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Abstract
In isolated segments of the rat proximal colon, the dopamine reuptake inhibitor GBR 12909 (GBR) causes a dilatation, 
while the  D1-like receptor antagonist SCH 23390 (SCH) induces a tonic constriction, suggesting that neurally released 
dopamine tonically stimulates enteric inhibitory efferent neurons. Here, the targets of the enteric dopaminergic neurons were 
investigated. Cannulated segments of rat proximal colon were bathed in physiological salt solution and luminally perfused 
with 0.9% saline, while all drugs were applied to the bath. Spatio-temporal maps of colonic motility were constructed from 
video recordings of peristaltic contractions, and the maximum diameter was measured as an index of colonic contractility. 
GBR (1 μM)-induced dilatations of colonic segments were prevented by SCH (5 μM), L-nitro arginine (L-NA; 100 μM), 
a nitric oxide synthase inhibitor, or tetrodotoxin (0.6 μM). In contrast, constrictions induced by a higher concentration of 
SCH (20 μM) were unaffected by either L-NA or tetrodotoxin. The vasoactive intestinal peptide (VIP) receptor antagonist 
 VIP10-28 (3 μM) or  P2Y1 receptor antagonist MRS 2500 (1 μM) had no effect on either the GBR-induced dilatation or the 
SCH-induced constriction. In colonic segments that had been pretreated with 6-hydroxydopamine (100 μM, 3 h) to deplete 
enteric dopamine, GBR failed to increase the colonic diameter, while SCH was still capable of constricting colonic segments. 
Enteric dopaminergic neurons appear to project to nitrergic neurons to dilate the proximal colon by activating neuronal 
 D1-like receptors. In addition, constitutively activated  D1-like receptors expressed in cells yet to be determined may provide 
a tonic inhibition on colonic constrictions.

Keywords Colonic motility · Constitutive active receptor · Dopamine · D1-like receptor · Peristalsis

Introduction

The enteric nervous system (ENS), where a complex network 
of afferent and efferent neurons is functionally modulated 
by interneurons, plays pivotal roles in regulating intestinal 
peristalsis. Excitatory efferent neurons release acetylcho-
line or substance P to contract smooth muscle cells, while 
their relaxation is mediated by nitric oxide (NO), vasoactive 
intestinal peptide (VIP), or purines released from inhibitory 
efferents [8, 15]. In the proximal colon, dopamine released 
from interneurons appears to bind to dopamine  D1-like 
receptors, including  D1 and  D5 receptors [24], expressed in 

both nitrergic and cholinergic neurons to modulate colonic 
motility [1, 18, 19, 27].

In isolated colonic segments, GBR 12909 (GBR), a selec-
tive dopamine reuptake inhibitor, increases the maximum 
diameter with a reduction in the frequency of peristaltic 
waves as does sodium nitroprusside, an NO donor. SCH 
23390 (SCH), a  D1-like receptor antagonist, decreases the 
maximum diameter and slows or prevents colonic peristal-
sis, as is also the case upon the blockade of nitrergic trans-
mission using L-nitro arginine (L-NA), an NO synthase 
(NOS) inhibitor. Thus, neurally released dopamine appears 
to predominantly stimulate nitrergic neurons, while having 
a lesser effect of cholinergic neurons [27]. Yet, the precise 
target neurons of enteric dopaminergic neurons in colonic 
segments remain to be determined.

In colonic muscle strips, exogenous dopamine attenu-
ates cholinergic nerve-mediated contractions by activating 
 D1-like receptors that are presumably located in nitrergic and 
purinergic neurons [2]. However, SCH-induced enlargement 
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of spontaneous or cholinergic nerve-mediated contractions is 
not inhibited by either tetrodotoxin (TTX), a NOS inhibitor 
or a  P2Y1 receptor antagonist [2], suggesting that consti-
tutively active  D1-like receptors may also be expressed in 
a population of cells within the colonic wall exerting tonic 
inhibition of colonic contractility.

In this study, the cellular target(s) of enteric dopamin-
ergic neurons was further investigated by analyzing the 
motility of isolated segments of the rat proximal colon 
using spatio-temporal mapping techniques. Since dopa-
minergic neurons exert inhibitory effects on the colonic 
motility, the cellular target(s) was explored with a par-
ticular focus on nitrergic, VIP or purinergic neurons. In 
addition, the effects of neuronal dopamine depletion with 
6-hydroxydopamine (6-OHDA) on the colonic motility 
was examined to explore if constitutively active  D1-like 
receptors may contribute to dopaminergic inhibition of the 
colonic motility [31].

Materials and methods

Ethical approval

Male Wistar rats (Japan SLC, Shizuoka, Japan) were housed 
under a 12:12 h light/dark cycle at 23 ± 1 °C with free access 
to food and water. The experimental procedures were per-
formed according to the guidelines for the care and use of 
laboratory animals approved by The Experimental Animal 
Committee of the Nagoya City University Graduate School 
of Medical Sciences (Approval no: H30M-27).

Video imaging of colonic motility

Rats aged 6–7 weeks were used for a series of experiments. 
All rats were decapitated, segments of the proximal colon 
with a length of approximately 5–6 cm were removed and 
immersed in physiological salt solution (PSS). Luminal 
contents in the colonic segments were emptied by PSS 
flushing, and then the segments were placed in a 30 mL 
volume of organ bath that was continuously perfused with 
warmed (36 °C) and oxygenated (95%  O2 + 5%  CO2) PSS 
at 3.5 mL  min−1. The oral ends of the colonic segments 
were cannulated via an L-shaped attachment, and luminally 
perfused with degassed 0.9% saline at 1.5 mL  min−1 using 
a peristaltic pump. The aboral ends of the colonic segments 
were cannulated to another L-shaped attachment, and its out-
let was connected to a one-way valve to prevent backflow 
of saline. The level of outflow was set to 4 cm above the 
colonic segments to provide a suitable backpressure. Colonic 
segments were initially allowed to develop stable peristaltic 
contractions for about 1 h, and then only a single experi-
mental protocol in which the drug was applied in the bath 
solution was conducted on individual colonic segments. All 
experiments were performed during the light period.

Wall motion of colonic segments was recorded using a 
digital video camera (HDR-XR500V; Sony, Tokyo, Japan), 
positioned above the segment. The videos were converted 
into spatio-temporal maps of diameter changes (DMaps) 
using custom-made software [5, 26]. The initial 1 cm of 
the oral end and 1.5 cm of the aboral end were excluded for 
making the DMaps. Regions of maximum diameter (dilata-
tion) were represented on DMaps as black pixels, whereas 
that of minimum diameter (contraction) was represented as 
white pixels.

6‑OHDA lesion model

The 6-OHDA lesion model rats were prepared using a 
method modified from previously published protocols [11, 
23]. Briefly, the total dose of 6-OHDA remained unchanged 
(300 mg  kg−1), while the treatment period was increased 
from 1 to 4 weeks to avoid interfering with body weight loss. 
Rats aged 3 weeks were administered intraperitoneally with 
6-OHDA (100 mg  kg−1) or vehicle 3 times, on day 0, day 
7, and day 14. Experiments were performed on days 28–30 
(7-week-old).

Solutions

The composition of PSS was (in mM) as follows:  Na+, 
137.5;  K+, 5.9;  Ca2+, 2.5;  Mg2+, 1.2;  HCO3

−, 15.5;  H2PO4
−, 

1.2;  Cl−, 134 and glucose, 11.5. The drugs used were GBR, 

Fig. 1  Effects of GBR 12909 (GBR) and SCH 23990 (SCH) on 
colonic motility in the proximal colon of rats. A series of spatio-
temporal maps of diameter changes showed time-dependent effects 
of bath-applied GBR (1 μM, up to 30 min) on colonic motility (a). 
Arrowheads indicated peristalsis. Time-dependent effects of GBR 
on the maximum diameter (b), % of maximum diameter (c), and 
frequency of peristalsis (d) were summarized (mean ± SD, n = 8, 
*P < 0.05, NS: not significant). A series of spatio-temporal maps 
showed that SCH (5 μM) did not change the maximum diameter but 
reduced the frequency of peristalsis. Pre-treatment of SCH (5  μM) 
blocked the dilatation of colonic segments induced by a subsequent 
10 min application of GBR (1 μM, e). Effects of SCH (5 μM) alone 
and SCH plus GBR (1 μM) on the maximum diameter (f), % of maxi-
mum diameter (g), and frequency of peristalsis (h) were summarized 
(n = 5). A series of spatio-temporal maps showed that GBR (1  μM) 
dilated without changing the frequency of peristaltic waves. Subse-
quent bath-applied SCH (20  μM) reversed the GBR-induced dilata-
tion and prevented the generation of peristaltic waves (i). Effects of 
GBR alone and GBR plus SCH on the maximum diameter (j), % of 
maximum diameter (k), and frequency of peristalsis (l) were summa-
rized (n = 11)

◂
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Fig. 2  Effects of an inhibition 
of inhibitory efferent signals on 
the GBR-induced dilatation in 
the proximal colon of rats. A 
series of spatio-temporal maps 
of diameter changes showed 
effects of bath-applied L-nitro 
arginine (L-NA, 100 μM, a), 
vasoactive intestinal peptide 
10–28  (VIP10-28, 3 μM, e), and 
MRS 2500 (MRS, 1 μM, i) 
on the GBR (1 μM)-induced 
dilatation in colonic segments. 
Arrowheads indicate peristalsis. 
Effects of bath-applied GBR 
plus L-NA (n = 7),  VIP10-28 
(n = 5), and MRS (n = 5) on the 
maximum diameter (b, f, j), 
% of maximum diameter (c, g,  
k) and frequency of peristal-
sis (d, h, l) were summarized 
(mean ± SD, *P < 0.05, NS: not 
significant)
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dopamine (Tokyo Chemical Industry, Tokyo, Japan), SCH, 
L-NA, propranolol, phentolamine, guanethidine (Sigma-
Aldrich, St. Louis, MO, USA),  VIP10-28 (AnyGen Co., Ltd, 
Gwang-ju, Korea), MRS 2500 (MRS; Tocris Bioscience, 
Bristol, UK), TTX, desipramine (Wako Pure Chemical 
Industries, Osaka, Japan), and 6-OHDA (LKT Laboratories, 
Inc., St. Paul, MN, USA). 6-OHDA was dissolved in 0.1% 
ascorbic acid in 0.9% saline. Other drugs were dissolved in 
deionized water.

Concentrations of GBR (1 μM) [27], SCH (5 or 20 μM) 
[27],  VIP10-28 (3 μM) [13], MRS (1 μM) [15], dopamine 
(3  μM) [27], 6-OHDA (100  μM) [22], or desipramine 
(0.1 μM) [7] were chosen based on previous studies.

Data analysis

Data are expressed as mean ± SD (where n is number of 
preparations as well as animals). One- or two-way repeated-
measures analysis of variance (RM-ANOVA) followed by 
post hoc Bonferroni multiple comparisons test, unpaired 
Student’s t-test or Fisher’s exact test was used to exam-
ine the effects of drugs. P-values < 0.05 were considered 
to be statistically significant. Control parameters, namely, 
the maximum diameter and frequency of peristalsis, were 
measured for 5-min periods immediately prior to drug appli-
cation. Effects of the drugs on the parameters were analyzed 
for 5-min periods 5 min after drug application, except for 
the treatment with GBR for 30 min or 6-OHDA for 3 h. The 
peristaltic waves were defined as contractile waves origi-
nated at the oral end of the DMaps that propagated along 
its entire length to the aboral end. Peristaltic contractions 
were defined as the regions where the colonic diameter was 
reduced to less than 75% of its basal values in the measured 
5-min period (Supplemental Fig. 1).

Results

In isolated colonic segments with a maximum diameter of 
9.21 ± 0.54 mm, peristaltic waves propagated from the oral 
to aboral end were periodically generated at a frequency, 
2.8 ± 0.9 5  min−1 (n = 97 animals). Since the inhibition of 
nitrergic neurons invariably disrupted or abolished peristal-
tic contractions [27], changes in the maximum diameters but 
not the frequency of peristaltic waves were used as a primary 
index of the colonic contractility. To adjust variations in 
the basal diameter among samples, after one- or two-way 
RM-ANOVA using raw data of the maximum diameter, the 
comparisons among multiple groups were performed using 
normalized data (% of max diameter).

Consistent with our previous report [27], the inhibition of 
neuronal dopamine reuptake with bath-applied GBR (1 μM, 
5–10 min) increased the basal diameter of colonic seg-
ments without changing the frequency of peristaltic waves 
(Fig. 1a-d). Prolonged application of GBR further increased 
the colonic diameter over time periods of 15–20 min and 
25–30 min (Fig. 1a-c) and reduced the peristaltic frequency 
during 15–20 min period (Fig. 1d). In the following experi-
ments, the colonic dilatation induced by 5–10 min applica-
tion of GBR was subject to analysis.

In our previous study, the blockade of  D1-like dopamine 
receptors with SCH at a dose of 20 μM but not 5 μM reduced 
the colonic diameter [27]. Consistently, bath-applied 
SCH (5 μM) alone did not decrease the colonic diameter 
(Fig. 1e-g), while reducing the frequency of peristaltic waves 
(Fig. 1e, h). In the presence of SCH (5 μM), a 5–10 min 
application of GBR (1 μM) failed to dilate colonic segments 
(Fig. 1e–g), suggesting that GBR exerted its dilatory actions 
via  D1–like receptors. In preparations where GBR (1 μM) 
application for 5–10 min had induced a colonic dilatation, 
subsequent application of a higher dose of SCH (20 μM) 
decreased the maximum diameter and largely reduced the 
frequency of peristaltic waves or abolished their generation 
(Fig. 1i-l).

Neither GBR (1 μM) nor SCH (5 μM) affected the veloc-
ity of peristaltic waves (Supplemental Fig. 2a-c).

Roles of nitrergic, VIP, and purinergic neurons 
in the GBR‑induced dilatation of the colonic 
segment

Since the neuronal dopamine reuptake inhibitor GBR that is 
expected to enhance dopaminergic transmission resulted in 
colonic dilatations, neurally released dopamine may stimu-
late nitrergic, VIP, or purinergic neurons.

Inhibition of nitrergic transmission with L-NA (100 μM) 
decreased the colonic diameter and reduced the frequency of 
peristaltic waves or abolished their generation (Fig. 2a–d). 
In the colonic segments that had been pretreated with L-NA 
(100 μM), GBR (1 μM) failed to increase the maximum 
diameter (Fig. 2a–c).

VIP10-28 (3 μM), a VIP receptor antagonist, alone had 
no effect on either the maximum diameter or the frequency 
of peristaltic waves (Fig. 2e–h). In the presence of  VIP10-28 
(3 μM), GBR (1 μM) was still capable of causing colonic 
dilatation (Fig. 2e–g).

MRS (1 μM), a  P2Y1 receptor antagonist, itself tended 
to decrease the colonic diameter with a reduction in the fre-
quency of peristaltic waves (Fig. 2i–l). MRS (1 μM) failed to 
prevent GBR (1 μM)-induced colonic dilatation (Fig. 2i–k).
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Roles of nitrergic, VIP, and purinergic neurons 
in the SCH‑induced constriction of the colonic 
segment

Since the blockade of nitrergic transmission with L-NA 
prevented GBR-induced colonic dilatations, SCH-induced 
colonic constrictions may be attributable to the suppres-
sion of basal activity of nitrergic neurons. However, SCH 
(20 μM) was capable of further reducing the maximum diam-
eter in colonic segments where L-NA (100 μM) had caused 
a colonic constriction (Fig. 3a, b). Since L-NA (100 μM) 
alone abolished the generation of peristaltic contractions (see 
Fig. 2a), it was not possible to examine whether SCH (20 μM) 
reduced peristalsis in the absence of nitrergic transmission.

Pre-treatment of the colonic segment with  VIP10-28 
(3 μM) or MRS (1 μM) also failed to prevent SCH (20 μM)-
induced colonic constrictions (Fig. 3c–j).

Effects of TTX on the colonic diameter change

To explore if SCH (20 μM)-induced colonic constrictions 
may be mediated by the suppression of non-nitrergic, non-
VIP and non-purinergic neurons, the effects of TTX, a neural 
excitation blocker, were examined.

TTX (0.6 μM) alone decreased the maximum diameter 
and prevented the generation of peristaltic waves (Fig. 4a). 
In the colonic segments that had been pretreated with TTX 
(0.6 μM), SCH (20 μM) further decreased the maximum 
diameter (Fig. 4a–c), while GBR (1 μM)-induced increases 
in the colonic diameter were effectively prevented (Fig. 4d, 
e). In the TTX-pretreated segments, bath-applied dopamine 
(3 μM) increased the colonic diameter (Fig. 4f, g), suggest-
ing dopamine is able to exert its dilatory actions indepen-
dently of neuronal action potentials.

Effects of GBR and SCH on the diameter change 
in 6‑OHDA‑treated colonic segments

TTX prevented the relaxing actions of GBR that appear 
to result from endogenous dopamine-induced stimulation 
of  D1-like receptors in nitrergic neurons but not the con-
strictor actions of SCH. Thus,  D1-like receptors may also 

be constitutively expressed in other population(s) of cells 
[31]. To eliminate the contribution of enteric dopaminergic 
neurons, colonic segments were treated with 6-OHDA, a 
dopaminergic neurotoxin, to deplete neuronal dopamine.

Bath application of 6-OHDA (100 μM) for 1 h increased 
the colonic diameter with an abolition of peristaltic waves 
(Fig. 5a–d). During continuous application of 6-OHDA 
(100 μM) for 2 h, the maximum diameter was partially 
returned towards its original values (Fig. 5a–c). Peristal-
tic waves were also restored, although their frequency was 
a lower frequency than control values (Fig. 5a, d). After 
3 h of 6-OHDA treatment, peristaltic waves were further 
slowed or abolished without changing the maximum diame-
ter (Fig. 5a–d). In the segments that had been pretreated with 
6-OHDA (100 μM) for 3 h, GBR (1 μM) failed to increase 
the maximum diameter, but subsequent SCH (20 μM) was 
still capable of decreasing the colonic diameter (Fig. 5e).

Effects of in vivo 6-OHDA treatment on the actions of 
GBR and SCH were also examined. Intraperitoneal injection 
of 6-OHDA (100 mg  kg−1) transiently reduced body weight in 
rats at day 1, but body weights increased constantly thereafter 
(Supplemental Fig. 3a). Body weight gain of 6-OHDA-injected 
rats was lower than that of vehicle-injected rats at days 0–1 but 
not at days 7–8 or days 14–15 (Supplemental Fig. 3b).

In 12 out of 13 colonic segments isolated from vehicle-
treated rats, GBR (1 μM) increased the maximum diameter 
(Supplemental Fig. 3c, e, and f), while GBR (1 μM) dilated 4 
out of 8 segments isolated from 6-OHDA-treated rats (Sup-
plemental Fig. 3d-f). The incidence rate of GBR-induced dil-
atation was reduced in the segments isolated from 6-OHDA-
treated rats compared to vehicle-treated rats (P < 0.05), 
suggesting that dopaminergic neurons were disrupted by 
in vivo 6-OHDA treatment. In colonic segments isolated 
from 6-OHDA-treated rats, subsequent SCH (20 μM) was 
still capable of constricting colonic segments (Supplemental 
Fig. 3d-f). In both vehicle- and 6-OHDA-treated segments, 
the frequency of peristaltic waves was unaffected by GBR 
(1 μM), but their generation was prevented by subsequent 
SCH (20 μM) (Supplemental Fig. 3c, d, and g).

The maximum diameter and frequency of peristaltic 
waves in colonic segments isolated from 6-OHDA-treated 
rats were unexpectedly comparable to that of vehicle-treated 
rats (Supplemental Fig. 3e and g, P > 0.05).

Effects of a facilitation and inhibition 
of noradrenergic signaling on colonic motility

Despite the fact that 6-OHDA denervates not only dopa-
minergic but also noradrenergic nerves [11, 23], desipra-
mine (0.1 μM), a selective noradrenaline reuptake inhibitor, 
had no effect on the colonic diameter or the frequency of 
peristaltic waves (Fig. 6a–c), while subsequent applica-
tion of GBR (1 μM) increased the colonic diameter without 

Fig. 3  Effects of an inhibition of inhibitory efferent signals on the 
SCH-induced constriction in the proximal colon of rats. Effects of 
bath-applied SCH (20 μM) plus L-NA (100 μM, n = 5; a, b),  VIP10-28 
(3  μM, n = 5; d, e), and MRS (1  μM, n = 5; h, i) on the maximum 
diameter and % of maximum diameter were summarized (mean ± SD, 
* P < 0.05, NS: not significant). A series of spatio-temporal maps 
of diameter changes showed effects of bath-applied  VIP10-28 (c) and 
MRS (g) on the SCH-induced constriction in colonic segments. 
Arrowheads indicate peristalsis. Effects of bath-applied SCH plus 
 VIP10-28 (n = 5, f) and MRS (n = 5, j) on the frequency of peristalsis 
were summarized

◂
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Fig. 4  Effects of a neural 
blocker on the diameter change 
in the proximal colon of rats. A 
series of spatio-temporal maps 
of diameter changes demon-
strated that pretreatment of tet-
rodotoxin (TTX, 0.6 μM) failed 
to block the SCH (20 μM)-
induced constriction in colonic 
segments (a). Arrowheads indi-
cate peristalsis. Effects of bath-
applied TTX plus SCH (n = 5; 
b, c), GBR (1 μM, n = 5; d, e) 
and dopamine (3 μM, n = 6; f, 
g) on the maximum diameter 
and % of maximum diameter 
were summarized (mean ± SD, 
*P < 0.05, NS: not significant)
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changing the peristaltic frequency (Fig. 6a–c). Bath-applied 
propranolol (1 μM), a β-adrenoceptor antagonist, and sub-
sequently applied phentolamine (1 μM), an α-adrenoceptor 
antagonist, also had no effect on the colonic diameter or 
the frequency of peristaltic waves (Fig. 6d–f). Guanethidine 
(10 μM), an adrenergic neuron blocker, had no effect on the 
maximum diameter but decreased the frequency of peristal-
tic waves (Fig. 6g–j). Subsequent administration of GBR 
(1 μM) but not desipramine (0.1 μM) increased the colonic 
diameter without changing the frequency (Fig. 6g–j).

Discussion

Neural targets of endogenous dopamine in the proximal 
colon were investigated. In addition, the contribution of 
constitutively active  D1-like receptors to dopaminergic 

inhibition of the colonic motility was explored. Our princi-
pal findings were as follows: (i) the inhibition of dopamine 
reuptake with GBR that would increase synaptic dopamine 
concentrations dilated segments of rat proximal colon via the 
stimulation of  D1-like receptors, (ii) the blockade of  D1-like 
receptor with SCH constricted colonic segments, (iii) the 
effects of GBR but not SCH on the colonic motility were 
inhibited by L-NA or TTX, and (iv) the colonic segments 
in which neuronal dopamine is expected to be depleted by 
6-OHDA were unresponsive to GBR but constricted by 
SCH. These findings suggested that enteric dopaminergic 
nerves stimulate nitrergic neurons expressing  D1-like recep-
tors to inhibit the colonic contractile activity. Constitutively 
active  D1-like receptors that are expressed in cells yet to be 
determined, presumably non-neuronal, cells contribute to 
tonic dilatation of the proximal colon that is essential for the 
generation of coordinated peristalsis (Fig. 7).
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Fig. 5  Effects of bath-applied 6-hydroxydopamine (6-OHDA) on 
colonic motility in the proximal colon of rats. A series of spatio-
temporal maps of diameter changes showed time-dependent effects of 
bath-applied 6-OHDA (100  μM, up to 3  h) on colonic motility (a). 
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*P < 0.05, NS: not significant,.#P < 0.05 vs. vehicle). Effects of GBR 
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that had been pretreated with 6-OHDA (100 μM) for 3 h were sum-
marized (e, n = 10)
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Neuronal target of dopaminergic neurons to inhibit 
colonic contractility

GBR-induced dilatations of the colonic segments were pre-
vented by SCH and absent in the 6-OHDA-treated colonic 
segment, indicating that GBR exerts its actions by spe-
cifically increasing synaptic dopamine concentration. The 
inhibitory actions of GBR were prevented by L-NA but not 
the VIP receptor antagonist  VIP10-28 or the  P2Y1 receptor 
antagonist MRS, suggesting that dopaminergic neurons 

primarily project to nitrergic rather than VIP or purinergic 
neurons for interneuronal regulation of colonic motility.

Consistently, our previous immunohistochemical study 
demonstrated that  D1 receptor immunoreactivity is co-local-
ized with the nitrergic nerve marker neuronal NOS in the 
ENS [27]. Since  D1-like receptors are coupled to the  Gs pro-
tein [24],  D1-like receptor-mediated activation of the adenylyl 
cyclase-cAMP-protein kinase A pathway would enhance NO 
release from nitrergic neurons by phosphorylating neuronal 
NOS [9]. Thus, GBR-induced enhancement of dopaminergic 
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neurotransmission appears to result in the stimulation of nitrer-
gic neurons.

Roles of apo‑D1‑like receptors in the regulation 
of colonic motility

SCH-induced constrictions of colonic segments were not 
blocked by either L-NA,  VIP10-28 or MRS, suggesting that 
the constrictions were not due to the removal of inhibitory 
neuronal activity. In accordance with a previous study [2], 
the blockade of neuronal activity with TTX also failed to 
inhibit the excitatory actions of SCH, suggesting that SCH 
acts on  D1-like receptors expressed in non-neuronal cells.

Bath-applied 6-OHDA initially abolished the generation 
of colonic peristalsis with a colonic dilatation presumably 
due to an acute, massive leakage of neuronal dopamine. Dur-
ing prolonged exposure to 6-OHDA for 2 h, the diameter was 
partially returned towards its original level, presumably due 
the removal of the leaked dopamine by its diffusion and/or 
degradation. Peristalsis was also restored at a lower frequency 
than control conditions, suggesting that some residual dopa-
minergic nerves may still be capable of releasing dopamine 
to partially restore peristalsis. However, further exposure to 
6-OHDA for 3 h eventually abolished peristalsis presumably 
due to a total lesion of dopaminergic nerves. The lack of 
colonic dilatation with GBR in 6-OHDA-treated colonic seg-
ments supported the notion that enteric dopaminergic neu-
rons are not functional. In this condition, SCH was capable of 
constricting 6-OHDA-treated colonic segments, suggesting 
that constitutively active  D1-like receptors may be expressed 
in a population of cells, presumably non-neuronal cells, as 
in the case of serotonin 5-HT3/4 receptors in the colon [29, 
31]. SCH-induced constrictions of colonic segments taken 
from in vivo 6-OHDA-treated rats also supported this notion.

In our previous immunohistochemical study [27], the 
expression of  D1 receptors was not detected in colonic 
smooth muscle cells, interstitial cells of Cajal or platelet-
derived growth factor receptor α-positive cells that form an 
integrated postjunctional network, referred to as the SIP syn-
cytium [6]. Transcriptome analyses has also demonstrated 
that gene expression of dopamine receptors are nearly absent 
in the SIP syncytium [10, 16, 17]. Since the  D5 receptor 
gene is expressed in colonic residential macrophages [20], 
constitutive active  D1-like receptors in these residential mac-
rophages may well be modulating colonic contractile activity 
[21, 25].

Roles of noradrenergic neurons in the regulation 
of motility in isolated colonic preparations

Noradrenaline released by electrical stimulation of sympa-
thetic nerves inhibits colonic migrating motor complexes in 

isolated colonic segments of mice [14]. In our isolated rat 
colonic preparations, the selective noradrenaline reuptake 
inhibitor desipramine, β-adrenoceptor antagonist proprano-
lol or the α-adrenoceptor antagonist phentolamine did not 
affect the colonic motility, suggesting that constitutively 
released noradrenaline has a negligible role in regulating 
the motility. Nevertheless, the adrenergic neuron blocker 
guanethidine reduced the frequency of colonic peristalsis. 
The guanethidine-induced inhibition of peristalsis could 
be attributable to its transient stimulation of noradrenaline 
releases, but subsequent desipramine did not enhance the 
inhibitory action. In guanethidine-treated segments, GBR 
was capable of dilating the colonic segments, suggesting 
that enteric dopamine was not depleted. Since  P2Y1 receptor 
blockade with MRS reduced the frequency of colonic peri-
stalsis, guanethidine-induced inhibition of peristalsis could 
be due to the blockade of purines that could be released from 
sympathetic nerves as co-transmitter(s).

Pathological implications

In patients with Parkinson’s disease, in whom dopaminergic 
neurons are reduced in the both central and enteric nerv-
ous systems, constipation is a commonly seen non-motor 
symptom [12, 28, 30]. While the degeneration of central 
dopaminergic neurons also results in the impairment of 
colonic contractile activity [4], reductions in daily fecal 
output occurred at 3 weeks after the lesion of nigrostriatal 
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Fig. 7  Proposed roles of enteric dopaminergic neurons and  D1-like 
receptors in regulating motility in the proximal colon. Dopamine 
released from enteric neurons stimulates nitrergic neurons via the 
activation of  D1-like receptors to dilate the proximal colon. Undeter-
mined cells expressing constitutive active  D1-like receptors also con-
tribute to relax smooth muscle cells to suppress non-propagating con-
tractions for the generation of coordinated peristalsis



1326 Pflügers Archiv - European Journal of Physiology (2023) 475:1315–1327

1 3

dopaminergic neurons, presumably due to enteric neuronal 
dysfunction secondary to central dopaminergic neural loss 
[3]. Thus, dysfunction of enteric dopamine rather than 
central dopamine may have an impact on constipation in 
the prodromal stage of Parkinson’s disease [12, 28]. Since 
peristaltic contractions in colonic segments in which neu-
ronal dopamine is expected be chronically depleted with the 
4-week-6-OHDA treatment remained comparable to those 
of normal colonic segments, compensatory mechanisms 
may have substituted for dopaminergic neurons to maintain 
normal colonic motility. Thus, subsequent neuronal loss of 
central dopaminergic neurons may contribute to late stage 
constipation in Parkinson’s disease patients.

Conclusions

Dopaminergic neurons appear to facilitate nitrergic neurons 
expressing  D1-like receptors to dilate the proximal colon, 
contributing the maintenance of regular peristaltic waves. 
Constitutively activated enteric  D1-like receptors may also 
contribute to basal dilatation of the colon.
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