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Abstract
Hyperuricemia, defined as elevated serum concentrations of uric acid (UA) above 416 µmol  L−1, is related to the develop-
ment of cardiometabolic disorders, probably via induction of endothelial dysfunction. Hyperuricemia causes endothelial 
dysfunction via induction of cell apoptosis, oxidative stress, and inflammation; however, it’s interfering with insulin signal-
ing and decreased endothelial nitric oxide (NO) availability, resulting in the development of endothelial insulin resistance, 
which seems to be a major underlying mechanism for hyperuricemia-induced endothelial dysfunction. Here, we elaborate 
on how hyperuricemia induces endothelial insulin resistance through the disruption of insulin-stimulated endothelial NO 
synthesis. High UA concentrations decrease insulin-induced NO synthesis within the endothelial cells by interfering with 
insulin signaling at either the receptor or post-receptor levels (i.e., proximal and distal steps). At the proximal post-receptor 
level, UA impairs the function of the insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K)/protein 
kinase B (Akt) in the insulin signaling pathway. At the distal level, high UA concentrations impair endothelial NO synthase 
(eNOS)-NO system by decreasing eNOS expression and activity as well as by direct inactivation of NO. Clinically, UA-
induced endothelial insulin resistance is translated into impaired endothelial function, impaired NO-dependent vasodilation, 
and the development of systemic insulin resistance. UA-lowering drugs may improve endothelial function in subjects with 
hyperuricemia.
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OAT  Organic anion transporter
PI3K  Phosphatidylinositol 3-kinase
PKC  Protein kinase C
ROS  Reactive oxygen species
RR  Relative risk
SLC  Solute carrier family
T2DM  Type 2 diabetes mellitus
UA  Uric acid
UAT   Uric acid transporter
URATv1  Voltage-driven urate transporter 1
VCAM-1  Vascular cell adhesion molecule-1
XDH  Xanthine dehydrogenase
XO  Xanthine oxidase
XOR  Xanthine oxidoreductase

Introduction

Uric acid (UA), the end product of purine catabolism in 
humans, is synthesized from xanthine through the action 
of the xanthine oxidoreductase (XOR) enzyme system 
[63]. In addition to being the primary cause of gout [64], 
hyperuricemia is a risk factor for cardiometabolic disorders 
[33, 48, 55, 99] and mortality [52, 100]. Meta-analyses of 
cohort studies report a 24% attributable risk of high-serum 
UA for incidence of type 2 diabetes mellitus (T2DM) with 
each 59.48 μmol  L−1 (1 mg  dL−1) increase in circulating UA 
concentration increases the risk of T2DM by 6–17% [50, 
60]. Although still controversial, increased circulating levels 
of UA are considered to be a causative factor for developing 
T2DM [50, 60].

High UA concentrations can be a predisposing factor in 
the onset of T2DM. This is potentially due to induction of 
pancreatic β-cell death and impairment of insulin secretion 
[31, 59] and/or blunting of insulin signaling in various cells, 
including cardiomyocytes [115], skeletal muscle cells [109], 
adipocytes [9], hepatocytes [116], and endothelial cells [20] 
that is consequently reflected as systemic insulin resistance 
[2, 65].

Hyperuricemia induces endothelial dysfunction primarily 
by decreasing nitric oxide (NO) bioavailability [66], which is 
considered to be the primary factor coupling endothelial dys-
function with insulin resistance [19]. Hyperuricemia inhibits 
insulin-induced activation and expression of endothelial NO 
synthase (eNOS) and therefore decreases NO production in 
the endothelial cells, resulting in endothelial insulin resist-
ance [20, 77, 97]. The critical role of endothelial-derived NO 
in insulin homeostasis is greatly supported by experiments 
in which eNOS-deficient animals display insulin resistance 
[18, 25].

This review aims to elaborate on how hyperuricemia 
induces endothelial insulin resistance by disrupting the 
endothelial NO system.

UA metabolism

Uric acid (C5H4N4O3, 7,9-dihydro-1 H-purine2,6,8(3 
H)-trione, molecular mass 168 Da) is a weak hydrogen-
ated organic acid with pKa1 of 5.75 and pKa2 of 10.3. 
Under physiological conditions (i.e., pH 7.4 and 37 °C), 
UA predominantly circulates (~ 98–99%) in the plasma 
and synovial fluid in its mono-deprotonated ionic form 
(urate anion) [72]. Figure 1 summarizes the biosynthesis 
and catabolism of UA, indicating how an imbalance in UA 
metabolism leads to hyperuricemia and contributing to the 
development of gout and cardiometabolic disorders. The 
whole-body homeostasis of UA depends on the balance 
between its production and catabolism [91]. UA is origi-
nated from the catabolism of adenine- and guanine-based 
purines arising from endogenous (i.e., de novo purine 
biosynthesis and cell and tissue turnover) and exogenous 
(i.e., dietary purines occurring in the seafood, meats, and 
legumes) sources [40, 102, 103]. The liver is the major site 
of UA production, while other organs such as the intestine, 
myocardium, kidney, and endothelium also synthesize UA 
to a lesser extent [26]. About two-thirds of UA is elimi-
nated by the kidneys in the urine [92] and approximately 
one-third to one-fourth is eliminated via the gastrointes-
tinal tract [14, 63].

Many enzymes are involved in metabolizing purines (ade-
nine and guanine) to UA; adenosine monophosphate (AMP) 
is converted to inosine via nucleotidase and adenosine deam-
inase, whereas guanine monophosphate (GMP) is converted 
to guanosine by nucleotidase [63]. Both nucleosides (inosine 
and guanosine) are subjected to further processes to convert 
to hypoxanthine (HPX) and guanine, respectively, by the 
act of purine nucleoside phosphorylase [63]. The guanine 
is then deaminated to form xanthine via guanine deami-
nase [63]. The XOR is the key and rate-limiting enzyme 
in purine metabolism [63] that converts HPX to xanthine 
and then to UA [63]. Mammalian XOR has two intercon-
vertible forms, a dehydrogenase form (XDH, EC 1.17.1.4) 
and an oxidase form (XO, EC 1.17.3.2) [36]. The XDH-XO 
transition occurs either irreversibly via partial proteolysis or 
reversibly via the chemical or enzymatic oxidation of thiol 
groups [12]. The XDH is predominantly the intracellular 
form, whereas XO is the post-transcriptionally modified 
circulating form and is highly expressed in pathological 
conditions (e.g., hypoxia and ischemia [119]) that gener-
ate toxic levels of superoxide anion and hydrogen peroxide 
[3, 11]. NO can modify XOR activity; exogenous NO and 
also NO produced by XOR-induced reduction of nitrite to 
NO inactivate XOR by NO-induced conversion of XO to its 
desulfo-form [32, 39].

Normal plasma concentrations of UA are 155–357 µmol 
 L−1 in women and 208–428 µmol  L−1 in men [23]. A 
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threshold level of < 360 µmol  L−1 has been suggested 
to be a cut-off value to identify healthy subjects [23]; 
however, hyperuricemia is commonly defined as plasma 
UA concentration of greater than 416 µmol  L−1, which 
is related to an increased size of exchangeable UA pool 
by about twofold (from 1200 to 2027 mg) and hyperuri-
cosuria (urinary excretion of UA > 800 mg  day−1 in men 
and > 750 mg  day−1 in women) [14, 102].

Physiological functions of UA

Although physiological functions of UA have been poorly 
documented, both in vitro and in vivo studies indicate that 
physiological concentrations of UA can exert antioxidant 
[13], anti-inflammatory, and chondroprotective effects 
[54]. UA is also essential for endothelial function (see 
the “Physiologic functions of UA in the endothelial cells” 

section), immune response, and defense against neurologi-
cal and autoimmune diseases [13, 26]. As discussed by 
Johnson et al. [42], UA may act as a “physiological alarm 
signal” in response to modern lifestyle. The lack of uricase 
is responsible for a higher level of UA in human blood 
(180–720 μmol  L−1) compared to other mammals that have 
uricase (30–120 μmol  L−1) [42]. It has been hypothesized 
that uricase mutation (occurred in early hominoid evolution) 
led to higher serum UA concentrations, might have been 
a compensatory response to the loss of L-gluconolactone 
oxidase (the enzyme responsible for ascorbic acid synthesis) 
that acted as an antioxidant system, improved innate immune 
function, maintained blood pressure during periods of envi-
ronmental stress, and increased life span [5, 41].

Emerging high UA levels in modern humans have been 
interpreted as an adaptive response. UA retained in the cir-
culation in an attempt to offset disease-associated oxidative 

Fig. 1  Uric acid (UA) biosynthesis/catabolism pathways in humans 
and determinants of its whole-body homeostasis. The xanthine oxi-
doreductase (XOR) is the key and rate-limiting enzyme in the bio-
synthesis of UA that converts hypoxanthine (HPX) to xanthine (XN) 
and UA. Mammalian XOR has two interconvertible forms: dehydro-
genase (XDH) and oxidase (XO) forms. The kidneys eliminate about 
two-thirds (62.8–69.8%) of UA in urine, and one-third to one-fourth 
(16–22%) is eliminated via the gastrointestinal tract and excreted 
in the feces as intact UA and allantoin (i.e., produced by bacterial 

uricase activity). The voltage-driven urate transporter 1 (URATv1), 
working together with URAT1, organic anion transporter 1 (OAT1), 
and OAT3, regulates renal urate handling, and ATP-binding cassette 
G2 (ABCG2) is known as the main one for intestinal UA transport 
regulation. Serum UA in humans is regulated mainly by ABCG2 (a 
secretion transporter) and URAT1 and URATv1 (urate reabsorption 
transporters). About 10% of hyperuricemia is attributed to UA over-
production, more than 80% to decreased UA renal excretion, and 10% 
to combined overproduction-underexcretion
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stress [15]. Uric acid is as effective as ascorbate at inhibiting 
lipid peroxidation [5] or more effective than ascorbate at 
neutralizing peroxynitrite [53]. The higher circulating level 
of UA compared to ascorbate (300 vs. 60–90 µmol  L−1) 
makes it the major antioxidant in humans. About half of 
the plasma total antioxidant capacity in humans has been 
attributed to circulating UA [5, 13]; UA comprises ~ 10–15% 
of hydroxyl radical-scavenging capacity and 30–65% of the 
peroxyl radical-scavenging capacity of plasma [13]. The oxi-
dative damage of biological molecules (i.e., protein, DNA, 
and lipids), induced by 2,2′-azobis-(2-amidinopropane)-
dihydrochloride, is effectively prevented by UA [71]. Physi-
ological concentrations of UA inhibit the oxo-heme oxidant 
formed by peroxide reaction with hemoglobin, and protect 
erythrocyte membrane against lipid peroxidation, and eryth-
rocytes from peroxidative damage and lysis [5, 46]. Uric 
acid also dose-dependently inhibits oxidation of human 
low-density lipoprotein at concentrations of 5–100 µmol 
 L−1 [88]; at a concentration of 100 µmol  L−1, UA reduces 
consumption of other antioxidants (i.e., α-tocopherol and 
β-carotene), by ~ 50% and effectively suppresses oxidation 
of polyunsaturated fatty acids [88].

At physiologic concentrations (15–60 μg/ml), UA inhibits 
activator protein-1 (AP-1) and extracellular signal-regulated 
kinase (ERK) signaling pathways as well as expression of 
tumor necrosis factor-α- and interleukin-induced inducible 
NOS, cyclooxygenase-2, and matrix metalloproteinase-13 
in joint tissues [54].

Pathological effects of high concentrations of UA

Epidemiological evidence indicates that hyperuricemia is 
associated with incidence of cardiovascular diseases [16, 
27] and development of atherosclerosis [34]. A meta-
analysis of prospective cohort studies showed that hyper-
uricemia was related to the risk of major adverse cardio-
vascular events [relative risk (RR) = 1.72, 95% confidence 
interval (CI) = 1.28–2.33) [112]. The pooled estimated 
effect size of hyperuricemia for the risk of coronary heart 
disease mortality and all-cause mortality was 1.14 (95% 
CI = 1.06–1.23) and 1.20 (95% CI = 1.13–1.28), respectively. 
Each 59.48 μmol  L−1 increase in serum UA concentration 
increased risk of coronary heart disease and all-cause mor-
talities by 20% and 9%, respectively [118]. A meta-analysis 
of 11 studies indicated that each 59.48 μmol  L−1 increase in 
serum UA increases risk of metabolic syndrome and non-
alcoholic fatty liver disease by 30% and 21%, respectively 
[110]. High-serum UA levels also contribute to the devel-
opment of hypertension and can lead to renal dysfunction 
by increasing renal vascular resistance and decreasing renal 
blood flow [86, 87]. High UA concentration induces vas-
cular dysfunction, by activating the nuclear factor kappa-B 
(NF-κB) signaling pathway [57], as well as decreases cell 

viability, by activating NF-κB and ERK signaling pathways 
[58], inducing oxidative stress, and activating renin-angio-
tensin system [108].

Endothelial insulin resistance

The endothelium is an important insulin target tissue [10]; 
despite not regulating metabolism, insulin regulates endothe-
lial cell homeostasis [82] via two main signaling pathways 
[47]. First, the phosphatidylinositol 3-kinase (PI3K)-protein 
kinase B (Akt) pathway, and second, the Ras/Raf/mitogen-
activated protein kinase (MAPK) pathway (Fig. 2).

Through the PI3K-Akt pathway, insulin stimulates 
endothelial NO production by inducing eNOS phosphoryla-
tion at  Ser1177 (as stimulatory site) and eNOS dephospho-
rylation at  Thr495 (as inhibitory site), which is constitutively 
phosphorylated in the endothelial cells [6]. In addition, insu-
lin increases eNOS gene expression and transcription via 
PI3K-induced binding of transcriptional factors Sp1 (speci-
ficity protein 1) and AP-1 to the eNOS gene [28]. Insulin can 
also suppress inflammation in the endothelial cells, probably 
through the PI3K-Akt pathway, as loss of insulin signal-
ing in the endothelial cells (induced by endothelial-spe-
cific elimination of the insulin receptor) leads to increased 
inflammation and expression of the vascular cell adhesion 
molecule-1 (VCAM-1) [83]. Furthermore, through induction 
of the PI3K-Akt pathway and phosphorylation of caspase-9, 
insulin suppresses caspase-9-induced endothelial cell apop-
tosis [35]. Insulin also inhibits NADPH oxidase-dependent 
superoxide production in the endothelial cells, probably via 
the PI3K-Akt pathway [24].

Through the Ras/Raf/MAPK pathway, insulin regulates 
mitogenesis, growth, and differentiation of the endothelial 
cells. Also, it mediates vasoconstrictor actions of insulin by 
stimulating the production of endothelin-1 (ET-1) and angio-
tensin II (Ang-II) [68, 73, 79]. In the hyperinsulinemic or 
insulin resistance states, insulin promotes VCAM-1 expres-
sion in the endothelial cells by activating the p38-MAPK 
pathway, an effect that is intensified by blocking the PI3K-
Akt pathway [61]. Insulin signaling in the endothelial cells 
may be complicated by a network of multiple feedback loops 
and cross-talk between two major pathways [69]; for exam-
ple, inhibition of the PI3K-Akt pathway leads to enhanced 
mitogenic action of insulin [68].

Although the concept of endothelial insulin resistance is 
not clinically established nevertheless, at the cellular level, 
it has been characterized as an impaired responsiveness of 
the cell to insulin’s actions through inactivation of both 
PI3K-Akt and MAPK pathways. This notion is supported 
by using the endothelial cell insulin receptor knockout 
mouse model, where both eNOS and ET-1 were observed 
to be decreased [98]. However, some evidence emphasizes 
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that endothelial insulin resistance in the PI3K-Akt path-
way does not necessarily coincide with resistance in the 
other signaling pathway [22, 111] and a selective reduction 
in the ability of insulin to stimulate the PI3K-Akt path-
way alongside with augmented insulin-induced MAPK 
pathway occurs in endothelial insulin resistance [69]. In 
support, both in vitro and in vivo models of endothelial 
insulin resistance (i.e., induced by high-fat diet and high-
glucose concentrations, respectively) indicate decreased 
insulin-stimulated NO production with increased Ang-
II concentrations [111]. In addition, in a high-glucose-
induced model of endothelial insulin resistance, insulin 
cannot activate the PI3K-Akt-eNOS pathway. In contrast, 

the Ras/Raf/MAPK pathway responds to insulin through 
up-regulation of extracellular signal-regulated kinase-1/2 
(ERK1/2), p38, and JNK (c-Jun N-terminal kinase) phos-
phorylation [22].

Impaired insulin-stimulated NO synthesis has been sug-
gested to be the hallmark of endothelial insulin resistance 
[70, 89]. Following exposure to insulin, freshly isolated 
peripheral venous endothelial cells obtained from patients 
with T2DM displayed decreased  Ser1177 eNOS phospho-
rylation (which increases eNOS activity) and increased 
 Thr495 eNOS phosphorylation (which decreases eNOS 
activity) when compared to the cells obtained from healthy 
subjects [94].

Fig. 2  Insulin signaling path-
ways in the endothelial cells. 
Insulin regulates endothelial 
cell homeostasis via two 
main signaling pathways: (1) 
phosphatidylinositol 3-kinase 
(PI3K)-protein kinase B (Akt) 
pathway and (2) Ras/Raf/mito-
gen-activated protein kinase 
(MAPK) pathway. IRS, insulin 
receptor substrate; PDK, phos-
phoinositide-dependent kinase; 
eNOS, endothelial nitric oxide 
(NO) synthase; ROS, reactive 
oxygen species; NADPH, the 
reduced form of nicotinamide 
adenine dinucleotide phosphate; 
PKC, protein kinase C; NF-κB, 
nuclear factor kappa-B; Ang-II, 
angiotensin II; ET-1, endothe-
lin1; VCAM-1, vascular cell 
adhesion molecule-1; GRB2, 
growth factor receptor binding 
protein-2; SHC, Src (sarcoma) 
homology collagen-like-1; 
SOS, son of sevenless; Ras, 
rat sarcoma; Raf, rat fibrosar-
coma; MAPK, MEK, mitogen-
activated ERK kinase; ERK, 
extracellular-regulated kinase; 
MAPK, mitogen-activated 
protein kinase. Sp1, specific-
ity protein 1; AP-1, activator 
protein 1

Pflügers Archiv - European Journal of Physiology (2022) 474:83–98 87



 

1 3

UA and the endothelial cells

Uric acid enters into the endothelial cells via uric acid 
transporters (UAT) and is also synthesized from HPX 
within the cells. The major physiological NO-related 
function of UA in the endothelial cells seems to be 
increased NO availability.

Uric acid transporters in the endothelial cells

Uric acid transporters are classified as reabsorbing and 
excretory transporters; URAT1 (SLC22A12, solute car-
rier family 22, member 12) is a reabsorbing transporter, 
expressed in both the luminal and basolateral mem-
branes of the renal proximal tubular cells [105]. The 
organic acid transporter 1 (OAT1/SLC22A6), OAT3 
(SLC22A8), multidrug resistance-associated protein 4 
[(MRP4); also called ATP-binding cassette transporter C4 
(ABCC4)], ABCG2, and voltage-driven urate transporter 
1 [(URATv1); also called glucose transporter 9 (GLUT9) 
or SLC2A9] are excretory transporters [105].

Expression of UAT has been widely reported in the kid-
neys and intestine, however, little is known about their dis-
tribution in other tissues. Among the known UAT, mRNA 
expressions of MCT9 (monocarboxylate transporter 9)/
SLC16A9, URATv1, BCRP (breast cancer resistance pro-
tein; also called ABCG2), MRP4, and OAT10 have been 
documented in the human umbilical vein endothelial cells 
(HUVECs) [51, 58, 67, 93]. In addition, expression of 
URAT1 has also been reported in the HUVEC cells [58] and 
in the human vascular smooth muscle cells, where it enters 
UA into the cells [80]. However, others have reported that 
URAT1, OAT1, OAT3, NPT1 (sodium-dependent phosphate 
cotransporter), and NPT4 are not expressed in the HUVEC 
cells [67, 93]. To the best of our knowledge, there is no 
report to address the distribution of UAT in the endothelial 
cells of different vascular beds and this issue needs further 
investigation.

Among UAT in the endothelial cells, URATv1 
(GLUT9) and MCT9 are involved in the entry of UA 
into the cells; in the presence of high UA concentrations, 
they act as influx transporters [67], and BCRP and MRP4 
act as efflux UA transporters [51]. High UA concentra-
tion disturbs UA efflux in the HUVECs; UA (595 and 
892 μmol  L−1 vs. 300 μmol  L−1) decreases Akt phos-
phorylation and therefore inhibits intracellular BCRP 
translocation to the cell surface, resulting in intracellu-
lar accumulation of UA [51]. It has been suggested that 
hyperuricemia-induced activation of URATv1 (GLUT9) 
contributes more to UA-induced impaired NO production 
in the endothelial cells [67] (Fig. 3).

Uric acid synthesis in the endothelial cells

In addition to its entry into the endothelial cells via UATs 
[58, 67, 93], UA is also synthesized in the endothelial cells 
from its precursor, HPX, via XOR activity [76] (Fig. 3). 
Hypoxanthine enters into the endothelial cells via a nucleo-
side transporter, characterized as nitrobenzylthioinosine-
insensitive equilibrative nucleoside transporter (NBMPR-
insensitive transporter with a medium affinity for the purine, 
with a Km 320 ± 10 µmol  L−1) [74]; HPX influx is saturable 
and  Na+-independent [74]. XOR is located both within the 
cytoplasm of the endothelial cells (with higher intensity in 
the perinuclear region) and on the outside surface of the 
endothelial cell membrane [84]. Circulating XO released 
from XO-rich tissues under pathophysiological conditions 
interacts with glycosaminoglycans on the surface of the 
endothelial cells and is endocytosed into intracellular com-
partments [38]. Extracellular UA negatively regulates XOR 
activity, as blockage of UA transporters (due to mutations 
or inhibitors, e.g., probenecid) promotes XOR activity [29, 
81]. Moderate hypoxia and inflammatory cytokines induce 
XOR expression and activity in the endothelial cells [45, 
78]; conversion of XOR to XO, in response to inflammatory 
conditions, leads to superoxide anion and hydrogen peroxide 
production, which negatively impact endothelial function by 
decreased NO bioavailability [4, 8].

Physiologic functions of UA in the endothelial cells

Although UA’s physiologic functions in the endothelial cells 
have not been fully understood [66], some evidence indicates 
that normal concentrations of UA in the endothelial cells can 
preserve NO-dependent endothelial function by increasing 
NO availability. UA increases NO availability by increasing 
eNOS expression and NO production in HUVECs [37] and 
also by decreasing oxidative stress–induced NO inactiva-
tion [21, 37, 93]; the latter is probably done by preventing 
eNOS uncoupling, reacting with peroxynitrite, and prevent-
ing oxidant-induced inactivation of extracellular superoxide 
dismutase [30, 63].

In support of this notion that normal levels of UA 
help NO-dependent endothelial function, it has been 
reported that mutations in the URAT1, encoded by the 
SLC22A12 gene, are associated with lower flow-medi-
ated dilation, which is an index of endothelium-depend-
ent vasodilatation [93]. Extremely low levels of serum 
UA (< 47.5 µmol  L−1), observed in subjects who were 
homozygote and compound-heterozygous for URAT1 
mutations, are related to decreased flow-mediated dila-
tion (homozygous = 2.7 ± 2.3%, compound-heterozy-
gous = 4.7 ± 2.8%, heterozygous = 9.3 ± 7.2%, and muta-
tion free = 7.0 ± 2.3%). In contrast, nitrate-mediated 
dilation remained unchanged [93], indicating the normal 
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response of vascular smooth muscle to NO. Furthermore, 
in type 1 diabetic patients with low-serum UA levels (264 
vs. 322 µmol  L−1 compared to controls), impaired acetyl-
choline-induced forearm blood flow response was restored 
following intravenous infusion of 1000 mg UA [101].

UA has an inhibitory feedback effect on XOR activity 
(Ki UA for XOR = 70 μM, in the presence of 50 μM xan-
thine and 210 μM oxygen) and therefore regulates XOR-
induced reactive oxygen species (ROS) production [81, 
95]. It is therefore tempting to assume that in a similar 
way to plasma, normal levels of UA suppress oxidative 
stress in the endothelial cells; in human plasma, UA at 
concentrations of 150 and 300 μmol  L−1 decreases the 
oxidation of xanthine to UA and formation of superox-
ide anion (37.5 ± 5.6 and 48.9 ± 6.1%, and 23.2 ± 1.9 and 
32.0 ± 2.3%, respectively) [95]. Indeed, moderate and 
severe short-term hypouricemia (plasma UA ~ 126 and 
18 µmol  L−1), induced by administration of febuxostat per 
se and febuxostat + rasburicase, increases lipid peroxida-
tion in healthy humans [21].

To sum up, at concentrations near to normal human 
plasma levels (< 300 μmol  L−1), UA seems to be essential 
for NO-dependent endothelial function.

Uric acid and endothelial insulin resistance

Both clinical and experimental studies indicate that expo-
sure of the endothelial cells to high UA concentrations 
may cause endothelial dysfunction. In clinical studies, 
endothelium-dependent vasodilation was inversely related 
to serum UA levels [44, 117]; for each 59.48 μmol  L−1 
increase in serum UA concentration, there was a 41% 
higher risk of endothelial dysfunction [117]. The reac-
tive hyperemia index, considered an index of endothelial 
function of the microvasculature, was negatively asso-
ciated with serum UA concentrations [75]. Flow-medi-
ated dilation but not nitrate-mediated dilation was sig-
nificantly impaired in subjects with serum UA levels of 
488 ± 11.9 µmol  L−1 compared with those who had UA 
levels of 357 ± 11.9 µmol  L−1; similarly, acetylcholine-
induced but not nitrate-induced forearm blood flow was 
impaired in subjects with UA levels greater than 327 µmol 
 L−1 [117]. Such data may imply that a selective impair-
ment of the endothelial NO-dependent vasodilation in 
the absence of overt structural vascular disease occurs in 
hyperuricemic subjects [44].

Fig. 3  Intracellular source of uric acid (UA) in the endothelial cell. 
Uric acid enters into the endothelial cells via uric acid transporters 
(UAT); UA is also synthesized in the endothelial cells from its pre-
cursor, hypoxanthine (HPX) by xanthine oxidoreductase (XOR), 

which exist in two interconvertible forms: dehydrogenase (XDH) and 
oxidase (XO) forms. eNOS, endothelial nitric oxide (NO) synthase; 
ONOO-, peroxynitrite; for details and abbreviations of UA transport-
ers, see the “Uric acid transporters in the endothelial cells” section
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Table 1 summarizes the underlying mechanisms (i.e., 
inducing cell apoptosis, increasing oxidative stress, 
and inflammation) by which high UA levels induce 
endothelial dysfunction. In brief, high UA concentra-
tions (300–900 μmol  L−1), occurring by either induc-
tion of intracellular XO or hyperuricemia, result in 
endothelial dysfunction and higher concentrations of UA 
(~ 1070–1190 μmol  L−1) cause endothelial cell death.

Among the underlying mechanisms explaining endothe-
lial dysfunction induced by high UA concentrations, 
impaired insulin-stimulated PI3K-Akt-eNOS pathway, 
and decreased endothelial NO availability, resulting in 
the development of endothelial insulin resistance, may be 
the most important ones. This notion is supported by the 
in vivo evidence indicating hyperuricemia (induced by 
the uricase inhibitor, allantoxanamide, in rats) disrupts the 

Table 1  Mechanisms by which high uric acid concentrations cause endothelial dysfunction

All experiments were done on HUVECs, unless stated otherwise
MAECs, mouse aorta endothelial cells; Bax, Bcl-2 (B cell lymphoma protein2) associated X-protein; COX-2, cyclooxygenase-2; Hes, hairy and 
enhancer of split related protein1; Hey, Hes with YRPW motif; NADPH, reduced form of nicotinamide adenine dinucleotide phosphate; Notch, 
Drosophila, notched wing; PGE2, prostaglandin E2; RAGE, receptor for advanced glycation end-products; ROS, reactive oxygen species; NF-κB, 
nuclear factor kappa-B; Ang-II, angiotensin II; HMGB, high-mobility group box protein-1; ICAM-1, intercellular adhesion molecule-1; VCAM-1, 
vascular cell adhesion molecule-1; ER, endoplasmic reticulum; MCP-1, monocyte chemoattractant protein-1; MAPK, mitogen-activated protein 
kinase; ERK, extracellular signal-regulated kinase

Study UA concentration (μmol  L−1) Effects Underlying mechanisms

Kang et al. [43] 535 ↑ mRNA and protein expression of 
C-reactive protein

Activation of p38 and ERK44/42 MAPK 
signaling pathway

Yu et al. [108] 357, 535, and 714 ↑ Cell senescence, ↓ cell viability ↑ Intracellular ROS and activation of the 
renin-angiotensin system, and ↑ Ang-II 
levels

Sánchez-Lozada et al. [85] 714 ↑ Intracellular ROS generation (by 
2.5-fold)

Activation of NADPH oxidase

Liang et al. [57] 119, 357, 714, and 1070 ↑ mRNA expression of MCP-1, ICAM-
1, VCAM-1, and IL-8 at a dose of 
714 μmol  L−1

Induction of cell apoptosis at a dose of 
1070 μmol  L−1

Activation of NF-κB signaling pathway

Xie et al. [104] 476 ↑ mRNA expression of IL-6, ICAM-1, 
TNF-α, and MCP-1

↑ Intracellular ROS (by ~ 3.3-fold)

↑ Expression of NF-κB p65
↑ Notch-1 expression and activation of 

NOTCH signaling
↑ Expression of Hes1, Hes5, Hey1

Li et al. [56] 119, 357, 714, and 1070 ↑ Cell apoptosis, dose-dependently ↑ Intracellular ROS concentration and ER 
stress

Liu et al. [58] 197, 595, and 892 ↑ mRNA levels of MCP-1, ICAM-1, 
VCAM-1, and IL-1β, dose-depend-
ently

↓ Cell viability, dose-dependently, 
reached up to 60% (at a dose of 892 
and time of 96 h)

↑ Phosphorylation of NF-κB and ERK
↑ Nuclear translocation of NF-κB p65

Cai et al. [17] 1190 ↑ TNF-α, IL-6, ICAM-1, VCAM-1 ↑ Expression of HMGB1 and its interac-
tion with RAGE

Activation of NF-κB signaling pathway
Zhen et al. [114] 197, 595, and 892 ↑ IL-6, IL-8 and TNF-α Activation of NF-κB signaling pathway
Komori et al. [51] 197, 595, and 892 ↓ Cell viability by 20% at doses of 595 

and 892 μmol  L−1 (time of 12 h) not 
197 μmol  L−1

↑ Intracellular ROS concentration

Otani et al. [75] 1000 ↓ Cell viability by 40% at hypoxic 
condition

Probably via increased intracellular ROS 
production

Ko et al. [49] 535 ↑ Intracellular ROS generation (by 
fourfold)

Activation of membranous and mitochon-
drial NADPH oxidase

Yang et al. [106] 50, 100, and 300 (MAECs) ↑ Cell apoptosis, in a dose- and time-
dependent manner

↓ miR-214 mRNA expression
↑ Bax, caspase-3, and COX-2 expression
↑ PGE2 levels
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insulin-stimulated but not acetylcholine-stimulated eNOS 
phosphorylation in endothelium-intact aortic rings and NO-
dependent vasodilation [20]. In the following sections, we 
focus on the UA-induced mechanisms targeting insulin sign-
aling and NO bioavailability in the endothelial cells.

Underlying mechanisms of UA‑induced 
insulin resistance

A high UA concentration interferes with insulin signaling in 
the endothelial cells at the receptor and post-receptor levels; 
at the post-receptor level, both proximal (IRS and PI3K-Akt 
components) and distal (eNOS-NO system) steps within the 
insulin signaling pathway are affected by UA (Fig. 4). Other 
mechanisms summarized in Table 1, including high UA-
induced oxidative stress, inflammation, and cell apoptosis, 

may also contribute to the development of insulin resistance 
in the endothelial cells.

Insulin receptor level

Uric acid increases recruitment and binding of ectonu-
cleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), a 
plasma membrane enzyme that regulates nucleotide metabo-
lism, to α-subunit of the insulin receptor in HUVECs; this 
binding impairs tyrosine-kinase activity and autophospho-
rylation of the β-subunit, which results in the inhibition of 
insulin signaling [1]. Through this inhibition, the  Ser473 
phosphorylation of Akt and the  Ser1177 phosphorylation of 
eNOS is decreased in the endothelial cells [97]. Inhibition 
of UA entry into the cell (using probenecid at a dose of 
1 mmol  L−1 for 30 min) restored these effects [97]. In addi-
tion, exposing HUVECs to UA at a dose of 200 µmol  L−1 
decreases tyrosine phosphorylation of the β-subunit in the 

Fig. 4  Interfering of high uric 
acid (UA) levels with insulin 
signaling at the receptor and 
post-receptor levels in the 
endothelial cells; at the post-
receptor level, both proximal 
(IRS and PI3K-Akt compo-
nents) and distal (eNOS-NO 
system) steps within the insulin 
signaling pathway are affected 
by UA. ENPP1, ectonucleotide 
pyrophosphatase/phosphodies-
terase 1; Ang-II, angiotensin II; 
IRS, insulin receptor substrate; 
PI3K, phosphatidylinositol 
3-kinase; Akt, protein kinase B; 
Sp1, specificity protein 1; AP-1, 
activator protein 1; eNOS, 
endothelial nitric oxide (NO) 
synthase; ROS, reactive oxygen 
species; CaM, calmodulin; 
PKC, protein kinase C
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insulin receptor and decreases insulin-induced PI3K/Akt/
eNOS-mediated NO production [20].

High UA concentrations may also interfere with insulin 
signaling at the receptor level by increasing Ang-II levels 
in the endothelial cells. This notion is supported by evi-
dence indicating that UA is a potent activator of the renin-
angiotensin system in endothelial cells [107, 108]. At a dose 
of 535 µmol  L−1, intracellular concentrations of Ang-II 
increased by about threefold in HUVECs over a 24-h period; 
this increase was due to up-regulation of the pro-renin recep-
tor [107], increased mRNA expressions of angiotensin-con-
verting enzyme, and angiotensinogen [108]. Ang-II inhibits 
insulin-stimulated tyrosine phosphorylation of the insulin 
receptor at its β-subunit [7]. Exposing HUVECs to Ang-II at 
a dose of 200 nM had shown to decrease insulin-stimulated 
Tyr phosphorylation  (Tyr1158/Tyr1162/Tyr1163) of the receptor 
by 65% [7].

To sum up, these data indicate that in the endothelial 
cells, high concentrations of UA can directly interfere 
with the insulin signaling pathway at the receptor level and 
can contribute to the development of endothelial insulin 
resistance.

Post insulin receptor level

Proximal signaling pathway (IRS and PI3K‑Akt components)

Exposing HUVECs to UA at a dose of 200  µmol  L−1 
decreases the percent of p-IRS-1/IRS-1 [20]. It has been 
shown that UA can cause oxidase stress–induced activation 
of protein kinase C (PKC) in HUVECs [56]. PKC activation 
inhibits the PI3K-Akt signaling pathway of insulin in bovine 
aortic endothelial cells; this effect is partly due to inhibi-
tion of insulin-induced Tyr phosphorylation of IRS2 [62] 
but not IRS1, which is functionally more important in the 
endothelial cells [62]. PKC phosphorylates  Thr86 on p85α 
subunit of PI3K and therefore decreases binding of p85α to 
IRS1, resulting in a decrease in the insulin-induced activa-
tion of PI3K activity [62]. UA also interferes with the insulin 
signaling pathway at the IRS-1 level in the endothelial cells 
by increasing intracellular levels of Ang-II [108], which 
increases phosphorylation of  Ser312 and  Ser616 (as nega-
tive regulatory sites) at IRS-1, leading to decreased ability 
of IRS-1 to be phosphorylated on  Tyr612 and  Tyr632 (i.e., 
essential sites for engaging the p85 subunit of PI3K) [7]. 
Quantitatively, Ang-II (at a dose of 100 nM) reduces insulin-
stimulated binding of IRS-1 to the p85 subunit of PI3K by 
about 30%, resulting in decreased insulin-induced Akt-Ser473 
and eNOS-Ser1177 phosphorylation in HUVECs by 60% and 
45%, respectively [7]. This effect is mediated by increas-
ing JNK and ERK 1/2 activity [7]. Ang-II also induces Ser/
Thr phosphorylation of p85α/β subunit of PI3K, through the 
activation and translocation of PKCα/β/δ, from the cytosol 

to the membrane. The predominant effect of Ang-II is on 
the PKCα isoform, which effectively phosphorylates  Thr86 
of p85/ PI3K [62].

In HUVECs, UA (50–200 µmol  L−1) inhibits insulin-stim-
ulated eNOS phosphorylation at  Ser1177  (IC50 of 51.0 µmol 
 L−1) by inhibiting insulin-stimulated Akt phosphorylation 
(IC50 = 21.97 µmol  L−1), as transfection of the cells with 
p110, a class I PI3K catalytic subunit, restored the inhibi-
tory effects of UA on Akt and eNOS phosphorylation [20]. 
UA can also trigger disruption of the PI3K-Akt pathway by 
increasing PKC phosphorylation and activity [56]. Activated 
PKC phosphorylates  Thr86 of p85 subunit of PI3K, resulting 
in decreased p-Akt at  Ser473 and p-eNOS at  Ser1177 [62]. At 
a dose of 714 μmol  L−1, UA increases intracellular p-PKC/
PKC ratio, resulting in phosphorylation of eNOS at  Thr495 
and decreased production of NO [56].

High UA concentrations are also able to counteract PI3K-
Akt activity through the induction of oxidative stress and 
inflammation. UA (at concentrations of 357 and 535 µmol 
 L−1) increases intracellular levels of C-reactive protein (by 
7.2-fold at 1 h, and 6.5-fold at 3 h) through activation of 
p38 and ERK44/42 MAPK signaling pathways, leading to 
decreased NO production in HUVECs by 80% [43]. High- 
C-reactive protein levels in the endothelial cell blunt insu-
lin-induced Akt phosphorylation, via the immunoreceptor 
tyrosine–based inhibition motif of FcγRIIB and SHIP-1 (Src 
homology 2 domain-containing inositol 5′-phosphatase 1) 
[96].

Distal signaling pathway (eNOS‑NO system)

High UA concentrations can impair the eNOS-NO system 
by decreasing eNOS expression, reducing eNOS activity, 
and by direct inactivation of NO. UA-induced decrease in 
eNOS activity is achieved in several ways: (1) diminish-
ing the insulin-induced  Ser1177 phosphorylation of eNOS, 
(2) reducing insulin-induced  Thr495 dephosphorylation of 
eNOS, (3) decreasing interaction between eNOS and calmo-
dulin, and (4) reducing the availability of substrate for eNOS 
via (a) decreased intracellular L-arginine concentrations and 
(b) increased arginase activity.

Incubation of HUVECs with a high dose of UA 
(1190 µmol  L−1) decreases eNOS expression and the amount 
of NO released by HUVECs (by threefold, from ~ 30 to 
10 µmol  L−1) [28]. Incubation of HUVECs with high UA 
concentrations (≥ 600 µmol  L−1) switches the direction of 
mitochondrial  Na+/Ca2+ exchanger, resulting in an influx of 
calcium into the mitochondria, causing an overload in mito-
chondrial calcium [37]. Elevated mitochondrial calcium lev-
els upregulate mitochondrial ROS production and therefore 
increased intracellular ROS, which decreases eNOS protein 
expression and NO synthesis [37]. Blockage of mitochon-
drial  Na+/Ca2+ exchanger inhibits UA-induced reduction in 
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eNOS protein expression and NO production [37]. These 
effects are against the actions of insulin, which stimulates 
eNOS gene expression and transcription via PI3K-induced 
binding of transcriptional factors, Sp1 and AP-1, to the 
eNOS gene [28].

In HUVECs, UA at concentrations ranged 50–200 µmol 
 L−1 had neither an effect on the expression nor the phospho-
rylation of  Ser1177 within eNOS, meanwhile insulin-stimu-
lated eNOS phosphorylation was blunted by the same doses 
(with an  IC50 of 51.0 µmol  L−1) [20]. This data indicates 
that the effects of UA on eNOS expression/phosphorylation 
in the endothelial cells, at least in part, are mediated by the 
insulin signaling pathway. Indeed, UA causes ROS-induced 
PKC activation, which increases eNOS phosphorylation at 
 Thr495 and decreases eNOS activity by decreasing calmodu-
lin binding to eNOS [56]. On the other hand, insulin through 
the PI3K-Akt pathway dephosphorylates eNOS at  Thr495 and 
increases eNOS activity [6]. UA (at a dose of 714 µmol  L−1 
for 24 h) can also decrease eNOS activity and NO produc-
tion by reducing the interaction of eNOS with calmodulin 
(as an eNOS activator) [77].

UA (at concentrations of 297 and 446  μmol  L−1) 
decreases stimulated NO production in pig pulmonary arte-
rial endothelial cells by increasing arginase activity; this 
effect is due to an increase in affinity of arginase for L-argi-
nine (Km = 1.1 mmol  L−1 vs. 0.6 mmol  L−1 in the presence 
of 446 μmol  L−1 UA) without neither affecting Vmax of the 
enzyme not changing the gene expression of arginase II (as 
predominant endothelial isoform of arginase) [113]. Fur-
thermore, UA suppresses eNOS activity via decreasing cel-
lular L-arginine uptake; this effect is not mediated through 
manipulating the L-arginine transporter (cationic amino 
acid transporter-1) content or affecting the post-translational 
modification by PKCa [90].

Uric acid can also react directly with NO (in both human 
plasma and aortic endothelial cell lysates) through a rapid, 
irreversible reaction leading to the formation of 6-aminou-
racil and depletion of NO [30].

Conclusion and future perspective

Uric acid can act as a Janus-faced molecule in the endothe-
lial cells because of its highly contrasting features at varying 
concentrations. At low concentration, UA is essential for 
eNOS expression, NO synthesis and availability, and NO-
dependent endothelial functions. Meanwhile, at high con-
centrations, UA can cause endothelial dysfunction. This is so 
because high-intracellular UA concentrations decrease the 
responsiveness of the endothelial cells to insulin, resulting in 
the development of endothelial insulin resistance. Intracellu-
lar high UA targets the IRS-PI3K-Akt-eNOS pathway at dif-
ferent steps, including the insulin receptor binding capacity 

to its downstream signaling events, finally translating to 
decreased eNOS expression and activity. As a caution, it 
should be noted that most data that associate hyperuricemia 
and endothelial insulin resistance are from in vitro studies 
and needs to be verified through in vivo models. In addi-
tion to interfering with insulin signaling pathways and NO 
synthesis, other unknown mechanisms may also be involved 
in the development of hyperuricemia-induced endothelial 
insulin resistance.

Current data provides not only new insights into the com-
plex mechanisms of endothelial insulin resistance in relation 
to hyperuricemia but also addresses potential therapeutic 
targets. Since hyperuricemia-induced endothelial insulin 
resistance is a risk factor for developing systemic insulin 
resistance, T2DM, and cardiovascular diseases, treating 
asymptomatic patients with hyperuricemia and maintain-
ing their serum UA within the normal range could poten-
tially protect against cardiometabolic disorders. However, 
well-designed clinical trials are needed to confirm this 
assumption.
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