiquitinated and 
subsequently degraded by the proteasome (Fig. 1), prevent-
ing HIF-mediated enhancement of gene expression [47, 63, 
131, 132].

PHD1-3 belong to the Fe2+ and 2-oxyglutarate (2-OG)-
dependent dioxygenase superfamily [63]. The PHDs utilise 
molecular oxygen (O2) as co-substrate and thus depend 
on the availability of O2 for their enzymatic activity [63]. 
HIF-α subunits are also regulated by an additional cellular 
oxygen sensor, the asparagine hydroxylase factor inhibiting 
HIF (FIH, Fig. 1) [168]. FIH belongs to the same superfam-
ily as the PHDs and utilises O2 for its enzymatic activity, 
hydroxylating the asparagine residue Asn803 of HIF-1α 
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[88, 132, 168]. HIF-1α asparagine hydroxylation abrogates 
binding of the histone acetyl transferases CBP/p300 that 
serve as transcriptional co-activators, therefore decreas-
ing HIF-1 activity towards selected genes [88, 132, 168]. 
In hypoxia, the enzymatic activity of the PHDs and FIH is 
reduced; HIF-1α is therefore stabilised and migrates into the 
nucleus, forming the active HIF-1 heterodimer with HIF-1β 
(Fig. 1) [63]. HIF-1 then binds to hypoxia response elements 
(HREs), enhancing the transcription of hundreds of genes 
involved in various processes, including angiogenesis and 
energy metabolism [63, 132, 161].

Interestingly, the three PHD isoforms have shown differ-
ent preferences towards the two HIF-1α prolyl hydroxylation 
sites. PHD1 and PHD2 hydroxylate both Pro402 and Pro564 
of HIF-1α, whilst PHD3 preferentially modifies Pro564 
[13, 50]. In addition, PHD2 and PHD3 gene expression is 

enhanced by HIF-1, forming a negative feedback loop for the 
regulation of HIF activity, whereas PHD1 gene expression 
is not altered in hypoxia [98, 142]. Of note, PHD2 is almost 
ubiquitously expressed, whereas the expression of PHD1 and 
PHD3 is more restricted [87].

Currently, six different PHD inhibitors (PHIs) are avail-
able in the clinics for treatment of renal anaemia: roxadustat, 
molidustat, vadadustat, daprodustat, desidustat and enarodus-
tat [74]. PHI treatment increases the expression of the HIF-2 
target gene erythropoietin (Epo) and therefore the amount of 
circulating red blood cells, counteracting renal anaemia [37]. 
Some selectivity of these drugs towards specific PHDs has 
been reported [101]. Roxadustat and enarodustat have been 
suggested to inhibit all PHDs to a comparable degree, whereas 
daprodustat preferentially inhibits PHD1 and 3, and molidustat 
shows a preference towards PHD2 and vadadustat for PHD3 

Fig. 1   Regulation of HIF-1α by the cellular oxygen sensors PHD1-3 
and FIH. Prolyl-4-hydroxylase domain (PHD) 1–3 proteins need Fe2+ 
and a reducing agent (such as ascorbate) as co-factors and use O2 and 
2-oxogluterate (2-OG) as co-substrates. In normoxia, PHD1-3 activity 
leads to the hydroxylation of the proline residues Pro402 and Pro564 
of hypoxia-inducible factor (HIF)-1α, leading to the binding of the 
von-Hippel Lindau (VHL) protein and the recruitment of an E3 ubiq-
uitin ligase complex. Subsequently, HIF-1α is polyubiquitinated and 
degraded by the proteasome, preventing transactivation of genes by 

the HIF-1 transcription factor. FIH decreases transactivation activity 
of HIF-1 towards selective genes by hydroxylating asparagine N803, 
preventing the recruitment of the transcriptional co-activators p300/
CBP to the HIF-1 transcription factor. In hypoxia, PHD1-3 and FIH 
can no longer catalyse the hydroxylation reaction due to the absence 
of O2, allowing HIF-1α to translocate to the nucleus, to dimerise with 
HIF-1β, to recruit transcriptional co-activators and to bind to selected 
hypoxia-response elements (HREs) to enhance gene expression
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[101]. However, such analyses are based on the investigation 
of purified enzymes and whether this apparent PHI selectiv-
ity also occurs in vivo is currently unclear, as it depends on 
the expression level of the corresponding PHDs together with 
the reached concentration of the PHIs in the targeted cells. 
Of note, all of these inhibitors increase the expression of Epo 
in the human kidney (which is quintessential for their use as 
treatment of renal anaemia) and PHD2 is the most relevant 
PHD for the regulation of Epo expression [25, 48]. Therefore, 
all currently available PHIs in the clinics must inhibit PHD2 
within human renal Epo-producing cells in vivo. A potential 
differential selectivity may lead to diverse side effects, but the 
currently available data do not allow such conclusions and 
more studies are necessary.

Alongside the well-characterised regulation of HIF-α by 
the PHDs, it has also been reported that the PHDs regulate 
proteins outside the HIF pathway [80, 143]. A PHD-medi-
ated regulation of substrates other than HIF has obviously 
profound implications for our understanding of the cellular 
adaptation to hypoxia as well as for the use of pharmacologic 
PHD inhibitors. However, the hydroxylation of non-HIF-α 
proteins by the PHDs is currently controversially discussed 
[7, 22, 80, 143], as it was not possible to reproduce these 
findings with purified proteins in vitro [22]. The assessment 
of the phenotype(s) of PHD knockout (KO) animals will 
contribute to solving this discussion, as the regulation of 
a target protein by one of the PHDs should ultimately be 
linked to the in vivo function of the respective PHD.

The function of each of the PHDs in vivo is of major 
relevance for our understanding of the regulation of the tis-
sue and cellular response to hypoxia and to elucidate poten-
tial novel treatment options for hypoxia-associated diseases 
as well as for the understanding of possible side effects. In 
the following, we therefore summarise to the best of our 
knowledge the currently described phenotypes in rodents 
with deletion or RNA interference-mediated knockdown of 
single PHD isoforms. Regarding the relevance of PHD1-3 
in cancer, different outcomes have been reported, depending 
on whether a PHD-encoding gene was deleted in tumour 
cells, in the host organism or in both [75]. The function of 
the PHDs and the HIF pathway in cancer has recently been 
expertly reviewed elsewhere [43, 106, 172]. In the chapters 
about cancer in this review, only reports are summarised 
that describe the effects of Phd gene inactivation in the host 
organism.

Phd1 (Egln2) deletion

The baseline phenotype summarises observations made in 
mice with Phd1 deletion without the induction of a pathol-
ogy. The subsequent chapters focus on phenotypes of mice 
with various Phd1 deletions in disease models.

Baseline phenotype

Analysis of mice with constitutive global deletion of single 
Phd genes gives key insights into the functional role and 
relevance of the respective protein and can indicate what 
(side) effects may occur following treatment with a (cur-
rently not available) PHD isoform-selective pharmacologic 
inhibitor. Mice with constitutive whole-body deficiency 
of Phd1 (Phd1−/−) do not display any obvious phenotype 
under normal housing conditions during development [152] 
or adulthood [1, 4, 97, 149, 150], with intact skeletal mus-
cles [4] and erythropoiesis (haematocrit, haemoglobin and 
erythropoietin levels) as well as normal blood gas values 
[4, 103], vascular system [150], heart [1], lung [117] and 
liver [91, 107, 130] morphology. Also, bone development 
and architecture were unaltered as shown in Phd1−/− mice 
and by conditional deletion of Phd1 in osteoprogenitors 
(OSX-Cre) or chondrocytes (Col2α1-Cre) [55, 173, 178]. 
Interestingly, in Phd1−/− mice whole-body oxygen consump-
tion was reduced at rest and the mice demonstrated worse 
exercise endurance and impaired oxidative muscle perfor-
mance due to a decreased oxygen consumption in skeletal 
muscle [4]. During aging, 1-year-old Phd1−/− mice showed a 
decreased serum cholesterol level and a reduced body weight 
[158]. The size and frequency of pulmonary neuroepithelial 
bodies (NEB; presumed hypoxia-sensitive oxygen sensors) 
were increased in Phd1−/− mice [116, 117] combined with 
an enhanced NEB serotonin (5-HT) production in normoxia 
and hypoxia [93]. NEBs may have functional relevance for 
the ventilatory response to hypoxia, especially perinatally 
[24]; nonetheless, no difference has been reported in the 
viability of Phd1−/− mice. In addition, the hypoxia ventila-
tory response in adult Phd1−/− mice is not altered [9].

In contrast to other observations, one group reported that 
Phd1−/− mice exhibit a lower body weight, food intake and 
liver weight [162], albeit the liver over body weight ratio 
was not altered [107]. Despite the decreased body weight, 
adult Phd1−/− mice displayed a larger white adipose tissue 
(WAT) mass, altered glucose homeostasis and a decreased 
insulin sensitivity [162]. Interestingly, β-cell-specific Phd1 
deletion (Ins1-Cre) led to decreased β-cell mass and elevated 
β-cell apoptosis, but not to any defect in glucose homeostasis 
or insulin sensitivity [51].

In summary, Phd1 deletion does not affect the majority of 
organs at baseline, but impacts on energy metabolism, which 
however does not appear to be obvious without challenge.

Cardiovascular system

HIF activity is tightly linked to angiogenesis through regu-
lation of the expression of corresponding genes, including 
vascular endothelial growth factor (VEGF) [185]. In addi-
tion, in tissue ischemia (as it, e.g. occurs during a so-called 
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heart attack), the resulting hypoxia affects the activity of 
the PHDs and leads to stabilisation of HIF-α. This led to the 
analyses of the relevance of the different PHD proteins in 
ischemic diseases including the heart.

Phd1−/− mice display a reduced infarct size after 
ischemia/reperfusion (I/R) injury (Langendorff’s perfu-
sion model) with decreased apoptosis in cardiomyocytes 
[1]. DNA-binding activity of HIF-1α is increased in 
Phd1−/− hearts following I/R, which was associated with 
enhanced expression of anti-apoptotic BCL-2 and endothe-
lial nitric oxide synthase (eNOS). In addition, the DNA-
binding activity of NF-κB was augmented as well as the 
nuclear translocation of β-catenin in cardiac tissue [1]. 
Based on this study, PHD1 may be a relevant pharmaceutical 
target in myocardial I/R injury. Interestingly, using whole-
body inducible shRNA targeting both PHD1 and PHD3 in 
combination in mice, it was found that knockdown of PHD1 
and PHD3 was not protective against myocardial infarction 
[61]. It remains unclear if the protective effect of Phd1 dele-
tion alone is time-dependent and does not occur in acute 
settings or if the combinatorial deletion of both Phd1 and 
Phd3 has a different effect than Phd1 ablation alone. Of note, 
Phd3 KO alone has also been reported to be protective in 
cardiac ischemia (see below).

Combined deletion of Phd1 and low-density lipoprotein 
receptor (Ldlr) in mice led to decreased artherosclerotic 
plague sizes and reduced plasma cholesterol levels com-
pared to Ldlr−/− mice, which was likely caused by enhanced 
cholesterol excretion into the intestines [97]. HIF-2α silenc-
ing via antisense oligonucleotides had no effect on the pro-
tection conferred by Phd1 deletion, indicating a HIF-2α-
independent mechanism [97]. Conditional deletion of Phd1 
in myeloid cells (LysM-Cre) had no effect on aortic plaque 
size or plaque type following a high-cholesterol diet [166]. 
In summary, whole-body Phd1 KO is advantageous in ath-
erosclerosis, which is likely due to an altered regulation of 
plasma cholesterol levels.

Haematopoietic system

Constitutive whole-body [149], hepatic (Alb-Cre) [103, 163] 
or FOXD1 lineage cell (Foxd1-Cre) [73] deletion of Phd1 
did not affect Epo or haematocrit levels.

Liver

Livers from Phd1−/− mice are largely protected against 
acute ischemia and I/R injury [130]. Hypoxic cell damage 
following ischemia, including hepatocyte swelling, vas-
cularisation and karyolysis, was markedly decreased in 
the livers from Phd1−/− mice [130], suggesting a higher 
tolerance to hypoxia. In addition, mice lacking Phd1 were 
protected against hepatocyte apoptosis and necrosis, with 

reduced oxidative stress following I/R and decreased oxy-
gen consumption [130]. Interestingly, both at baseline con-
ditions and following I/R, global Phd1 KO led to higher 
HIF-2α than HIF-1α protein levels [130].

Simultaneous silencing (via tail vein injection of shR-
NAs) of Phd1 and Keap1 (an oxidative stress sensor) in 
hepatocytes reduced hepatic fibrosis induced by treatment 
with carbon tetrachloride (CCl4) [91]. Liver fibrosis was 
also attenuated in Phd1−/− mice following the induction of 
chronic bile duct injury through application of 3,5-dieth-
oxycarbonyl-1,4-dihydrocollidine (DDC) [145]. Livers of 
Phd1−/− mice displayed a reduced recruitment of inflam-
matory leukocytes as well as a decreased number of profi-
brotic myofibroblasts combined with a lower expression 
of pro-mitogenic and pro-fibrogenic factors. These effects 
were likely caused (at least in part) by a mitigated activa-
tion of hepatic stellate cells [145].

After 80% hepatectomy in mice, Phd1−/− animals 
recovered their liver weight significantly faster than WT 
through increased proliferation of hepatocytes [107]. 
Enhanced proliferation in Phd1−/− hepatocytes was caused 
by increased HIF-2 and c-Myc activity [107]. Following 
low-fat diet (LFD), Phd1−/− mice developed hepatic stea-
tosis with increased hepatic cholesterol and triglyceride 
(TG) content [162].

In summary, PHD1 deletion is protective in various 
liver pathologies, ranging from I/R injury over fibrosis 
to hepatectomy. The observation that Phd1 deletion may 
lead to hepatic steatosis may have to be taken into account, 
when PHD1 is considered therapeutic target. However, all 
phenotypes based on Phd1 deletion that could be used 
to reason against PHD1 as therapeutic target have been 
reported in a single publication, whereas the majority of 
investigations observed a protective effect of Phd1 KO in 
liver pathologies.

Energy metabolism

Following LFD, Phd1−/− mice demonstrated an increased 
body weight gain combined with a decreased insulin sensi-
tivity [162]. Following high-fat diet (HFD), Phd1−/− mice 
displayed a larger body weight gain, but decreased choles-
terol and blood glucose levels as well as an improved insulin 
sensitivity compared to wildtype (WT) mice [162]. Another 
study also reported that Phd1−/− mice are protected against 
HFD-induced glucose intolerance and hyperglycaemia [97]. 
Overall, the effect of PHD1 on energy metabolism may be 
diet-dependent, but PHD1 is generally linked to the regula-
tion of body weight gain, glucose homeostasis and insulin 
sensitivity and deletion of Phd1 (and therefore potentially 
also PHD1 inhibition) is protective under conditions of high-
fat diet.
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Immune system

In Phd1−/− mice, no difference was found in their response to 
LPS-induced sepsis relative to wildtype mice [69]. Phd1 KO 
in haematopoietic and endothelial cells (Tie2-Cre) favoured 
a polarisation of macrophages in response to LPS towards a 
M2 phenotype with reduced secretion of chemokines [167]. 
Dendritic cells with Phd1 deletion (CD11c-Cre) demon-
strated also a decreased response to LPS with reduced IL-1β 
secretion [167]. Overall, few studies have analysed the effect 
of Phd1 deletion on immune cell function in vivo with con-
trasting results (in different disease and KO mouse models). 
Therefore, further studies would be necessary to clarify the 
relevance of PHD1 for the immune system in vivo.

Nervous system

Phd1 deficiency did not affect the outcome of transient focal 
cerebral ischaemia in the first 24 h after 45 min of mid-
dle cerebral artery occlusion (MCAO) [14]. Interestingly, 
Phd1 deletion was protective in a model of permanent brain 
ischemia 24 h after MCAO, decreasing the infarct size [120]. 
Phd1 KO increased the activity of the pentose phosphate 
pathway and enhanced the cellular redox buffering capac-
ity. Therefore, neurons lacking Phd1 were protected from 
reactive oxygen species (ROS) [120]. The protection against 
brain ischemia by Phd1 KO was suggested to be dependent 
on NF-κB activity and independent of HIF [120]. The long 
non-coding RNA (lncRNA) myocardial infarction associ-
ated transcript (MIAT) is upregulated in brain tissue after 
ischemic stroke. Following 90 min of MCAO in rats fol-
lowed by reperfusion, overexpression of MIAT promoted 
I/R injury by enhancing infarct volume, neuron damage and 
apoptosis [85]. When MIAT overexpression was combined 
with Phd1 knockdown (intravenous injection), the degenera-
tive effects of MIAT were abrogated, suggesting that Phd1 
knockdown is protective [85]. In summary, PHD1 deletion 
is protective in ischemic brain injury, but only during long 
durations of ischemia. Interestingly, following peripheral 
(sciatic) nerve injury, Phd1−/− mice showed reduced cold 
hyperalgesia combined with increased axonal regeneration 
[139], indicating that pharmaceutical PHD1 inhibition may 
be a treatment option for peripheral nerve injury.

Skeletal muscle

Phd1−/− mice are protected against hind limb ischemia. 
Following femoral artery ligation, there was almost no 
necrosis or apoptosis detected within the skeletal mus-
cle of Phd1−/− mice [4]. Phd1 deletion reduced oxidative 
stress and mitochondrial damage in ischemic myofibres, 

whereas ATP production was maintained, demonstrating 
a hypoxia tolerance of myofibres when Phd1 was absent 
[4]. Hypoxia tolerance and fibre protection were linked to 
upregulation of the metabolic regulator Pparα and elevated 
HIF-2α levels [4]. Another study analysing the effect of 
femoral artery ligation in Phd1−/− mice found increased 
motor function as well as improved recovery of perfusion 
together with increased arteriolar and capillary density, 
capillary/myocyte ratio and decreased fibrosis [126]. 
Acute decrease of PHD1 expression via shPHD1 injec-
tion (into both gastrocnemius and tibial anterior muscles) 
after femoral artery ligation increased leg capillary den-
sity; however, the proangiogenic effect was not as strong as 
with shPHD2 or shPHD3, which was likely regulated via 
stabilisation of HIF-1α [94]. Overall, a lack of Phd1 is pro-
tective against ischemic injury in skeletal muscle due to an 
altered energy metabolism and an enhanced angiogenesis.

Gastrointestinal tract

Phd1−/− mice are protected against dextran sulphate 
sodium (DSS)-induced colitis [154]. Phd1 KO increased 
colonic epithelial cell density and enhanced epithelial bar-
rier function caused by decreased epithelial cell apoptosis 
[154]. Weight loss, disease activity index and colonic pro-
inflammatory cytokines were reduced in the absence of 
Phd1 [154]. Conditional deletion of Phd1 in endothelial 
and haematopoietic cells was also protective against DSS-
induced colitis [167]. Haematopoietic Phd1 deletion alone 
but not endothelial-selective deletion was sufficient for the 
protective effect, which promoted an anti-inflammatory 
M2 macrophage polarisation [167]. In a model of radia-
tion-induced gastrointestinal toxicity, the deletion of Phd1 
alone in the gastrointestinal epithelium (Villin-Cre) had no 
effect [157]. Haematopoietic Phd1 deletion (Vav-Cre) was 
not protective in a genetic mouse model of ileitis, induced 
by chronically enhanced production of the pro-inflamma-
tory cytokine TNFα [28]. Phd1 deletion did also not affect 
ischemic colonic anastomoses but reduced the bursting 
pressure in septic colonic anastomoses [144]. However, 
disease activity or survival was not altered by Phd1 dele-
tion in the septic colonic anastomoses model [144]. In a 
colon-associated colorectal cancer model (CAC; azoxym-
ethane (AOM) and DSS treatment), Phd1−/− mice were 
again protected against colitis and demonstrated a reduced 
CAC growth [67]. In summary, these data suggest that 
PHD1 is a crucial regulator of colitis, affecting both the 
epithelial barrier as well as the inflammatory response. In 
addition, CAC growth was diminished, which is associated 
with prolonged colon inflammation. For colon anastomo-
ses or in ileitis, PHD1 appears to not play a relevant role 
in disease progression.
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Skin

In a model of acute skin inflammation (2-O-tetradecanoyl-
phorbol-13-acetate treatment), Phd1−/− mice showed 
a decreased inflammatory response combined with an 
increased apoptosis [164], indicating PHD1 as a potential 
pharmaceutical target protein in skin inflammation.

Cancer

PHD1 expression can be induced by oestrogen [3, 133]. 
Interestingly, global Phd1 deletion improved survival in 
triple-negative breast cancer (TNBC) mice compared to 
wildtype [148]. Long-term but not short-term survival was 
improved, indicating that loss of Phd1 might be protective 
against TNBC only in slower growing tumours [148]. As 
indicated above, constitutive global Phd1 deletion in mice 
decreased CAC growth [67]. In summary, based on the few 
existing studies, Phd1 deletion and hence possibly also 
pharmacologic inhibition of PHD1 are protective at least in 
breast and colon cancer.

Phd2 (Egln1) deletion

Phd2 deletion leads to multiple different phenotypes depend-
ing on whether the KO occurred prior to, during or after 
development and depending on the cell type(s) targeted for 
Phd2 ablation. The baseline phenotype chapter summarises 
observations that have been made in mice with constitutive 
homozygous whole-body deletion of Phd2 (Phd2−/−) and in 
Phd2 hypomorph mice under baseline conditions. Analyses 
of heterozygous (Phd2+/−) and conditional Phd2 KO mice 
in normal housing conditions or any available Phd2 deletion 
in mice in disease conditions are described in the subsequent 
chapters.

Baseline phenotype

Global Phd2 KO is lethal in mice during embryogenesis 
[104, 152]. Phd2−/− embryos die between embryonic days 
12.5 and 14.5 due to placental and heart defects. Defects 
of the placenta ranged from widespread penetration of 
the labyrinth by spongiotrophoblasts, decreased labyrin-
thine branching morphogenesis to abnormal trophoblast 
giant cell distribution [152]. Developmental heart defects 
included a thinner myocardium, underdeveloped trabecu-
lae, an incompletely formed interventricular septum and an 
enlarged intraventricular lumen [152]. HIF-α protein lev-
els were increased in the embryo with the exception of the 
heart [152]. PHD2 knockdown in one-cell murine zygotes 
by injection of lentiviruses carrying shPHD2 was lethal in 
some but not all developing embryos on embryonic day 14 

[115]. The lethality was linked to placental and heart mal-
formations similar to the observations made in mice with 
constitutive global Phd2 inactivation [115]. Of note, also 
induced somatic deletion of Phd2 (chicken-β-actin-CreER) 
is lethal in mice due to dilated cardiomyopathy and venous 
congestion [104].

Hypomorphic inactivation of Phd2 does not result in 
embryonic lethality, polycythaemia, enhanced angiogenesis 
or dilated cardiomyopathy [56]. Nonetheless, HIF-1α and 
HIF-2α protein levels as well as the expression of glyco-
lytic enzymes were upregulated in the heart. Interestingly, 
hypomorphic Phd2 mice display no difference in their life 
span compared to wildtype mice, but demonstrate a reduced 
occurrence of liver diseases, inflammation and myocardial 
infarction without effect on cancer incidence [78]. Dur-
ing aging, hypomorphic Phd2 mice also demonstrated an 
improved diastolic function (1-year-old mice) and developed 
less cardiomyocyte hypertrophy (2-year-old mice) [127]. 
This effect was likely due to increased Notch signalling and 
Notch target gene expression [127].

Cardiovascular system

Induced global inactivation of Phd2 (ROSA26-CreERT2) 
in adult mice increased angiogenesis and angiectasia 
[150]. Moreover, mice with induced somatic Phd2 deletion 
(chicken β-actin-CreER, first tamoxifen application in utero) 
developed dilated cardiomyopathy [104]. Induction of global 
Phd2 deletion (chicken β-actin-CreER) at 3 weeks of age 
did not lead to a change in systolic function in 10-week-old 
mice with an only minimally enlarged heart [105], indicat-
ing that both the timing and duration of Phd2 deletion are 
relevant for the development of the phenotype. Interestingly, 
constitutive cardiac-specific deletion of Phd2 (αMHC-Cre) 
did not lead to a cardiac phenotype in mice [108].

Knockdown of PHD2 via intraperitoneal injection of 
small interfering RNAs (siRNAs) into mice reduced acute 
myocardial I/R injury [110, 111]. The infarct size was 
smaller and HIF-1α levels were increased in cardiac tissue 
[110]. PHD2 knockdown also decreased the infiltration of 
polymorphonuclear leukocytes into cardiac tissue as well as 
chemokine and ICAM-1 expression [111]. Intraventricular 
infusion of siPHD2 [34] as well as intramyocardial injection 
of shPHD2 [54] also decreased the myocardial infarct size. 
In addition, following intramyocardial injection of shPHD2, 
fractional shortening was improved and more small capil-
laries and venules were present in the infarct zone several 
weeks after the initial injury [54]. Following the induction 
of increased cardiac afterload in mice with cardiac-specific 
deletion of Phd2 (αMHC-Cre), the mice developed a cardiac 
hypertrophy and a more profound decompensation than con-
trol mice [108]. Interestingly, constitutive cardiac-specific 
deletion of Phd2 using MLCv-Cre transgenic mice did not 
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lead to a differential response to increased afterload [53]. 
Following acute myocardial ischemic injury, these mice 
were protected displaying a decreased infarct size, a reduced 
number of apoptotic cells and an improved cardiac function 
3 weeks after ligation of the left anterior descending (LAD) 
artery [53]. A separate investigation further supported that 
cardiomyocyte-specific Phd2 deletion was protective in the 
LAD ligation-mediated ischemic injury model [119].

Isolated hearts from Phd2 hypomorph mice (92% reduc-
tion of cardiac PHD2 mRNA) were protected against 
induced I/R injury (induced during Langendorff’s perfusion), 
demonstrating a decreased infarct size, enhanced recovery 
of coronary flow and mechanical function [56]. Follow-
ing LAD ligation, Phd2 hypomorph mice also displayed a 
reduced infarct size, an improved preservation of the systolic 
function of the left ventricle and an increased survival [68]. 
The number of cardiac capillaries was not altered but their 
size was increased together with an enhanced expression of 
endothelial HIF target genes [68].

Inducible whole-body shRNA-mediated knockdown of 
Phd2 in mice was protective in acute myocardial infarction 
[61]. This mouse model allowed the efficient induction of 
a Phd2 knockdown without increasing the haematocrit, an 
otherwise potentially confounding factor for analyses of the 
heart. Phd2 knockdown was only present during applica-
tion of doxycycline and could therefore also be switched 
off [61]. Inhibition of PHD2 expression for 4 weeks prior 
and 6 weeks after acute myocardial infarction improved left 
ventricular ejection fraction and fractional area shortening 
without affecting the diastolic function [61]. Knockdown of 
Phd2 for 4 weeks prior to LAD-ligation decreased the infarct 
size but did not affect cardiac performance. Downregulation 
of Phd2 for 2 and 6 weeks after acute myocardial infarction 
improved left ventricular ejection fraction and fractional area 
shortening [61]. Overall, these results support the hypothesis 
that pharmacologic PHD2-selective pharmacologic inhibi-
tion is a novel treatment option in cardiac I/R injury.

HFD in mice hypomorphic for Phd2 combined with 
the deletion of the LDL receptor led to 50% reduction 
of atherosclerotic plaque areas, increased autoantibodies 
against oxidised LDL and reduced macrophage numbers 
in white adipose tissue without effect on serum choles-
terol [123]. High-cholesterol diet in mice with condi-
tional myeloid-specific Phd2 inactivation increased aortic 
root plaque size, decreased the macrophage content and 
enhanced fibrosis in plaques [166]. Conditional global 
Phd2 KO mice (Rosa26-CreERT2) were also protected 
against HFD-induced cardiac dysfunction [186]. In a 
murine model of hypertension-induced cardiovascular 
remodelling and fibrosis, myeloid-specific Phd2 dele-
tion (LysM-Cre) was protective [57]. The mice displayed 
reduced cardiomyocyte hypertrophy and cardiac interstitial 
fibrosis combined with a decreased aortic thickening and 

macrophage infiltration [57]. Phd2 deletion in myeloid 
cells (LysM-Cre) combined with LDL receptor deletion 
enhanced angiogenesis and vessel maturation and reduced 
intra-plague haemorrhage within plagues that were formed 
following vein graft surgery into the carotid artery [138]. 
Following the induction of thrombosis using a combina-
tion of endothelial activation and flow restriction in vivo, 
induced global Phd2 KO (ROSA26-CreERT2) had no 
effect on venous thrombus neovascularisation, thrombus 
resolution or macrophage infiltration [44]. Together, these 
results indicate that Phd2 deletion is protective in diet-
induced atherosclerosis and cardiac dysfunction.

Pulmonary arterial hypertension (PAH) is a common 
cause for right-sided heart failure. Endothelial cell-specific 
Phd2 KO in mice (Cdh5-Cre) resulted in spontaneous 
severe PAH [35, 65, 171] with premature mortality [65]. 
The muscularisation of pulmonary arteries was increased, 
the respiratory basement membrane was thickened and a 
right ventricular hypertrophy was developed [35, 65, 171]. 
In addition, alveolar fibrosis was observed [35]. The devel-
opment of PAH was dependent on HIF-2α and independent 
of HIF-1α [65]. Using Tie2-Cre-mediated endothelial and 
haematopoietic cell-specific Phd2 deletion, the development 
of PAH including pulmonary vascular remodelling and right 
ventricular hypertrophy [27, 118, 155] as well as premature 
mortality [27] was also observed. In addition, in this model, 
it was found that the development of PAH was dependent 
on HIF-2α [27, 155, 191], which in turn may affect bone 
morphogenic protein (BMP) signalling [27, 89]. In contrast 
to the studies mentioned above, one group reported that 
conditional deletion of Phd2 in endothelial cells via Tie2-
Cre leads to cardiac fibrosis and left ventricular hypertrophy 
[26].

Conditional inactivation of Phd2 in smooth muscle 
cells (smmhc-CreERT2) aggravated established PAH and 
increased hypoxia-induced vascular remodelling [15]. Using 
a novel Angpt4-Cre transgenic mouse line to inactivate Phd2 
in arterial smooth muscle cells, an elevated right ventricular 
pressure was observed as well as a change in the vascular 
tone [35].

In summary, PHD2 is a key enzyme for the cardiovas-
cular system with multiple effects on heart tissue and ves-
sels. Inhibition of PHD2 is protective in acute myocardial 
ischemia, but the timing of PHD2 inhibition is relevant for 
a successful treatment. PHD2 inhibition in the heart in dis-
eases with increased cardiac afterload is less promising. 
Conditional deletion of Phd2 in pulmonary endothelial and 
smooth muscle cells demonstrated that PHD2 plays a key 
role for the regulation of pulmonary arterial pressure and 
leads to the development of PAH via stabilisation of HIF-2α 
and pulmonary arterial remodelling. Moreover, PHD2 inhi-
bition appears to be protective against the detrimental effects 
of HFD on the cardiovascular system.
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Haematopoietic system

Conditional whole-body deletion of Phd2 increases plasma 
Epo levels, red blood cell (RBC) count haemoglobin and 
haematocrit levels [86, 104, 105, 113, 149, 152]. Mice with 
somatic inactivation of Phd2 died prematurely, due to dilated 
cardiomyopathy and venous congestion [104]. The conges-
tive heart failure was likely caused by blood hyperviscosity 
and volume overload [104]. Acute global deletion of Phd2 
led to erythrocytosis in both young (6–8 months) as well as 
aging (16–20 months) mice [86]. Injection of an adenovirus 
encoding a Cre enzyme into the tail vein of Phd2flox/flox mice 
resulted in increased serum Epo levels [121]. Epo mRNA 
was increased within the liver in the acute phase of Phd2 
deletion; however, this was lost over time as long as func-
tional PHD1 and PHD3 were present [121].

In mice with conditional Phd2 inactivation in renal 
EPO-producing cells, neurons and astrocytes (hCD68-
IVS1-Cre), strong EPO production was observed combined 
with erythrocytosis [41]. Epo production in these mice 
was HIF-2α dependent [41]. To assess the first described 
human mutation in the Phd2 gene, which was associated 
with erythrocytosis, a mouse model was generated with a 
corresponding P294R knock-in mutation in the murine Phd2 
locus (Phd2P294R/+ mice) [5]. Phd2P294R/+ mice displayed 
comparable erythrocytosis levels to Phd2+/− mice, which 
were HIF-2α-dependent [5]. In addition, homozygous and 
heterozygous Phd2 inactivation in renal cortical intersti-
tial cells (Pax3-Cre) also induced erythrocytosis as well 
as homozygous Phd2 deletion in haematopoietic progeni-
tor cells (Vav1-Cre) [5]. Conditional Phd2 deletion in renal 
FOXD1 stroma-derived cells (Foxd1-Cre) increased plasma 
Epo levels, haemoglobin and haematocrit [73]. HIF-2α pro-
tein levels were enhanced in renal FOXD1 cells with tar-
geted Phd2 deletion, whereas HIF-1α protein levels were not 
altered [73]. Following obstructive nephropathy in mice with 
FOXD1-targeted Phd2 ablation, Epo expression was also 
increased but was not linked to myofibroblast transdifferen-
tiation [71]. Interestingly, conditional deletion of Phd2 in the 
liver (Alb-Cre) did not enhance Epo levels or haematocrit 
[32, 103, 163]. These studies demonstrated that PHD2 is an 
important regulator of Epo via stabilisation of HIF-2α in 
specific Epo-producing cells in the kidney. Of note, induc-
ible inactivation of Phd2 in renin-producing cells (mRen-
rtTAm2 LC1-Cre) failed to induce Epo expression, whereas 
simultaneous deletion of both PHD2 and PHD3 increased 
Epo expression in juxtaglomerular and hyperplastic renin-
positive cells [11], indicating that also renin-producing cells 
can induce the expression of Epo.

Induced global inactivation of Phd2 also increased the 
number of white blood cells in peripheral blood, which was 
combined with a strong increase of haematopoietic progeni-
tors and haematopoietic stem cells in the spleen as well as 

a moderate but significant increase in liver and bone mar-
row [149]. Conditional deletion of Phd2 in early haema-
topoietic precursor cells (CD68-Cre) led to HIF-1α- and 
SMAD7-dependent self-renewal of multipotent progeni-
tors [136]. Overall, these studies laid the foundation for our 
understanding about PHD2 as the key oxygen sensor for the 
regulation of Epo and therefore of RBC count, haemoglobin 
and haematocrit in vivo, which in turn affects the oxygen 
transport capacity of the blood. PHD2 also directly affects 
haematopoietic precursor cells and PHD2 is therefore a criti-
cal enzyme for the entire haematopoietic system.

Kidney

In HFD-fed mice with tamoxifen-mediated induction 
of proximal tubule (PT)-specific Phd2 deletion (N-Myc 
downstream-regulated gene 1 (Ndrg1)-CreER), peritubu-
lar capillary density was increased compared to HFD-fed 
control mice and HIF-target gene expression was enhanced 
[42]. Moreover, PT-specific Phd2-deletion reduced tubular 
damage, glomerulomegaly and albuminuria [42]. Therefore, 
PHD2 inhibition might be a treatment option for obesity-
induced kidney injury.

Analysing the relevance of the PHD isoforms for kid-
ney development, it was demonstrated that Phd2 deletion 
in FOXD1-expressing renal stroma cells (Foxd1-Cre) does 
not affect nephrogenesis [72]. Combined deletion of both 
Phd2 and Phd3, however, led to abnormal development of 
the kidney [72].

In an endothelial-specific Phd2 KO (VE-Cadherin 
(Cdh5)-Cre) mouse model, increased serum creatinine was 
observed together with arteriolar remodelling and increased 
interstitial fibrosis under normal animal housing conditions 
[170]. This was accompanied by glomerular arteriolar 
remodelling and increased renal interstitial fibrosis [170]. 
The Phd2 KO upregulated transforming growth factor-β 
(TGF-β) and Notch3 expression, which was suggested to be 
linked to the increased renal interstitial fibrosis [170]. In an 
angiotensin II (ANG II)-mediated renal injury and fibrosis 
model, Phd2-specific KO in endothelial cells (Cdh5-Cre) 
reduced iron accumulation and ROS formation in the kid-
ney and was protective against renal fibrosis [189]. This was 
accompanied by increased HIF-1α and HIF-2α levels as well 
as a decreased ANGII type 1 receptor expression in endothe-
lial cells [189], suggesting that PHD2 activity contributes to 
ANGII-mediated renal fibrosis and injury. Interestingly, in 
renal I/R injury, endothelial-specific Phd2 ablation (Cdh5-
Cre) was protective, preserving kidney function and pre-
venting the transition from acute kidney injury (AKI) to 
chronic kidney disease (CKD) in a HIF-1-dependent manner 
[124]. Induction of acute Phd2 deletion in endothelial cells 
(Cdh5(PAC)-CreERT2) indicated that the protective effect 
was independent of haematopoietic cells [124].
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In summary, PHD2 inactivation in endothelial cells can 
lead to the development of interstitial fibrosis, but is protec-
tive against both ANG-II- and I/R-mediated renal injury and 
fibrosis. The vast majority of investigations with pharmaco-
logic hydroxylase inhibitors have also reported a protective 
effect in various models of CKD [37], overall supporting that 
PHD2 is a pharmaceutical relevant target for the treatment 
of kidney injury and disease.

Liver

PHD2 activity in the liver plays an important role in the 
regulation of whole-body energy metabolism as described in 
the corresponding section below. Both in mice with induced 
systemic (chicken β-actin-Cre) and constitutive liver-spe-
cific (Alb-Cre) Phd2 deletion, mild hepatic steatosis was 
observed [105]. Murine Phd2 haploinsufficiency had no 
effect on liver regeneration following partial hepatectomy 
[107] or on fibrosis development during chronic bile duct 
injury [145]. Endothelial Phd2 KO in mice (Cdh5-Cre) 
led to liver steatosis and fibrosis combined with enhanced 
fat to body weight ratio and impaired glucose tolerance 
[190]. HFD did not lead to an additional aggravation of 
the steatosis [190]. In a model for alcoholic fatty liver dis-
ease (AFLD), Phd2 hypomorph mice displayed a decrease 
in adiposity, a maintained insulin sensitivity, an improved 
lipoprotein profile and a reduced WAT inflammation in com-
parison to mice with Phd2 [79]. In addition, the mice were 
protected against alcohol-induced liver damage and steatosis 
[79]. Thus, PHD2 plays an important role in the maintenance 
of liver tissue homeostasis and inactivation of hepatic PHD2 
increases steatosis and potentially fibrosis under baseline 
conditions. However, PHD2 inhibition may be protective in 
liver diseases, such as AFLD.

Energy metabolism

Mice with adipocyte-specific Phd2 inactivation (aP2-Cre) 
displayed no obvious phenotype under standard hous-
ing condition [99]. Following HFD, the mice displayed a 
reduced weight gain compared to the control with decreased 
WAT weight and adipocyte size as well as increased blood 
glucose clearance [99]. Oxygen consumption was enhanced 
combined with a reduced respiratory exchange ratio (RER) 
during darkness [99]. In adipocytes, the expression of glyco-
lytic enzymes and adiponectin was enhanced together with 
an increased expression of uncoupling protein-1 (Ucp-1) in 
brown adipose tissue (BAT) [99]. Analysis of adipocyte-spe-
cific Phd2 deletion in mice using fatty acid binding protein 
4 (Fapb4)-Cre showed an increased adiposity and adipose 
vascularisation, normal glucose homeostasis and reduced 
circulating fatty acid levels with feeding of normal chow 
[102]. Phd2 ablation in BAT by in-situ injection of a virus 

containing targeted sgRNA reduced BAT thermogenesis in 
cold temperatures and increased HFD-mediated weight gain 
[83]. Endothelial Phd2 KO in mice (Cdh5-Cre) impaired 
glucose tolerance and enhanced the fat to body weight ratio 
[190].

Hypomorph Phd2 mice under both normal chow and 
HFD showed a decrease in adipocyte size, WAT weight, 
WAT inflammation, improved insulin sensitivity and glucose 
tolerance, reduced de novo lipid synthesis and decreased 
serum cholesterol levels [122]. Hypomorph Phd2 mice with 
additional deficiency of the LDL receptor were protected 
against HFD, displaying a reduced weight gain, WAT and 
liver weight, insulin resistance, adipocyte size, serum cho-
lesterol levels and number of macrophages within WAT 
[123]. Induced global Phd2 KO (ROSA-CreERT2) in mice 
also decreased body weight gain and improved glucose tol-
erance after HFD [186]. Moreover, conditional whole-body 
KO of Phd2 led to more successful endurance training and 
faster running time [113]. Pancreatic β-cell specific Phd2 
KO (insulin-1 promoter (Ins-1)-Cre) in mice resulted in 
glucose-induced increases in plasma insulin [51].

In mice with induced global Phd2 deletion (chicken 
β-actin-CreER), lactate levels were decreased compared to 
control mice after treadmill exercise [146]. Liver-specific 
Phd2 ablation (Alb-Cre) in mice led to an activation of the 
Cori cycle, which serves as a recycling system of lactate-
glucose carbon between the muscles and liver [146]. Con-
sequently, mice with hepatic Phd2 deletion displayed an 
enhanced blood lactate clearance following a lactate tol-
erance test as well as an increased production of glucose 
derived from lactate within the liver [146]. Moreover, these 
mice were protected against an otherwise lethal dose of lac-
tate administered by injection [146]. In another study, it was 
found that mice with liver-specific Phd2 KO (Alb-Cre) had 
a different metabolic response to exercise than mice with 
hepatocyte-specific Hif1a deletion [95].

Overall, PHD2 is a key regulatory enzyme for organis-
mal energy metabolism and its inhibition may be protective 
against obesity and obesity-associated pathologies.

Immune system

Conditional whole-body Phd2 KO (Rosa26-CreERT2) in 
mice was protective against a lethal dose of LPS lead-
ing to an improved cardiac function, enhanced pericyte/
EC coverage and increased survival [187]. In a model of 
bacterial pneumonia using Streptococcus pneumonia, mye-
loid-specific inactivation of Phd2 (LysM-Cre) increased 
the inflammatory response resulting in increased lung 
injury [129]. This was caused by an enhanced neutrophil 
response, including an upregulated neutrophil functional 
capacity, motility and survival [129]. Mice with neutro-
phil-specific Phd2 deletion (MRP8-Cre) also displayed an 
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enhanced inflammatory response following treatment with 
LPS. Lack of Phd2 augmented the neutrophil response 
through HIF-1 and increased the glycolytic flux [129]. 
In macrophages, Phd2 deletion reduced their phagocytic 
and migratory capacity, which was HIF-1-dependent and 
mediated by a differential regulation of glycolytic enzymes 
[46]. Mice with Phd2 haploinsufficiency showed no dif-
ferential response to LPS-induced sepsis relative to control 
[69], which indicates that one functional Phd2 gene locus 
is sufficient to maintain (certain) immune responses.

Myeloid-specific inactivation of Phd2 (LysM-Cre) was 
also found to augment atherogenesis [166] and neointima 
formation [21]. Following a high-cholesterol diet, aortic 
root plaque size and macrophage apoptosis were increased 
in mice with Phd2 deletion in myeloid cells [166].

Systemic knockdown (KD) of PHD2 using tetracycline-
inducible shRNA as well as conditional global Phd2 dele-
tion (Rosa-ERTCre) resulted in leukocyte expansion and 
autoimmune features [183]. This phenotype was mediated 
through stabilisation of HIF-2α [183]. Regulatory T-cells 
(Tregs) from mice with Phd2 KD/KO were dysfunctional, 
potentially underlying the observed increase in immune 
activity [183]. Treg-specific Phd2 inactivation (Foxp3-
Cre) led to a systemic inflammatory syndrome, including 
development of a rectal prolapse, shortening of the colon, 
splenomegaly and elevated IFN-γ expression [2]. This phe-
notype was mediated via HIF-2α [2]. In summary, PHD2 
is an important regulator of Treg function, and its inacti-
vation can lead to a severe dysregulation of the immune 
system.

Overall, PHD2 is an important regulator of immune cell 
function, which is at least in some cell types caused by the 
alteration of energy metabolism via HIF-1 stabilisation. 
Several investigations found an enhanced inflammatory 
response in both baseline or pathological conditions. Inter-
estingly, this is overall not reflected in mouse models using 
PHIs [160]. Therefore, selective PHD2 deletion appears to 
have a different effect on the immune system than the inhibi-
tion of all three PHD isoforms (e.g. via PHIs).

Lung

In lipopolysaccharide (LPS)-induced lung inflammation, 
murine-induced endothelial cell-specific Phd2 deletion 
(Cdh5-CreER) was protective [38]. These animals displayed 
improved adherent junction integrity and endothelial barrier 
function, leading to reduced lung vascular permeability and 
inflammatory cell infiltration and preventing the formation 
of oedema [38]. This data suggests Phd2 inhibition as a ther-
apeutic strategy for acute lung inflammation. Haploinsuf-
ficiency of Phd2 had no effect on pulmonary NEB number, 
but the NEB size was increased [116].

Carotid body

Phd2+/− mice demonstrated an increased ventilatory 
response to hypoxia with enlarged carotid bodies [9]. PHD2 
was found to be the most important PHD isoform for the 
modulation of the hypoxia ventilatory response (HVR) 
[9]. Also, the induced global deletion of Phd2 (Rosa26-
CreERT2) led to an exaggerated HVR, which was mediated 
via HIF-2α [52]. A subsequent analysis of induced Phd2 
deletion in type I cells (tyrosine hydroxylase (TH) express-
ing cell lineage) of carotid bodies (tyrosine hydroxylase 
(TH), TH-IRES-CreER) found a multilineage expansion 
and features that resembled paragangliomas [40]. The 
observed changes of the carotid bodies were again depend-
ent on HIF-2α [40]. Together, these analyses demonstrate 
an important regulation of carotid body hyperplasia and the 
HVR by PHD2 via HIF-2 with possible relevance for the 
development of paragangliomas.

Nervous system

Phd2+/− mice are protected from focal cerebral ischemia at 2 
and 24 h following MCAO, displaying an enhanced restora-
tion of cerebral blood flow (CBF) with improved functional 
outcomes, increased vascular density, less apoptotic cells 
and a reduced disruption of the blood–brain barrier [14]. 
Transient MCAO (acute I/R injury) in mice with constitu-
tive neuron-specific Phd2 KO (Ca2+/calmodulin-depend-
ent protein kinase IIα promotor (CaMKIIα)-Cre) led to a 
decreased infarct size and cell death of hippocampal neurons 
compared to control [77]. HIF-1α and HIF-2α protein levels 
were increased in the forebrain combined with increased 
expression of Epo, VEGF and glycolytic enzymes [77]. 
Nonetheless, vessel density was not altered within forebrain 
subregions [77]. Assessment of the relevance of neuron-
specific Phd2 inactivation (CaMKIIα-Cre) on the recovery 
phase following MCAO also supports a protective effect. 
Mice with neuronal loss of Phd2 showed a reduced infarct 
area, an increased vascular density along the infarct area, an 
improved sensory and motor function, an increase of VEGF 
expression and a reduction of pro-inflammatory cytokines 
[84]. Overall, Phd2 inhibition is therefore a potential thera-
peutic strategy for ischemic brain injury.

Long-term potentiation (LTP) is a cellular mechanism 
considered to be of major relevance for learning and memory 
formation. Using the same constitutive neuron-specific Phd2 
KO mouse model as described above (CaMKIIα-Cre), it was 
shown that ablation of Phd2 prevents mouse hippocam-
pal LTP [23]. Thus, PHD2 inhibition may affect synaptic 
plasticity and therefore learning capabilities and memory 
formation. Interestingly, analysis of the cognitive function 
in the same murine neuron-specific Phd2 deletion model 
(CaMKIIα-Cre) showed an enhanced spatial learning under 



1317Pflügers Archiv - European Journal of Physiology (2024) 476:1307–1337	

both baseline conditions and following chronic brain hypop-
erfusion (permanent occlusion of the left common carotid 
artery) [45]. Increased cognitive function was associated 
with an increased number of neuronal precursor cells [45]. 
No change was observed in vascular density, expression of 
synaptic plasticity-related genes (in the hippocampus) or in 
the morphology of dendritic spines [45]. Therefore, whereas 
it has consistently been reported that Phd2 deletion affects 
the activity of the hippocampus, the functional outcome of 
PHD2 inactivation is less clear. Of note, Phd2+/− mice dis-
played no difference compared to wildtype mice in axonal 
regeneration following peripheral (sciatic) nerve injury, but 
showed a reduced latency in compound muscle action poten-
tials, indicating an improvement of axon function [139].

Specific deletion of Phd2 in NG2 glia cells and pericytes 
in the brain (NG2-Cre) had no effect on the brain vascula-
ture [165]. Combinatorial PHD1-3 or VHL deletion in NG2 
cells, however, led to an increase of capillary networks and 
proliferation of pericyte in several areas of the brain [165].

In summary, inactivation of Phd2 affects cognitive func-
tions, brain vessel density and HIF-mediated gene expres-
sion in neurons, which is protective in neuronal I/R injury.

Skeletal muscle

In Phd2+/− mice, ischemic injury by femoral artery liga-
tion resulted in a comparably severe necrosis in the skeletal 
muscle as in control mice [4]. shRNA-mediated silencing of 
Phd2 in tibial anterior and gastrocnemius muscles following 
right femoral artery ligation increased HIF-1α expression 
as well as the expression of VEGF and endothelial nitric 
oxide synthase (eNOS) [94]. Silencing of Phd2 enhanced 
vessel and capillary density as well as macrophage infil-
tration into the ischemic muscle, indicating that Phd2 
inactivation supports muscle revascularisation [94]. The 
observed effects were likely mediated by enhanced HIF-1 
activity [94]. Another investigation found that Phd2+/− mice 
were protected against hindlimb ischemia-induced necro-
sis by preformed collateral arteries [153]. Arteriogenesis 
was improved due to an increase in tissue-resident M2-like 
macrophages and enhanced smooth muscle cell recruitment 
[153]. Acute and chronic Phd2 haploinsufficiency in mac-
rophages also led to arteriogenesis in the ischemic muscle, 
indicating that the protective effect of Phd2 ablation was due 
to the resulting regulation of macrophages [153].

Induced keratinocyte-specific Phd2 ablation (human kera-
tin 14 promoter (KRT14)-CreERT) during femoral artery 
ligation improved distantly located vascular survival and 
arteriogenesis in ischemic hind limbs [151]. The protective 
effect could also be observed in type 1 and 2 diabetic mice 
and in mice with hepatocyte-specific Phd2 KO (Alb-Cre) 
[151]. Local Phd2 deletion selectively in keratinocytes of 
the hindlimb skin (by local administration of tamoxifen) was 

not protective against ischemic injury [151]. These results 
indicate that protection against ischemia by inactivation of 
Phd2 works remotely and that it may therefore not be neces-
sary to access the actual target tissue for treatment.

Phd2 hypomorph mice showed increased HIF-1α and 
HIF-2α levels in skeletal muscles, increased capillary size 
without effects on capillary number and an upregulation 
of the expression of glycolytic genes [66]. After exercise, 
serum lactate levels were reduced faster [66]. Hind limb I/R 
injury led to reduced infarct size in Phd2 hypomorphic mice, 
which was likely due to the increase in capillary size as well 
as the HIF-mediated regulation of energy metabolism [66].

Conditional whole-body Phd2 KO mice demonstrated 
increased capillary density in skeletal muscle [113, 135] 
likely due to induction of VEGF [135]. Muscle fibres of KO 
animals transitioned towards slow type I fibres [135]. After 
mechanic muscle trauma, Phd2 hypomorph mice presented 
with faster muscle tissue regenerative capabilities, including 
enhanced activation of myogenic factors, accelerated mac-
rophage infiltration into injured tissue areas and upregulation 
of stem cell proliferation markers [134].

In summary, genetic PHD2 inhibition is protective in 
muscle ischemia due to enhanced arteriogenesis, which may 
be affected by increased VEGF secretion as well as by the 
induction of pro-angiogenic macrophages.

Bone

Constitutive Phd2 deletion in osteoblasts in mice (Col1a2‐
iCre) led to premature death 12 to 14 weeks after birth [19]. 
These mice displayed a shorter stature with decreased bone 
mineral density, bone area and bone mineral content in 
tibias and femurs but not in vertebrae. Within the femoral 
trabecular bones, bone volume and total volume as well as 
bone volume fraction were reduced [19]. This phenotype 
was suggested to be caused by diminished bone formation 
[19]. There was no alteration in proximal tibial epiphyses 
in 5-week-old mice following Col1a2‐iCre-mediated Phd2 
deletion [17]. Conditional deletion of PHD2 in osteopro-
genitors (OSX-Cre transgene) led to a less severe phenotype 
without the report of premature death and with the strong-
est changes observed with combinatorial deletions of PHD 
isoforms [173]. Conditional Phd2 inactivation in haemat-
opoietic cells, osteoblasts and Epo-producing cells (CD68-
Cre) led to a strong decrease of bone density in the distal 
femur and in vertebrae [125]. Analyses of mice with Phd2 
deletion in osteoblasts (OSX-Cre) or osteoclasts (Vav-Cre) 
indicated that the observed bone malformations were not 
directly linked to an altered osteoblast or osteoclast activity 
caused by the inactivation of Phd2 [125]. It was suggested 
that the bone malformations observed in mice with CD68-
Cre-mediated Phd2 deletion were caused by an Epo-medi-
ated effect on osteoblast progenitors, because Epo levels 
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were increased due to the deletion of Phd2 [125]. Analyses 
in Phd2+/− mice showed a decreased bone mineralisation 
and trabeculae bone mass [55].

Conditional deletion of Phd2 in osteocytes (Dentin 
Matrix Protein 1 (Dmp1)-Cre) increased the bone mass by 
enhanced bone formation and reduced resorption [140]. In 
addition, these mice were protected against bone loss caused 
by a decline in oestrogen levels [140]. Moreover, Phd2 abla-
tion in osteocytes (Dmp1-Cre) increased fibroblast growth 
factor-23 (FGF23) levels (an important hormone regulat-
ing mineral ion handling) in the murine bone [112]. Dele-
tion of Phd2 in murine periosteum-derived cells improved 
bone regeneration following implantation of the KO cells 
due to enhanced cell viability, which was likely caused by 
an altered energy metabolism [141]. This phenotype was 
independent of angiogenesis [141].

Chondrocyte-specific Phd2 conditional deletion (type 2 
collagen-α1-Cre) led to enhanced trabecular bone mass of 
long bones by increased trabecular thickness and number 
with decreased trabecular separation [17, 20]. KO mice dis-
played increased bone formation rate in long bones, bone 
mineralisation and upregulated markers for chondrocyte 
hypertrophy [17, 20]. These results suggest that Phd2 plays 
an important role in endochondral bone formation [17, 20]. 
Moreover, in the same mouse model, articular cartilage 
thickness was decreased, combined with increased chon-
drocyte differentiation [18].

In summary, PHD2 activity is of key importance for the 
regulation of bone volume and density as well as for articu-
lar cartilage thickness, likely including multiple mechanisms 
and cell types.

Gastrointestinal tract

Phd2+/− mice as well as mice with constitutive Phd2 dele-
tion in endothelial and haematopoietic cells (Tie2-Cre) did 
not show any difference compared to control mice in DSS-
induced colitis [67, 154, 167]. Constitutive inactivation of 
Phd2 in intestinal epithelial cells (Villin-Cre) did not lead to 
spontaneous intestinal inflammation and was also not protec-
tive in a DSS-induced colitis model or in colitis-associated 
colon cancer [177]. Deletion of Phd2 in intestinal epithe-
lial cells in mice was also not protective against radiation-
induced gastrointestinal toxicity [157]. Mice with ablation 
of Phd2 in regulatory T-cells (Foxp3-Cre) spontaneously 
developed systemic inflammation (see above) [2]. These 
mice also showed an increased sensitivity to toxoplasmo-
sis and DSS-induced colitis, likely because of an inefficient 
control of the inflammatory response [2].

Analysis of anastomotic leakage in Phd2+/− mice showed 
an improved healing of septic and ischemic colon anasto-
moses [144]. Phd2 haploinsufficiency reduced anastomotic 
leakage, increased the bursting pressure and was protective 

against sepsis-related mortality [144]. This protective effect 
was achieved by the induction of M2 polarisation of mac-
rophages, which reduced immune cell recruitment [144].

Overall, whilst Phd2 is important for immune cell func-
tions and thus for pro-inflammatory responses in vivo, Phd2 
is dispensable for intestinal development and intestinal epi-
thelial homeostasis.

Skin

The effect of Phd2 deletion on wound healing was analysed 
using different mouse models. Constitutive Phd2 KO in 
myeloid (LysM-Cre) or endothelial (Flk1-Cre) cells had 
no effect on wound closure in full-thickness excisional skin 
wounds (6-mm biopsy punches) [64]. In turn, specific con-
stitutive Phd2 deletion in keratinocytes (K14-Cre) decreased 
the time for wound closure and increased migration of the 
hyperproliferating epithelium as well as proliferation of 
keratinocytes in the stratum basale [64]. These effects were 
at least in part mediated by HIF-1 as well as by decreased 
transforming growth factor β signalling [64]. Mice with 
constitutive Phd2 ablation in keratinocytes (K14-Cre) or 
induced Phd2 deletion in fibroblasts (Col1α2-CreER) each 
showed an accelerated wound healing in 6-mm full-thickness 
excisional wounds [193]. Both epidermal and dermal Phd2 
KO were also protective in an ischemic pedicle flap model 
with more viable flaps being present in the Phd2 KO mice 
in comparison to mice with wildtype Phd2 alleles [193]. 
Injection of murine mesenchymal stromal cells transduced 
with shPHD2 into full-thickness excisional skin wounds also 
accelerated wound healing with enhanced cellularity and 
blood vessel density [70]. Phd2 deletion in FoxD1-lineage 
mesodermal cells (FoxD1-Cre) led to truncal alopecia by 
disturbing hair follicle development [128]. Overall, Phd2 
inactivation in keratinocytes, fibroblasts and/or mesenchy-
mal stem cells accelerates cutaneous wound healing. Thus, 
PHD2 is a promising potential therapeutic target for wound 
healing.

Eye

Oxygen treatment of preterm infants can lead to retinopa-
thy including loss of micro-vessels in the retina, which can 
result in blindness. In neonatal control mice, exposure to 
75% O2 reduced retinal micro-vessels [31]. Induced global 
Phd2 ablation (Rosa26-CreERT2) in mice from postnatal 
day 1 was protective against the effect of 75% O2 expo-
sure on retinal micro-vessels with increased HIF-1α and 
HIF-2α protein levels compared to control mice [31]. This 
indicates that inhibition of PHD2 might be a therapeutic 
option for preterm infants with oxygen treatment to prevent 
retinopathy. Constitutive lack of Phd2 in astrocytes (GFAP-
Cre) resulted in an increased number of retinal astrocytes, 
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impaired vascular pruning and increased HIF-2α protein lev-
els in neonatal mice [30]. Therefore, the HIF pathway may 
play an important physiological role in retinal astrocytes for 
the appropriate development of the retinal vasculature.

Cancer

Investigation of tumours derived from B16 melanoma, 
Panc02 pancreatic carcinoma or Lewis lung carcinoma 
(LLC) cells in Phd2+/− mice showed no effect on tumour 
growth, tumour cell apoptosis or proliferation; how-
ever, the occurrence of metastasis was reduced [100]. In 
Phd2+/− mice, tumour vessel endothelial lining and matu-
ration were normalised (without effect on tumour vessel 
lumen size or density), preventing tumour cell intravasa-
tion, invasion and thus metastasis [100]. In mice with con-
ditional haplodeficient Phd2 inactivation in endothelial cells 
(Tie2-Cre), the main findings could be repeated, including 
reduced metastasis and tumour vessel normalisation [100]. 
Moreover, haplodeficient Phd2 inactivation in endothelial 
cells in mice led to an improved chemotherapeutics delivery 
to tumours [81]. These results were repeated in mice with 
induced acute global heterozygous or homozygous deletion 
(Rosa26-CreERT2 transgene) of Phd2 [81]. In addition, the 
induced global Phd2 deletion led to an increased protec-
tion of healthy organs against detrimental side effects of 
chemotherapeutic agents in a HIF-dependent manner [81]. 
In a spontaneous metastatic mammary gland tumour model, 
Phd2+/− mice reduced metastasis by reducing cancer-associ-
ated fibroblast (CAF) activation, production of extracellular 
matrix and CAF-mediated contraction [76]. This effect was 
dependent on tumour vessel normalisation as well as PHD2 
inactivation in tumour cells and not in CAFs themselves 
[76].

Induction of primary hepatic tumours by diethylnitrosa-
mine (DEN) treatment in Phd2+/− mice resulted in enhanced 
hepatocarcinogenesis and increased development of cholan-
giocarcinoma with a larger number of metastasis, which was 
suggested to be caused by chronic HIF activation [49]. The 
beginning of neoplastic transformation was not altered by 
Phd2 haploinsufficiency in the same hepatic tumour model, 
indicating that PHD2 activity is relevant during tumour nod-
ule formation, but not for neoplastic transformation [10].

Analysing the relevance of PHD2 in immune cells for 
tumour development, Phd2 was deleted in haematopoietic 
cells (CD68-Cre) and the mice were inoculated with LLC 
cells, leading to reduced tumour growth, decreased tumour 
cell apoptosis and enhanced proliferation [96]. In mice, 
Phd2 deletion in myeloid cells (LysM-Cre), in all T-cell 
populations (CD4-Cre) or in B-cells (CD19-Cre) had no 
effect on tumours from LLC cells [96]. However, combined 
Phd2 deletion in myeloid and T-cells (LysM/CD4-Cre) led 
to a decreased tumour growth [96]. This indicates that PHD2 

activity in myeloid and T-cells supports tumour growth and 
that PHD2 inhibition may be a therapeutic option for lung 
cancer treatment.

Conditional melanocyte-specific deletion of Phd2 (Tyr-
CreER) did not lead to any pigmented lesions [92]. How-
ever, in mice with a melanocyte-specific deletion of Phd2 
combined with the expression of BRafV600E, melanoma with 
a 100% penetrance and metastasis in lymph nodes were 
observed [92]. These results indicate that PHD2 can enhance 
melanomagenesis in the presence of BRafV600E.

In mice with constitutive KO of Phd2 in the medulla of 
the adrenal gland (TH-Cre), alterations in developmental 
adrenal morphologies were reported combined with a gene 
expression pattern mimicking pseudohypoxic pheochromo-
cytoma [33]. The observed changes were shown to be HIF-
2α-dependent. Interestingly, induced Phd2 deletion in the 
adrenal medulla in adult mice did not lead to the aberrant 
gene expression pattern, demonstrating that the observed 
changes towards pseudohypoxic pheochromocytoma were 
likely occurring during adrenal gland development [33].

In a CAC model (AOM and DSS treatment), Phd2+/− mice 
showed no difference in the induced colitis but CAC growth 
was enhanced together with the number of tumour-associ-
ated macrophages [67]. The observed regulation was due 
to an upregulation of the expression of epiregulin in mac-
rophages, a ligand for EGFR, as well as an increased extra-
cellular signal-regulated kinase 1/2 and signal transducer 
and activator of transcription 3 signalling [67].

In summary, these data indicate that inhibition of PHD2 
activity alone is detrimental for some tumours, including 
lung carcinoma and prostate cancer, which is (at least in 
part) due to its effects on vessel formation, myeloid and 
T-cells. In melanocytes, PHD2 inhibition may be protective 
to a certain degree against the development of melanomas 
but is detrimental in the presence of BRafV600E. Moreover, 
inactivation of PHD2 may support the growth and metasta-
sis formation from hepatic tumour and cholangiocarcinoma 
as well as the growth of colon cancer. Interestingly, PHD2 
activity appears to be necessary for the development of the 
adrenal gland, preventing a shift of the gene expression 
towards pseudohypoxic pheochromocytoma. Thus, PHD2 
plays an important role in tumour growth and metastasis 
formation; however, its relevance and function depend on 
the cancer type.

Phd3 (Egln3) deletion

The baseline phenotype summarises observations made in 
mice with Phd3 deletion without the induction of a pathol-
ogy. The subsequent chapters focus on phenotypes of mice 
with various Phd3 deletions in disease models.
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Baseline phenotype

Mice with constitutive whole-body deletion of Phd3 
(Phd3−/−) are viable but with a small reduction in the 
offspring being observable after mating of heterozygous 
mice [8, 152]. At baseline conditions, there were no 
obvious abnormalities during development [152] or 
adulthood apparent [8, 149, 150] with physiological 
Epo and haematocrit levels as well as red blood cell 
counts [149], white blood cell counts (including 
normal neutrophil and macrophage numbers) [69, 
169], angiogenesis [150] and no obvious alterations in 
the morphologies of lung and kidney [69]. Also, bone 
development and architecture were normal following the 
specific constitutive deletion of Phd3 in osteoprogenitor 
cells (OSX-Cre) or chondrocytes (Col2α1-Cre) [173, 
179]. In contrast, Phd3−/− mice showed an increased 
trabecular spacing and a decreased trabecular number as 
well as a decreased fractional bone volume in long bones 
and vertebrae [55]. Mice with enzymatically inactive 
Phd3 (R205K knock-in mutation) showed no obvious 
changes in development or fertility [62], similar to the 
Phd3−/− mice.

Interestingly, Phd3−/− mice display a neuronal 
phenotype [8]. The number of neurons was increased 
in the superior cervical ganglion (SCG), in the adrenal 
medulla and in the carotid body due to a decreased 
neuronal apoptosis [8]. Moreover, the function of the 
sympathoadrenal system was reduced with a decreased 
innervation of target tissues, secretory capacity of the 
adrenal medulla and reduced sympathoadrenal responses 
(e.g. of the iris, submandibular gland and pineal gland) 
combined with a decrease in systemic blood pressure 
[8]. The hypoxic ventilatory response was comparable 
to wildtype mice [9]. The phenotype was caused by the 
regulation of HIF-2α and was independent of HIF-1α 
[8]. Therefore, PHD3 plays a major role for the anatomic 
and functional integrity of the sympathoadrenal system 
[8]. Phd3−/− mice also displayed hypertrophy and 
hyperplasia of NEBs with increased NEB size and 
NEB cells [116]. The NEB alterations were comparable 
to the findings in Phd1 KO mice [116]. During aging, 
1-year-old Phd3−/− mice showed increased triglyceride 
and cholesterol levels, liver weight, adiposity and 
body weight, enhanced WAT inflammation and insulin 
resistance and hyperglycaemia [158].

Overall, Phd3 deletion does not alter the majority of 
organ systems under baseline conditions. However, con-
stitutive global Phd3 ablation impacts on the development 
and function of the sympathoadrenal system with cor-
responding effects on systemic blood pressure, iris size 
modulation and excretion from glands. Moreover, during 
aging, PHD3 counteracts metabolic dysfunction.

Cardiovascular system

To assess the relevance of PHD3 in ischemic heart injury, 
the response of Phd3−/− mice to LAD ligation was investi-
gated. In this model of myocardial infarction, Phd3−/− mice 
showed improved cardiac function, increased capillary den-
sity, reduced cardiac fibrosis and increased HIF-1α DNA 
binding [114]. LAD ligation with subsequent release as 
model for I/R injury in induced whole-body Phd3 KO mice 
(chicken β-actin-CreER) resulted in attenuated tissue dam-
age [176]. Myocardial injury and apoptosis of cardiomyo-
cytes were decreased [176]. In a rat model of type 2 diabe-
tes (HFD plus streptozotocin injection), shRNA-mediated 
PHD3 knockdown (jugular vein injection) reduced cardiac 
dysfunction [174]. Thus, Phd3 inactivation is protective in 
different models of cardiac injury, likely by decreasing car-
diomyocyte apoptosis and by enhancing angiogenesis fol-
lowing injury.

Investigating further the relevance and function of PHD3 
in the cardiovascular system, transgenic mice were generated 
with increased PHD3 expression. Cardiomyocyte-specific 
transgenic expression of PHD3 in mice (cPhd3tg) did not 
affect cardiac function or HIF activity at baseline condi-
tions over an investigation period of 14 months [192]. Fol-
lowing LAD ligation, cPhd3tg hearts showed an increased 
infarct size linked to reduced HIF-1α and HIF-2α stabilisa-
tion [192]. In a mouse model of obstructive sleep apnoea, 
shPHD3 treatment had no effect, whereas lentiviral PHD3 
overexpression reduced intermittent hypoxia-mediated car-
diac perivascular collagen deposition and (partially) pre-
vented cardiac dysfunction [188]. In a murine model of the 
effect of chronic intermittent hypoxia on cardiac pressure 
overload, lentiviral PHD3 overexpression improved the 
systolic function and alleviated cardiac remodelling [180]. 
These studies indicate that the effect of PHD3 overexpres-
sion may depend on the type of cardiac injury. The detri-
mental effect of PHD3 overexpression in cardiac ischemia 
further supports the finding that PHD3 deletion is protective.

In an atherosclerosis model, mice deficient for apolipo-
protein E were fed HFD and either injected with lentivirus 
carrying shPHD3 or DNA for PHD3 overexpression [90]. 
PHD3 overexpression enhanced the area of aortic athero-
sclerotic lesions, the number of macrophages and smooth 
muscle cells and the number of apoptotic cells in athero-
sclerotic plaques [90]. Following a high-cholesterol diet in 
mice, Phd3 and Ldlr double KO did not alter atherosclerotic 
plaque size or necrotic, macrophage, collagen or oxygen 
content [29].

In summary, PHD3 activity plays an important role in the 
response of cardiac tissue to injury and PHD3 may be a ther-
apeutic target in myocardial infarction, diabetes-induced car-
diac dysfunction and in cardiac injury caused by obstructive 
sleep apnoea. Its relevance in atherosclerosis is less clear.
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Haematopoietic system

There was no effect observed on erythropoiesis or haemat-
opoiesis by constitutive global Phd3 deletion [149], or Phd3 
ablation in hepatic [105, 163] or (renal) FoxD1 lineage cells 
[73]. Interestingly, in Phd3 and Ldlr double KO mice, haem-
atocrit was increased at baseline conditions whereas WBC 
counts were maintained [29].

Liver

Following a partial hepatectomy, liver regeneration was not 
affected in Phd3−/− mice [107]. In a model of chronic bile 
duct injury, Phd3−/− mice showed no difference in biliary 
fibrosis [145]. Thus, PHD3 is not relevant for liver regenera-
tion or (bile duct injury-mediated) hepatic fibrosis develop-
ment or progression.

Energy metabolism

Mice with liver-specific Phd3 KO (tail vein injection of 
adenoviral Cre into Phd3fl/fl mice) demonstrated lower fast-
ing insulin and glucose levels as well as an increased glu-
cose tolerance [156]. In addition, the hepatic expression of 
several gluconeogenic enzymes (Pck1, G6pc, Ppargs1a) 
was reduced as well as the expression of enzymes involved 
in lipid metabolism (Srebf1c, Fas). Mechanistically, the 
observed changes were linked to increased HIF-2α stabili-
sation and Irs2 expression in the liver [156]. To investigate 
the influence of hepatic Phd3 depletion on diabetes, the 
mice were fed HFD. Both fasting blood glucose and fast-
ing serum insulin improved in comparison to wildtype mice 
[156]. Liver-specific Phd3 KO (Alb-Cre) decreased gluco-
neogenesis during fasting periods, which was mimicked in 
PHD3 His196Ala (inactive PHD3) knock-in mice [182]. 
Both mouse models were resistant against high-fat and high-
sucrose diet-induced gluconeogenesis and hyperglycaemia 
with improved insulin and glucose tolerance tests [182]. The 
observed phenotypes were suggested to be caused by PHD3-
mediated hydroxylation of CREB-regulated transcriptional 
coactivator (CRTC) 2 [182].

Mice with constitutive global Phd3 deletion (CMV-Cre) 
displayed elevated fatty acid oxidation (FAO) in the skeletal 
muscle, especially after fasting [184]. Glycogen levels were 
maintained in the skeletal muscle, but they were reduced 
in the liver under normal feeding conditions. Under fast-
ing conditions, O2 consumption and CO2 production were 
both enhanced whereas the respiratory exchange ratio (RER) 
was maintained [184]. In a strenuous exercise endurance 
challenge, both mice with global and skeletal muscle-spe-
cific (MCK-Cre) Phd3 deletion displayed increased exer-
cise capacity [184]. Mechanistically, PHD3 was reported 
to hydroxylate acetyl-CoA carboxylase (ACC) 2 (which 

converts acetyl-CoA into malonyl-CoA) and the hydroxyla-
tion of ACC2 reduced FAO [184]. Combinatorial deletion of 
Phd3 and Ldlr in mice resulted in an increased body weight 
at baseline that was further significantly increased relative 
to control mice following high-cholesterol diet (HCD) [29]. 
After HCD, also enhanced triglyceride and plasma choles-
terol levels were observed. In the liver, the expression of 
Fas and Cyp7a1 was increased, which may contribute to the 
dyslipidaemia [29].

Pancreatic β-cell specific Phd3 deletion (Ins-1-Cre) had 
no effect on glucose homeostasis under standard condi-
tions [51, 109]. Nonetheless, β-cell mass was reduced and 
β-cell apoptosis was enhanced [51]. Following HFD, glu-
cose homeostasis was impaired [109]. The metabolism of 
Phd3−/− β-cells shifted from glycolysis to fatty acid oxi-
dation, which was linked to reduced insulin secretion after 
prolonged HFD [109].

Overall, Phd3 deletion protects against dietary-induced 
diabetes and according alterations in glucose homeosta-
sis, which may be due to effects in the liver, on pancreatic 
β-cells and in the skeletal muscles. Moreover, the metabolic 
changes introduced by Phd3 ablation support exercise endur-
ance. FAO was increased in the skeletal muscle following 
Phd3 KO, which may contribute to the protective effect 
against dietary-induced diabetes. These results principally 
support an approach to pharmacologically inhibit PHD3 as 
treatment for type 2 diabetes. However, one study reported 
that Phd3 deletion in combination with Ldlr ablation leads 
to dietary-induced dyslipidaemia. Therefore, inactivation of 
PHD3 may also have detrimental effects in certain (meta-
bolic) conditions.

Immune system

The activity and function of neutrophils derived from 
Phd3−/− mice were preserved in both normoxia and hypoxia; 
however, neutrophil apoptosis was increased leading to a 
reduced Phd3−/− neutrophil survival during hypoxia [169]. 
In hypoxia, HIF transcriptional activity was not altered in 
Phd3−/− neutrophils relative to control. The increase of 
apoptosis in hypoxia in Phd3−/− neutrophils was linked to 
an increased expression of pro-apoptotic Siva1 and a reduced 
hypoxia-mediated stimulation of the Siva1 target protein 
BCL-XL [169]. In an LPS-induced acute lung injury model, 
neutrophil apoptosis was enhanced in Phd3−/− mice, leading 
to a decreased total neutrophil count in the inflamed tissue 
[169]. In DSS-induced colitis, neutrophilic inflammation 
was also decreased [169]. These findings suggest that PHD3 
plays a key role in neutrophil survival and neutrophil-driven 
inflammation.

The inflammatory response in Phd3−/− mice was also 
assessed in models of abdominal sepsis. Following LPS- 
or bacterial-induced (caecal ligation and puncture model) 
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sepsis, the survival of Phd3−/− mice was reduced compared 
to WT, Phd1−/− and Phd2+/− mice [69]. In Phd3−/− mice, 
plasma pro-inflammatory cytokine levels and macrophage 
recruitment to internal organs were increased during sepsis 
[69]. The decrease in survival during sepsis was linked to 
an increased activity of Phd3−/− macrophages, which in turn 
was dependent on both HIF-1α and NF-κB activity [69]. 
Phd3 deletion in macrophages altered their maturation and 
polarisation towards an M1 (pro-inflammatory) polarisa-
tion [69]. This increase in M1 polarisation was linked to 
an accelerated differentiation and was not observed in fully 
differentiated macrophages [147]. Phd3−/− macrophages 
showed (similar to neutrophils) no change in HIF activity 
[147]. Interestingly, Phd3 deletion, in contrast to its effect 
in neutrophils, decreased the apoptosis rate of macrophages 
[147]. Of note, in a model of hind limb ischemia in mice with 
myeloid-specific Phd3 deletion (LysM-Cre), Phd3−/− mac-
rophages displayed an increase in M2 (anti-inflammatory) 
polarisation [6]. Phd3 deletion in CD11chi cells (CD11c-
Cre) did not affect dendritic cell maturation, metabolism or 
survival in basal or stimulated conditions [159]. In a mouse 
model of LLC cancer in mice with genetic Phd3 inactiva-
tion (R205K mutation), macrophage M2 polarisation was 
prevented [62].

Mice with induced global Phd3 ablation (chicken β-actin-
CreER) were protected against ionizing radiation effects on 
the thymus with reduced apoptosis of thymus cells [175]. 
The protection was reported to be mediated by preventing 
the hydroxylation of HCLK2, which in turn reduced DNA 
damage-induced apoptosis [175].

In general, Phd3 loss affects apoptosis in neutrophils 
and macrophages and therefore corresponding inflamma-
tory responses. The effect of Phd3 deletion on macrophage 
polarisation may depend on the inflammatory context as well 
as whether the deletion is present in all cells or is myeloid-
specific. Further analyses will be necessary to clarify this.

Lung

To assess the relevance of PHD3 for asthma pathogenesis, 
mice with constitutive selective Phd3 KO or overexpression 
in CD11chi cells were generated (CD11c-Cre) [159]. In a 
model of allergic airway inflammation, no modulation of the 
induced asthma was found. Interestingly though, the CD11c-
specific Phd3 deletion prevented alveolar macrophages in 
competition with wildtype macrophages to optimally repop-
ulate an empty alveolar niche [159].

Nervous system

In a mouse model of cerebral ischemia using MCAO, con-
stitutive global Phd3 deletion aggravated regional cerebral 
blood flow, but did not change the functional outcome [14]. Ta
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Thus, although PHD3 regulates neuronal apoptosis [8], it 
does not affect cerebral ischemic injury. Following periph-
eral (sciatic) nerve injury, Phd3−/− mice demonstrated 
increased axonal regeneration and reduced cold hyperalge-
sia, indicating that pharmaceutical PHD3 inhibition may be 
a treatment option for peripheral nerve injury [139].

Skeletal muscle

Several studies investigated the effect of different methods 
of Phd3 deletion in a model of hind limb ischemia using 
femoral artery ligation. Phd3−/− mice were not protected 
against ischemia-induced muscle cell death [4]. A separate 
study reported that shRNA-mediated knockdown of PHD3 
enhanced vessel and capillary density as well as macrophage 
infiltration in the ischemic muscle [94]. These results were 
linked to increased HIF-1α stabilisation within the injury 
site [94]. Another investigation found that Phd3−/− mice also 
display enhanced vessel and capillary density, improving 
motor function by enhanced recovery of perfusion as well 
as decreasing tissue fibrosis [126]. Mechanistically, HIF-1α 
was increased combined with enhanced VEGF and Bcl-2 
expression [126]. Murine myeloid-specific Phd3 deletion 
(LysM-Cre) had no effect on angiogenesis or the recovery 
of reperfusion, but led to a decreased infiltration of mac-
rophages and to a reduced fibrosis in the ischemic muscle 
[6].

Using viral transduction of sgRNA targeting PHD3 in 
mice with skeletal muscle-specific Cas9 expression (MCK-
Cre-Cas9), the induced PHD3 deletion increased the area 
of muscle fibres and overall muscle weight [82]. In mice 
with denervated muscle atrophy, sgRNA-mediated Phd3 
KO mitigated the loss of muscle weight and the reduction 
of muscle fibres [82]. It was suggested that Phd3 deletion 
enhances the activity of the major transcriptional regulator 
of the cellular response to pro-inflammatory signals, NF-κB 
[82]. It has further been reported that muscle-derived stem/
progenitor cells (MDSPC) from Phd3−/− mice display an 
increased myogenic potential [137].

Overall, the majority of reports support a protective effect 
of genetic Phd3 inactivation in hind limb ischemia, lead-
ing to increased vascularisation and decreased fibrosis. In 
addition, Phd3 deletion may also be counteracting muscle 
atrophy following denervation. Therefore, pharmacologic 
inhibition of PHD3 appears to be a promising approach for 
the treatment of various muscle pathologies.

Gastrointestinal tract

Investigating the relevance of PHDs for the development 
and progression of inflammatory bowel diseases, it was 
demonstrated that global homozygous Phd3 deletion in 
mice does not affect susceptibility or development of 

DSS-induced colitis [154]. Phd3 KO in haematopoietic 
and endothelial cells (Tie2-Cre) did also not influence 
DSS-induced colitis in mice [167]. In a model for colitis-
associated colorectal cancer (AOM and DSS treatment), 
Phd3−/− mice showed no difference in disease activity or 
CAC growth [67]. In contrast, another study found that 
mice with Phd3 deletion in intestinal epithelial cells (Vil-
lin-Cre) spontaneously develop colitis and demonstrate 
an increased disease activity in DSS-induced colitis [16]. 
This phenotype was suggested to be caused by the PHD3-
dependent regulation of the tight junction protein occludin 
[16]. The same group reported in a later study again that 
intestinal epithelial cell-specific Phd3 ablation was detri-
mental in DSS-induced colitis, but that surprisingly knock-
in of catalytically inactive PHD3 (H196A) had no effect on 
disease activity, body weight development or shortening 
of the colon [181]. It was further shown that PHD3 regu-
lates goblet cell generation in the murine intestine, which 
was suggested to occur independent of PHD3 enzymatic 
activity [181].

In a model of radiation-induced gastrointestinal toxicity, 
it was shown that ablation of Phd3 alone in the murine intes-
tinal epithelium (Villin-Cre) had no effect on the progression 
or outcome of the toxicity [157]. In a model of intestinal 
anastomoses and anastomotic leakage, constitutive global 
Phd3 KO strongly enhanced gross structural anastomotic 
defects in mice [144].

In summary, there is strong evidence that PHD3 is dis-
pensable in DSS-induced colitis (and CAC), whereas one 
group reported a functional relevance for PHD3 in colitis. In 
accordance with the majority of reports about the function 
of PHD3 in intestinal inflammation or injury, PHD3 is also 
not relevant for radiation-induced gastrointestinal toxicity. 
Interestingly, selective genetic inactivation of Phd3 is det-
rimental in intestinal anastomoses. Overall, PHD3 is likely 
dispensable in pathologies caused by intestinal epithelial 
barrier dysfunction.

Cancer

Inactivation of Phd3 by R205K knock-in mutation in mice 
reduced LLC cancer growth through regulation of Erk3, 
which is involved in the EGFR signalling pathway [62]. 
Inactivation of Phd3 prevented macrophage efferocytosis, 
migration and M2 polarisation [62]. Analysing the relevance 
of PHD3 in CAC, Phd3−/− mice displayed no difference in 
CAC growth [67].

Overall, to the best of our knowledge, the relevance of 
host Phd3 for cancer development and progression is not 
very well studied using KO mice. The existing studies indi-
cate that host PHD3 activity supports LLC cancer growth 
whereas it is dispensable for CAC.
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Conclusions

The cellular oxygen sensors PHD1-3 are regulatory pro-
teins within the HIF pathway, regulating HIF-α protein 
stability. Cellular studies have indicated distinct roles for 
each of the PHDs for the regulation of HIF-1α and HIF-2α. 
Importantly, knockdown and knockout in rodents of either 
of the genes encoding Phd1, Phd2 or Phd3 have demon-
strated an independent function and relevance of each iso-
form on the organismal level (Tables 1 and 2). In baseline 
conditions, PHD1 is not essential during development and 
has a key function in the regulation of oxidative metabo-
lism in the skeletal muscle via HIF-2α (Table 1). PHD2 
is the most relevant PHD isoform for physiology, as con-
stitutive and induced global Phd2 deletion is lethal both 
during development and adulthood, whereas the ablation 
of PHD1 or PHD3 is well tolerated (Table 1). PHD2 is also 
the most relevant regulatory enzyme of HIF-α in vivo, as 
highlighted in mice lacking PHD2 by, e.g. increased eryth-
ropoiesis, angiogenesis and developmental heart defects. 
PHD3 is essential for the appropriate development of the 
sympathoadrenal system (Table 1).

The deletion of either of the PHD isoforms can lead to 
the stabilisation of HIF-1α or HIF-2α in vivo. However, 
the observed regulation of HIF-α levels appears to be cell-
type and/or organ-specific in mice with Phd1 and Phd3 
deletion and may additionally be disease/injury-specific. 
Some phenotypes in mice with Phd1 or Phd3 KO were 
linked to regulations independent of HIF, suggesting 
a functional relevance of the enzymatic function of the 
PHDs outside the HIF pathway. Nonetheless, additional 
investigations will be necessary to clarify this.

Interestingly, inactivation of Phd1 or Phd3 within 
mice was protective (or had no effect) against tumour 
growth and metastasis formation in the assessed cancers. 
Even Phd2 ablation was protective in some cancer types, 
whereas it may be detrimental in hepatic and colon cancer. 
HIF activity can support tumour growth [106, 172]; there-
fore, a major concern for the clinical use of PHD inhibi-
tors is a putative supportive effect for cancer development 
or progression. However, the results from PHD KO mice 
suggest that it may be possible to target these enzymes 
without detrimental effects regarding tumour growth. Of 
note, treatment with (non-selective) hydroxylase inhibitors 
is protective in various tumour models [43].

Currently, no PHD isoform selective pharmacologic 
inhibitors are available and the clinical use of the exist-
ing PHIs for hypoxia-associated diseases other than renal 
anaemia is currently prevented by the enhancement of Epo 
expression. Epo appears to be the most sensitive gene in 
response to HIF activation; therefore, PHIs can be used 
at relatively low doses for the treatment of renal anaemia. 

However, the sensitivity of the Epo expression to PHD 
inhibition is a disadvantage for the treatment of other 
hypoxia-associated diseases with these PHIs, as a strong 
increase in erythropoiesis is in many diseases not neces-
sarily desirable. Some diseases may still be treatable, if a 
targeted local release is possible without systemic expo-
sure to the PHI. Otherwise, single and combinatorial phar-
macologic targeting especially of PHD1, PHD3 and also 
FIH will need to be considered and investigated further, as 
systemic pharmacologic inhibition of these oxygen sensors 
can be protective in different diseases without eliciting an 
Epo response.

Overall, gene deletions in mice of Phd1, Phd2 or Phd3 
have highlighted the physiological relevance especially of 
PHD2 and the great potential of these three enzymes as 
pharmacologic targets in many different hypoxia-associated 
diseases. PHD isoform-selective inhibitors would thus offer 
a unique possibility for the treatment of various hypoxia-
associated diseases and their development would spark an 
exciting research area for their potential use as indicated by 
the numerous isoform-selective deletion models.
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