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Abstract
Normally, an obvious antagonism exists between pain and itch. In normal conditions, painful stimuli suppress itch sensation, 
whereas pain killers often generate itch. Although pain and itch are mediated by separate pathways under normal conditions, 
most chemicals are not highly specific to one sensation in chronic pathologic conditions. Notably, in patients with neuro-
pathic pain, histamine primarily induces pain rather than itch, while in patients with atopic dermatitis, bradykinin triggers 
itch rather than pain. Accordingly, repetitive scratching even enhances itch sensation in chronic itch conditions. Physicians 
often prescribe pain relievers to patients with chronic itch, suggesting common mechanisms underlying chronic pain and 
itch, especially peripheral and central sensitization. Rather than separating itch and pain, studies should investigate chronic 
itch and pain including neuropathic and inflammatory conditions. Here, we reviewed chronic sensitization leading to chronic 
pain and itch at both peripheral and central levels. Studies investigating the connection between pain and itch facilitate the 
development of new therapeutics against both chronic dysesthesias based on the underlying pathophysiology.
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Introduction

Chronic pain and itch are common, complex, and devastat-
ing clinical challenges with a profound impact on patients, 
their families, and societies in most modern countries. Pain 
and itch-related diseases are the leading cause of disability 
and social burden globally. Despite the clinical importance, 
our knowledge about these dysesthesias is preliminary. Pain 

and itch are obviously distinct but reciprocal sensations. 
Pain elicits withdrawal responses, while itch (also known as 
pruritus) leads to scratching responses. Under physiologi-
cal conditions, an antagonistic interaction exists between 
pain and itch. Scratch-induced painful stimuli often inhibit 
itch sensation. Conversely, pain killers like opioid analge-
sics elicit itch sensation. However, pain and itch also share 
many similarities, especially in chronic pathophysiological 
conditions that lead to the sensitization of nociceptive path-
ways. This sensitization is characterized by plastic changes 
in primary afferents (peripheral sensitization) and synaptic 
transmission in the central nervous system (central sensiti-
zation). Thus, in chronic pathological conditions, painful 
stimuli can trigger itch, whereas some pain killers are often 
prescribed for chronic itch. In this review, we will discuss 
chronic sensitization as the common mechanism underlying 
chronic pain and itch.

Chronic pain such as long-lasting inflammatory and neu-
ropathic pain is characterized by spontaneous burning pain, 
hyperalgesia, and allodynia. Unfortunately, chronic pain often 
persists even after the precipitating event has resolved. Further-
more, neuropathic pain is poorly treated by currently available 
medications and, thus, is considered as the most intractable 
clinical problem [103, 155]. Chronic itch is another unpleasant 
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sensation threatening patients and their family well-being. 
Based on the underlying diseases, chronic itch conditions can 
be divided into four subtypes: dermatologic, systemic, neuro-
pathic, and psychogenic [53]. Dermatologic itch arises from 
skin diseases such as atopic dermatitis (AD), eczema, and 
psoriasis. Systemic itch is always accompanied by systemic 
disorders, such as renal and hepatic diseases, HIV/AIDS, and 
metabolic disorders (cholestatic pruritus and uremic pruritus) 
[10, 130, 154]. Neuropathic itch results from traumatic inju-
ries or disorders of the nervous system associated with nerve 
compression, irritation, multiple sclerosis, brain tumors, and 
cerebral hemorrhage. Psychogenic itch is attributed to psy-
chological or psychiatric disorders (obsessive–compulsive 
disorders and delusions of parasitosis). Chronic itch is often 
intractable and has a profound effect on patient’s life.

Anatomical defects in ascending pathways 
of pain and itch

Pain and itch are distinct sensations associated with ascend-
ing pathways. However, anatomical ascending pathways 
involving both sensations are intimately related in the nerv-
ous system [68] and influence each other [25, 123, 152]. 
Pain and itch signals are transmitted to the superficial dorsal 
horn of the spinal cord, which is a pivotal center for inte-
grating signals, and then further transmitted to the brain via 
the spinothalamic tract (STT) [24, 162]. In chronic patho-
logical conditions, however, there seems to be interference 
in distinct pathways for the transmission of both pain and 
itch. Scratching-evoked pain stimuli can be perceived as itch 
in these conditions. In patients with chronic itch, normally 
painful electrical, chemical (bradykinin or acetylcholine), 
mechanical, and thermal stimulation results primarily in itch 
rather than pain [63, 64, 66, 102, 124]. Thus, scratching pro-
duces an “itch-scratch-itch” vicious cycle to exacerbate itch 
sensation in these patients [71]. Interestingly, itch stimuli 
induce burning pain rather than itch in patients with neurop-
athy [15, 21]. In fact, physicians often prescribe pain medi-
cations, such as gabapentin, to control chronic itch. These 
abnormal interactions between pain and itch are due, in part, 
to the changes in neuronal transmission (neural plasticity) in 
pathologic conditions.

Peripheral sensitization

Pain and itch share largely overlapping mediators and their 
receptors (Figs. 1, 2 and Table 1). Inflammatory mediators 
such as bradykinin, serotonin, histamine, and prostaglandins 
sensitize pruriceptors [146] as well as nociceptors [85]. The 
inflammatory mediators are complicated by their interac-
tions. Combinations of prostaglandin E2 and histamine show 
supra-additive effects [122]. Proteinase-activated receptor 2 

(PAR-2) has been known to sensitize the capsaicin receptor 
TRPV1 [147]. All these studies suggest a possible cross-
talk between pain and itch signals under pathophysiological 
conditions.

Skin injury and inflammation result in recruitment of 
immune cells (e.g., T lymphocytes, diverse innate immune 
cells) into the affected skin areas. Activated immune cells 
release endogenous mediators increasing the excitation of 
pruriceptors or nociceptors [17, 75]. Increased excitability 
of sensory nerve endings in response to these mediators is 
called peripheral sensitization [75, 131]. This peripheral sen-
sitization plays a prominent role in the manifestation of both 
chronic pain and itch [17, 68].

Many pruritogens are likely to be involved in peripheral 
sensitization [63, 67, 92, 128]. In mice exhibiting dry skin, 
the levels of MrgprA3 and TLR3 expression are significantly 
increased in sensory neurons [107, 185]. In patients with 
chronic itch, the level of PAR2 expression has been found to 
be upregulated in the affected skin [8, 161]. In addition, mul-
tiple cytokines (e.g., IL-2, IL-4, IL-13, and IL-31) have been 
reported to contribute to chronic itch [13, 112, 126, 149]. 
IL-31, released from T cells, appears to be strongly linked 
to chronic itch [112]. Transgenic mice over-expressing IL-31 
developed chronic itch with obvious skin problems such as 
alopecia and eczematous lesions [34, 157]. In the majority 
of dogs with AD, canine IL-31 was also increased [43]. In 
clinical studies, an increased number of IL-31-producing T 
cells and elevated IL-31 mRNA expression were found in 
the skin and serum of patients with chronic itch [39, 157, 
165]. Moreover, it has been reported that blood levels of 
β-endorphin and IL-31 significantly correlated with itch 
severity in AD patients [100]. Immunohistochemical analy-
sis revealed an increase in IL-31 and β-endorphin levels and 
co-localization in patients’ skin [100]. TRPV3 and TRPV4 
have also been demonstrated as important transducers in 
peripheral sensitization [3, 86, 133, 197].

Brain-derived neurotrophic factor (BDNF), neurotrophins 
3 (NT-3) and 4 (NT-4), and glia cell-derived neurotrophic 
factor, important modulators in intraepidermal nerve fibers, 
may also play a role in chronic itch [50, 62, 147]. Sensory 
nerve fibers mediating itch signals may become sensi-
tized under chronic pathophysiological conditions. In both 
patients and animals with AD, the sprouting of epidermal 
nerve fibers (or hyper-innervation) increased the excitability 
or decreased the threshold of primary sensory neurons [87, 
168]. In patients diagnosed with prurigo nodularis, elec-
trophysiological recordings demonstrated aberrant firing 
behavior of mechano-insensitive C-fibers, indicating sen-
sitization [145]. Itch sensation can be evoked by transcuta-
neous electrical stimulation in humans. The threshold for 
electrically evoked itch has been reported to be significantly 
lower in the skin of patients with AD [66, 67, 128]. The dose 
of histamine required to elicit itch sensation in lesional skin 
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of AD patients is lower than in normal healthy skin [65]. 
Furthermore, in chronic pathological itch, the population of 
pruriceptors is enlarged and also exhibits enhanced response 
to pruritogens [120]. In dry skin-induced chronic itch, the 
numbers of primary sensory neurons responding to PAR2 
agonist and 5-HT are increased, which is closely associated 
with enhanced scratching response to these pruritogens [4]. 
Many previous studies have demonstrated that intradermal 
nerve fiber density is increased in patients with prurigo 
nodularis and AD [1, 87].

In chronic pain condition, peripheral sensitization is 
defined as reduced threshold and/or increased respon-
siveness of peripheral nociceptive neurons in response to 
stimulation of their receptive fields. Sensitized nerves show 
ectopic action potential, enhanced signaling, and conduc-
tion via normal pathways [77]. Furthermore, signaling from 
nerves that are not nociceptive in nature, such as Aβ myeli-
nated fibers, can converge onto nociceptive central pathways 
following sufficient tissue injuries and result in pain percep-
tion (allodynia) [96, 129, 141].

Molecular mechanism of peripheral 
sensitization in both chronic pain and itch

Nerve growth factor

Nerve growth factor (NGF) and artemin that are secreted 
from mast cells [51, 140] and fibroblasts [118], respectively, 
induce long-term structural reorganization of nociceptors 
[57] or pruriceptors [112]. In addition, cumulative evidence 
suggests that NGF plays a prominent role in the sensitization 
of primary afferents in both chronic itch and pain [53, 76, 
192]. In clinical studies, expression of NGF and its receptor 
TrkA was found to increase in patients with prurigo nodu-
laris [82], psoriasis, and AD [36, 51, 169, 171, 172, 190]. 
Increases in serum and local NGF have been known to trig-
ger sprouting of epidermal nerve fibers in pruritic contact 
dermatitis, AD, and prurigo nodularis [69, 87, 171]. Anti-
NGF therapy effectively inhibited epidermal hyperinnerva-
tion, skin lesioning, and scratching behavior in animal stud-
ies [170]. Increased epidermal NGF expression has been 
shown in NC/Nga mice, a mouse model of AD [166, 168]. 
It is interesting that  TLR3−/−mice with dry skin show lack 
of NGF upregulation and less severe scratching behaviors, 
compared with wild-type mice with the same skin disease 
[171].

NGF is also implicated in chronic pain conditions [14, 
28, 180]. NGF is increased in injured and inflamed tissues, 
and activation of TrkA on nociceptive neurons triggers and 
potentiates pain signaling via multiple mechanisms [57]. 
In clinical studies, blockade of NGF with specific antibod-
ies induced analgesia [97, 142]. In complex chronic pain 

conditions like vulvar dysesthesia, the sprouting of epider-
mal nerve fibers appears to be initiated by increased NGF 
levels. Anti-NGF strategies have already been shown to 
prevent epidermal nerve sprouting and chronic pain in both 
clinical [191] and animal [52] studies.

As described above, NGF is one of the key molecules 
underlying the pathogenesis of chronic pain and itch, and 
anti-NGF strategies may facilitate the treatment of both 
chronic pain and itch.

Substance P and calcitonin gene‑related peptide

NGF is known to upregulate neuropeptides, especially sub-
stance P (SP) and calcitonin gene-related peptide (CGRP) 
[176]. Excessive release of SP and CGRP from sensory 
nerve endings induces cutaneous neurogenic inflammation 
(CNI) on the local skin innervated by nerve endings [45, 
58, 138]. SP plays an important role in the manifestation of 
chronic pain in rodents [94]. In addition, SP has also been 
reported to be associated with the severity of skin disease 
in AD patients [171]. SP activates mast cell degranulation 
and chemokine production and thereby contributes to neu-
ronal sensitization and itch sensation [193]. The effect of 
CGRP on peripheral neuronal sensitization has also been 
reported in rodents [116, 164]. Interestingly, increased SP 
levels coexist with reduced CGRP levels in the NC/Nga mice 
[83]. Given that thermal pain sensitivity is correlated with 
CGRP levels [116], and pain sensitivity is negatively cor-
related with sensitivity in itch models [48], one might specu-
late about the preferred role of CGRP and SP in nociception 
and itch, respectively.

Cutaneous neurogenic inflammation and TRPs

During chronic inflammation, long-lasting changes occur 
in the expression and function of ion channels such as 
TRPV1 and TRPA1. Long-term changes associated with 
these ion channels are related to abnormal hyperexcit-
abilities of neurons and development of chronic pain 
[90]. Cutaneous neurogenic inflammation (CNI), charac-
terized by a multi-cellular network with multiple, multi-
directional interactions, leads to chronic inflammation 
[45, 46]. Indeed, CNI is frequently involved in chronic 
inflammatory skin disorders, including psoriasis, AD [89, 
156], sensitive skin [29], and hypertrophic scars [2, 91]. 
TRPV1 and TRPA1 are known to be involved in CNI and 
pain manifestation [46]. Activation of TRPV1 induces 
the release of SP [9] and CGRP [23] from sensory nerve 
endings, leading to neurogenic inflammation and edema 
[138, 161, 178, 199]. During CNI, endogenous mediators 
such as eicosanoids, acidosis, ATP, histamine, bradykinin, 
and NGF sensitize or activate TRPV1 on epidermal nerve 
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terminals. In turn, activated TRV1 contributes to the self-
regulation of CNI [138].

Similar to TRPV1, the activation of TRPA1 mediates 
skin inflammation by increasing inflammatory mediators, 
such as growth factors, bradykinins, proteases, and inflam-
matory cytokines [30, 35, 46, 113, 179]. These mediators 
potentiate neurogenic skin inflammation by enhancing 
cellular responses and, therefore, contribute to enhance-
ment or maintenance of CNI [18, 70]. TRPA1 is required 
for AD and histamine-independent itch [46]. Indeed, oxa-
zolone-induced TRPA1 activation triggers chronic derma-
titis and upregulates inflammatory cytokines (i.e., IL-1β, 
IL-4, IL-16, and CXCL-2) and neuropeptides (i.e., SP and 
endothelin) in mice. All these substances are known to 
be involved not only in sensory dysesthesia, but also in 
structural changes including epidermal nerve sprouting 
and resultant increase in nerve fiber density [109]. TRPA1-
deficient mice show diminished SP- and oxazolone-evoked 
scratching behaviors [109]. Histamine-independent itch 
elicited by chloroquine, BAM8–22, or AEW was abro-
gated in TRPA1-deficient mice, which exhibited impaired 
scratching behavior and epidermal thickening [183, 185]. 
Moreover, within the AD skin of patients and mice, TSLP 
released from keratinocytes potentiated TRPA1 activity 
via TSLPR, thereby inducing (or enhancing) skin inflam-
mation and eliciting robust itch sensation [117, 184, 198].

TRPA1 is co-expressed with TRPV1 in a subset of noci-
ceptive sensory neurons expressing neuropeptides such as 
SP and CGRP [46, 163, 175]. Indeed, the activation of 
TRPA1 stimulates SP and CGRP release with subsequent 
signs of CNI, such as edema and leukocyte infiltration 
[114, 151, 163, 173]. TRPA1 modulates inflammatory 
gene expression in keratinocytes by increasing the expres-
sion of IL-1α and IL-1β [12], resulting in the secretion of 
PGE2 [72]. Both IL-1 and PGE2 are known to be involved 
in skin inflammation leading to decreased mechanical and 
thermal thresholds of the sensory nerve endings, which 
facilitates CNI [20]. In addition, the activation of TRPA1 
in keratinocytes increased the expression of inflamma-
tory cytokines such as IL-1β, TNF-α, and IL-6 in a mouse 
model of allergic contact dermatitis [12, 194]. The media-
tors not only enhanced the activity of TRPA1 but also pre-
vented the desensitization of TRPA1, which consequently 
aggravated chronic pain conditions [35, 125]. These find-
ings indicate that TRPA1 mediates the synthesis of sev-
eral cytokines from keratinocytes that directly trigger or 
enhance CNI by acting on neighboring target cells [46]. 
In addition to keratinocytes, TRPA1 acts on skin immune 
cells, but it appears to play an anti-inflammatory role in 
monocytes/macrophages [19].

Peripheral glial cells

Glial cells in the peripheral nerve system consist of satellite 
glial cells (SGCs) in the dorsal root ganglia and trigemi-
nal ganglia and Schwann cells (Figs. 1 and 2). Emerging 
evidence suggested that SGCs play a potential role in the 
development of persistent pain such as inflammatory and 
neuropathic pain [37, 54, 55, 73, 106, 127, 195]. Following 
hindpaw inflammation induced by CFA injection, structural 
and functional coupling among SGCs has been known to 
develop [37]. Axotomy induces outgrowth of perineuronal 
SGCs sheaths and then allows to formation of new gap junc-
tions among the approximal SGSs wrapping each own neu-
ronal processes [54]. It has been reported that the types of 
DRG neurons surrounded by activated SGCs are changed 
early from early small- and medium-sized neurons later 
with large diameter neuron as time spent following nerve 
injury [106]. In the previous study using an animal model 
of intervertebral foraminal stenosis and low back pain, the 
authors have shown that a chronic compression of the DRG 
(CCD) increases the excitability of neuronal cell bodies. 
Rapid alterations in inwardly rectifying potassium currents 
of SGCs after CCD seem to be involved in the development 
of neuronal hyperexcitability in the CCD model of neuro-
pathic pain [195]. Changes in SGC potassium ion buffering 
capacity and glutamate recycling can lead to neuropathic 
pain-like behavior in animal models [127]. SGCs have also 
been suggested as potential contributors in cisplatin-induced 
neuropathic pain [132].

Schwann cells also play roles in the development and 
maintenance of neuropathic pain [143, 181]. The Schwann 
cells respond to nerve injury as the ways to change their 
phenotypes and proliferate and interact with nociceptive 
neurons by releasing glial mediators (cytokines, chemokines, 
growth factors, and biologically active small molecules)
[181]. Additionally, it has been reported that receptors 
expressed in active Schwann cells are involved in different 
pain conditions[181]. In the patients with nerve injuries, 
distal Schwann cells undergo atropy due to disconnection 
with proximal neurons, resulting depletion of neurotrophic 
growth factors, changes in the extracellular matrix, and loss 
of Schwann cell basal lamina[143].

Dysfunction of Schwann cells has also been linked to the 
pathogenesis of chronic itch in prurigo nodularis[6]. After 
hydroxyethyl starch (HES) infusion therapy in the patients 
with severe hemorrhage, protracted itch is a common adverse 
symptom. Exploratory studies explained that this is a conse-
quence of HES accumulation in the Schwann cells leading to 
functional disturbances[115, 158]. In the patients suffering 
from hepatic pruritus, increased serum lysophosphatidic acid 
activates SGCs and Schwann cell[137]. In addition, TRPV4 
has been suggested as a prurinergic receptor-operated chan-
nel in SGCs of sensory ganglia[133].
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Central sensitization

Chronic pain and itch are maintained in part via central sen-
sitization, which is defined as an increased neuronal respon-
siveness in the central nervous system in response to afferent 
inputs following painful or pruritic insults [186, 187]. Spinal 
cord long-term potentiation is an important form of spinal 
cord synaptic plasticity contributing to central sensitization 
and pain and itch [76, 108, 111, 188]. Similar to peripheral 
sensitization, central sensitization occurs not only in neu-
rons, but also in glial cells, by regulating the expression of 
chronic itch or pain-sensing molecules in the central nervous 
system (Figs. 1, 2, and Table 1).

Central sensitization‑associated signs

During pain signal processing, repeated activities involving 
chemonociceptors can sensitize spinal cord dorsal horn neu-
rons, thereby leading to hypersensitivity in response to input 
from the primary afferents, which is called hyperalgesia 
[88]. There are two types of mechanical hyperalgesia: allo-
dynia and punctate hyperalgesia. Non-noxious touch stimuli 
can lead to allodynia or pain sensation, which is mediated 
by myelinated mechanoreceptor units, although it requires 
ongoing activity of primary afferent C-nociceptors. The sec-
ond type of mechanical hyperalgesia results in “punctate 
hyperalgesia” or the perception of slightly painful pin prick 

Fig. 1  Peripheral and central mechanisms of sensitization of pain 
processing. In the periphery, inflammatory mediators can activate 
and sensitize nerve endings of the primary nociceptive neurons 
 (MrgprA3+/TRPV1+) in the dorsal root ganglia (DRG) or trigeminal 
ganglia (TG). Nerve growth factor (NGF) and peripheral glia, such 
as Schwann cells and satellite glial cells induce long term changes 
in neuronal sensitivities along with structural alterations (e.g., col-
lateral sprouting). In the spinal cord, spinal dorsal horn neuron can 

be sensitized by inflammatory or immune mediators, such as TNF-α, 
BDNF, IL-1β, IL-18, and PGE2 that are released from activated glial 
cells. *Abbreviation: BDNF, brain-derived neurotrophic factor; NK1, 
neurokinin 1; NT-4, neurotrophin-4; PGE2, prostaglandin E2; TLR3, 
toll-like receptor 3; TLR4, toll-like receptor 4; TNF-α, tumor necro-
sis factor-α; TRPA1, transient receptor potential ankyrin 1; TRPV1, 
transient receptor potential vanilloid 1; VGLUT2, vesicular glutamate 
transporter 2
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as more painful in the secondary zone around a focus of 
insult. It does not require ongoing activity of primary noci-
ceptors for its maintenance. It can persist for hours following 
a trauma, usually much longer than touch or brush-evoked 
hyperalgesia [95].

In chronic itch processing, striking phenomena involv-
ing a pattern of central sensitization have been described. 
Alloknesis and hyperknesis typically occur within the region 
of itch provocation, and in the skin immediately surround-
ing the provocation site, which is termed “itchy skin” [153]. 
During alloknesis, innocuous mechanical touch frequently 

elicits itch sensation around the pruritogen injection site on 
human skin [60, 61, 153]. Recently, Carstens’ group [53] 
developed a mouse model of alloknesis demonstrating that 
exposure to innocuous mechanical stimuli (light touch by 
von Frey filaments) on the skin near the pruritogen injec-
tion sites or the lesional dry skin region induces scratching 
behavior. Consistent with the previous human psychophysi-
cal findings of μ-opioid antagonist-attenuated alloknesis 
[60], μ-opioid antagonists inhibited touch-evoked scratch-
ing in mice, suggesting the reliability of the animal model. 
It is thought that morphine-induced itch is developed by the 

Fig. 2  Peripheral and central mechanisms of sensitization of itch 
processing. In the periphery, inflammatory and immune mediators 
can activate and sensitize nerve endings of the primary pruricep-
tive neurons  (MrgprA3+/TRPV1+) in the dorsal root ganglia (DRG) 
or trigeminal ganglia (TG). In addition to acute sensitization, nerve 
growth factor (NGF) and peripheral glia, such as Schwann cells and 
satellite glial cells induce long-term changes in neuronal sensitivities 
along with structural alterations. In the spinal cord, spinothalamic 
neurons  (GRPR+) transmitting itch signals can be sensitized by 
inflammatory cytokines, such as IL-2, IL-4, IL-3, and IL-13, released 

from activated glial cells. *Abbreviation: BDNF, brain-derived neu-
rotrophic factor; CX3CR, C-X-C motif chemokine receptor 3; GRP, 
gastrin-releasing peptide; GRPR, gastrin-releasing peptide receptor; 
LCN2, lipocalin-2; NK1, neurokinin 1; NT-4, neurotrophin-4; PAR2, 
protease-activated receptor 2; PGE2, prostaglandin E2; TLR3, toll-
like receptor 3; TLR4, toll-like receptor 4; TNF-α, tumor necrosis 
factor-α; TRPA1, transient receptor potential ankyrin 1; TRPV1, tran-
sient receptor potential vanilloid 1; TRPV4, transient receptor poten-
tial vanilloid 4; VGLUT2, vesicular glutamate transporter 2
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cross-activation of GRPR with an isoform of the μ-opioid 
receptor (MOR), MOR1D [16, 105]. Very similar to allo-
dynia, alloknesis requires ongoing activities in low thresh-
old mechanoreceptors (Aβ-fibers) [59, 153]. Additionally, 
hyperknesis is an exaggerated itch response to normally 
pruritic or mild punctate pain stimuli [7, 11]. The itch-asso-
ciated dysesthesias are noticeably analogous to dysesthesias 
occurring in various experimental and clinical pain condi-
tions [5, 68, 148].

Possible mechanisms of central sensitization 
in chronic pain and itch

Pain‑sensing molecules driving central sensitization

Central sensitization is maintained by ongoing stimuli, 
such as spontaneous activities arising from sensory fibers 
or locally released immune mediators, which are respon-
sible for the maintenance and spread of neuropathic pain 
beyond the initial injury site [47]. Postsynaptic glutamate 
N-methyl-D-aspartate (NMDA) receptors and α-amino-
3-hydroxy- 5-methyl-4-isoxazolepropionic acid (AMPA) 
receptors mediate the induction and maintenance of central 
sensitization [74, 99].

Central itch‑sensing molecules driving central 
sensitization

In non-human primates suffering from idiopathic chronic 
itch [121], both gastrin-releasing peptide (GRP) and its 
receptor GRPR are significantly upregulated in the spinal 
cord, which in turn enhance the central sensitization.

Altered synaptic transmission

In pathophysiological conditions, decreased inhibitory syn-
aptic transmission (referred to as “disinhibition”) in the 
spinal cord has also been known to mediate central sensi-
tization. In the neuronal pathways relaying pain signals, a 
reduction or loss of inhibitory synaptic transmission has also 
been implicated in the genesis of central sensitization and 
chronic pain [99]. Factors such as TNF, IL-1β, IL-6, CCL2, 
IFN-γ, and ROS decrease inhibitory signaling pathways in 
the spinal dorsal horn via deactivation of GABAergic and 
glycinergic inhibitory interneurons as well as inhibitory 
descending projections [44, 47, 56, 84, 177]. In addition, 
it has been suggested that activation of NK1 receptors in 
the locus coeruleus induces analgesia via noradrenergic-
mediated descending inhibition in a rat model of neuropathic 
pain [119].

In the neural pathway of chronic itch, central sensi-
tization also occurs with the disinhibition of  Bhlhb5+ 

inhibitory interneurons in the spinal dorsal horn, as shown 
in Bhlhb5 and Vglut2 knockout mice [93, 104, 139].

Glial activation‑driven central sensitization 
by neuroinflammation

Accumulating evidence suggests that synaptic hyperex-
citability in the spinal dorsal horn might not be attrib-
uted to simple changes in neurons, but rather multiple 
alterations in glial cells [76]. Microglia and astrocytes 
in the spinal dorsal horn play a role in chronic pain and 
itch, respectively [174]. Neuroinflammation by glial cells 
induces central sensitization and widespread chronic pain 
and itch [75, 76]. In the pathogenesis of chronic pain [26, 
42, 136], tissue or nerve injury releases glial activators, 
which in turn bind to their own receptors on the microglia 
and astrocytes in the spinal cord or brain [76, 78, 80, 81]. 
Upon glial activation, the glial receptors induce intracel-
lular signal transduction and activation of protein kinases 
(phosphorylation of mitogen-activated protein kinase and 
Src kinase), leading to the release of pro-inflammatory 
cytokines (TNF-α, IL-1β, and IL-6), chemokines (CCL2 
and CXCL1), and BDNF, leading to neuroinflammation, 
which, in turn, sustains central sensitization [40, 76, 79]. 
However, these glial mediators contribute to the central 
sensitization via alterations in excitatory or inhibitory 
synaptic transmission [40, 41]. Following astrogliosis, 
excitatory synaptic transmission is enhanced, following 
the persistent downregulation of the spinal astrocyte glu-
tamate transporters after peripheral nerve injury, leading 
to excitotoxicity and resultant nociceptive hypersensitivity 
[134, 189].

The central glial cells play a role in prolonged or 
chronic itch [150, 196]. Intramedullary cavernous heman-
giomas were associated with chronic neuropathic itch in 
the corresponding dermatome and characterized by gliosis 
and hemosiderin deposition after hemorrhage [27, 32, 98]. 
Moreover, in NC/Nga mice, central astrocytes contribute 
to modulation of chronic itch via LCN2-signaling with 
 GRPR+ neurons [49, 110, 150]. In addition, astrocytes 
in the spinal dorsal horn carry enlarged cell bodies and 
extensively arborized processes in AD mice [150]. Recent 
studies suggest that the transcription factor signal trans-
ducer and activator of transcription 3 (STAT3) [150] and 
the toll-like receptor 4 (TLR4) [110] are selectively acti-
vated and expressed in reactive astrocytes in the animals 
suffering from chronic itch. STAT3-dependent reactive 
astrogliosis in the spinal dorsal horn contributes to the 
pathogenesis of chronic itch via conditional disruption of 
astrocytic STAT3 or pharmacological inhibition of spinal 
STAT3-attenuated chronic itch in mice [150].
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Similar patterns of central sensitization in chronic 
pain and itch

The striking similarities between chronic pain and itch 
sensations suggest similar mechanisms of central sensi-
tization (Figs. 1, 2 and Table 1). In neuropathic condi-
tions such as postherpetic neuralgia, diabetic neuropathy, 
meralgia paresthetica, nostalgia paresthetica, and bra-
chioradial pruritus, the patients suffer from both pain and 
itch sensations [148]. It is remarkable that patients with 
nostalgia paresthetica or brachioradial pruritus complain 
of a predominantly chronic itch sensation, while patients 
suffering from postherpetic neuralgia, diabetic neuropa-
thy, or meralgia paresthetica primarily manifest chronic 
pain symptoms [148]. Interestingly, the same medications 
are often prescribed to treat chronic pain and itch. For 
example, gabapentin [33, 144] or clonidine [38] is usually 

used to treat both chronic neuropathic pain and itch, sug-
gesting shared mechanisms underlying chronic pain and 
itch. In  TLR3–/– mice, excitatory synaptic transmission 

and long-term potentiation in the intact spinal cord have 
been reported to be impaired. Chronic pain or itch was 
substantially reduced in these mice. All these findings 
demonstrate a critical role of TLR3 in central sensitization 
leading to chronic pain and chronic itch sensations [107].

The population of SP receptor NK1-expressing neu-
rons, most of which are known to be spinothalamic tract 
(STT) neurons, has been implicated in both chronic itch 
and pain sensations [159, 160]. Selective ablation of STT 
neurons expressing NK1 receptor leads to robust inhibi-
tion of alloknesis in AD mice, potentially implicating both 
ascending pathways [167]. However, ablation of spinal 
NK1 neurons also reduces spinal sensitization and pre-
vents development of chronic pain [182].

TLRs, Nav1.7, and TRPA1 play an important role in cen-
tral sensitization by conducting and transmitting the signals 
for chronic dysesthesias [22, 31, 75, 101]. TLR4 released by 

spinal astrocytes also plays a possible role in developing or 
maintaining chronic itch [135].

Table 1  Similarities and Differences between chronic pain and 
chronic itch, covering chronic sensitization (peripheral sensitization 
and central sensitization) and symptoms/response, as well as thera-
peutic treatments. *Abbreviation: BDNF, brain-derived neurotrophic 
factor; Bhlhb5, basic helix-loop-helix domain-containing protein 
class B 5; CCL2, C–C motif chemokine ligand 2; CCL5, C–C motif 
chemokine ligand 5; CXCL1, C-X-C motif chemokine ligand 1; NGF, 

nerve growth factor; NK1, neurokinin 1; NT-4, neurotrophin-4; PAR2, 
protease-activated receptor 2; PGE2, prostaglandin E2; STAT3, signal 
transducer and activator of transcription 3; TLR3, toll-like receptor 3; 
TLR4, toll-like receptor 4; TNF-α, tumor necrosis factor-α; TRPA1, 
transient receptor potential ankyrin 1; TRPV1, transient receptor 
potential vanilloid 1; TRPV4, transient receptor potential vanilloid 4; 
VGLUT2, vesicular glutamate transporter 2

Chronic pain Chronic itch

Chronic sensitization Peripheral sensitization Similarities Peripheral nerve fiber sprouting, Increase in neuronal excitability
Sharing mediators: NGF, NT-4, TNF-α, TRPV1, TRPA1, VGLUT2
Cutaneous neurogenic inflammation
Schwann cells and satellite glial cells in the DRG

Differences Mediators: IL-2, IL-4, IL-31, IL-13, 
PAR2, TLR3, TRPV4

Central sensitization Similarities Increase in CNS excitability
Microglia and astrocyte (overlapping mediators: BDNF, TNF-α)
Overlapping mediators: TLR3, TLR4, Nav1.7, TRPA1, NK1

Differences Associated signs: hyperalgesia, allo-
dynia

Associated signs: hyperknesis, alloknesis

Spinal GRPR
Glial mediators: IL-1β, IL-6, IL-18, 

PGE2, CCL2, CCL5, CXCL1
Glial mediators: IL-2, IL-4, IL-31, 

IL-13, STAT3, TLR4
GABAergic & glycinergic inhibitory 

interneurons, Descending inhibition
Bhlhb5 + inhibitory interneurons

Symptoms/responses Similarities Persistent intractable clinical symptoms
Differences Withdrawal Scratching

Therapeutics Similarities Gabapentin, pregabalin, local anesthetics, clonidine, antidepressant, local cold 
application

Differences NSAIDs, μ-opioid (morphine) Anti-IL-4, anti-IL-13, anti-IL-31, 
κ-opioid agonist (butorphanol), 
μ-opioid antagonist (naltrexone) anti-
histamines
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Conclusion

Despite of many current literatures that have gone on here, 
we still do not exactly understand how we recognized pain 
and itch as distinct sensations with different qualities in the 
same chronic sensitization. This would be a good theme in 
the next further studies. Literatures suggest that both chronic 
pain and itch may share strikingly similar underlying mecha-
nisms. Especially, peripheral and central sensitization leads 
to the development and persistence of chronic dysesthesias. 
The similarities between chronic itch and pain suggest the 
need to combine studies investigating both itch and pain 
and, thereby, facilitate the development of new therapeutics 
against both two chronic dysensthesias.
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