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Abstract
The introduction of next-generation sequencing technology has revealed that mutations in the gene that encodes titin (TTN) are
linked to multiple skeletal and cardiac myopathies. The most prominent of these myopathies is dilated cardiomyopathy (DCM).
Over 60 genes are linked to the etiology of DCM, but by far, the leading cause of DCM is mutations in TTN with truncating
variants in TTN (TTNtvs) associated with familial DCM in ∼ 20% of the cases. Titin is a large (3–4 MDa) and abundant protein
that forms the third myofilament type of striated muscle where it spans half the sarcomere, from the Z-disk to the M-line. The
underlying mechanisms by which titin mutations induce disease are poorly understood and targeted therapies are not available.
Here, we review what is known about TTN mutations in muscle disease, with a major focus on DCM. We highlight that exon
skipping might provide a possible therapeutic avenue to address diseases that arise from TTNtvs.
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Introduction

Titin is a giant myofilament that extends from the Z-disk (N-
terminus) to the M-band (C-terminus) region of the sarcomere
and is encoded by the TTN gene [11, 37, 43, 44, 69]. Due to its
enormous size, TTN has been insufficiently analyzed in the
past. However, recent whole genome sequencing studies re-
vealed that TTN is a major human disease gene [13, 26, 45,
56, 74, 75, 96, 98, 99]. Many titin mutations are also linked to
neuromuscular diseases [20, 26, 87, 89, 98], but this review
mainly focuses on the role of titin in cardiomyopathies where
TTNtvs have been studied most.

The human titin gene contains 364 exons, of which 363
exons are coding exons. Titin has a maximummolecular mass
of ~ 4200 kDa [11, 69] and has a modular domain composi-
tion consisting of immunoglobulin (Ig) and fibronectin type
III (FnIII) domains and unique sequences [69, 106] (see Fig. 1
supplemental Table S1). Titin provides passive stiffness to the
striated muscle sarcomere and modulates active contractile
force [4, 9, 16, 18, 33–36, 42, 50, 73, 79, 104]. Titin’s N-
terminus is embedded in the Z-disk and acts as a mechano-
sensor [65]. The I-band region of titin functions as a molecular
spring and is the main determinant of cardiac myocyte elas-
ticity in cardiac muscles [25, 42, 75, 77, 113, 117]. It com-
prises three distinct elements, the tandem Ig segment, the
PEVK region (rich in proline, glutamic acid, valine, and lysine
residues) and the N2B element, containing the extensible N2B
unique sequence (N2B-Us) [11, 55, 69]. The spring elements
can be posttranslational modified, altering their elastic behav-
iors [8, 49, 53, 54, 58, 59, 92, 121]. In addition to providing
elasticity, these segments also interact with signaling proteins
and have been proposed to function as mechanosensor com-
plexes [43, 67, 77, 81, 88, 95, 114] with mouse models that
genetically target individual spring elements supporting such
roles [15, 23, 47, 61, 93, 94]. The A-band segment of titin
contains 178 Ig and Fn3 domains and is functionally
inextensible [16, 69, 106]. The A-band segment contains the
so-named I/A zone, D-zone, C-zone, and M-band regions
(supplemental Table S1). The IA zone is near the ends of the
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thick filaments and is striking in that the regular domain pat-
terns of Ig and FnIII domains is broken with a stretch of 6
FnIII domains that is found preceding the D zone. It has been
suggested that the unique domain composition of the IA zone
reflects an alteration in titin–myosin interaction that is critical
for the termination of the thick filament [14]. However, a
mouse model in which titin’s IA junction was targeted re-
vealed that deleting the IA junction does not alter thick fila-
ment length [48]. In the D-zone region of the A-band, Ig and
FnIII domains form 6 repeats, each containing 7 domains and
in the C-zone 11 Ig and FnIII domains form super-repeats,
each containing 11 domains [69]. The C-zone region of titin
likely plays a role in anchoring MyBP-C [31], regulating ac-
tomyosin interaction [82], and regulating the thick filament
length [103]. Titin’s M-band region contains the serine/
threonine kinase (TK) domain and is involved in numerous
signaling pathways [19, 39, 83, 90, 91, 115, 116]. Moreover,
exon 363 (Mex5), coding for is7 domain in the M-band re-
gion, is differentially spliced and gives rise to is7+ and is7-
titin isoforms [21, 66].

Extensive mRNA splicing results in distinct titin isoforms
[11, 70] (Fig. 1). In the heart, three titin isoform classes are
present: fetal cardiac titin (3.5–3.6 MDa), adult N2BA (~
3.3 MDa), and adult N2B (~ 3.0 MDa) isoforms [11, 69,
72]. An important titin splicing factor is RBM20. Deficiency
in RBM20 is leading to increased expression of large N2BA-
type titin isoforms in the adult heart [50, 61, 79, 80]. In addi-
tion to full-length titins, isoforms that are not full-length also
exist (Fig. 1). Novex-3 titin, a ∼ 700 kDa titin isoform is found
in cardiac and skeletal muscle [11, 46, 64]. The 3′ end of
novex-3 contains the stop codon polyadenylation signal and
functions as an alternative C-terminus, resulting in a truncated
titin isoform [11]. Unlike full-length titin isoforms, novex-3 is

too short to reach the A-band region [11, 96]. Recently, an
alternative start site has been identified in the titin gene that
is predicted to results in expression of cronos titin, a ~
2000 kDa isoform that lacks the Z-disk and most of the I-
band domains but contains the A-band and M-line domains
[123]. The functions of novex-3 and cronos titin have not been
established. Due to alternative splicing, adult full-length car-
diac isoforms differ in the length of their tandem and PEVK
segments in the I-band and their stiffness varies accordingly
[11, 17, 117] [32]. The adult full-length cardiac isoforms
(N2B and N2BA) are co-expressed at the level of the half
sarcomere [105]; their expression ratio is approximately
50:50 in humans [84, 85] but can vary in disease states [84,
85, 118–120].

Titin gene mutations as a cause
of cardiomyopathies

Cardiomyopathies are diseases that cause primary abnormali-
ties in the heart muscle [57]. The most common type is dilated
cardiomyopathy (DCM)with a prevalence of up to ~ 1:250 [57,
99]. DCM is characterized by left ventricular dilation and sys-
tolic dysfunction [57]. Recent landmark sequence studies in
large patient cohorts revealed that mutations in the titin gene
(TTN) are responsible for ~ 20% of all DCM cases [56, 96, 99].
Many of the DCM-causing TTN mutations are heterozygous
truncating variants (TTNtv) that include frameshift, nonsense,
and essential splice site mutations and are over-represented in
the A-band segment of titin [56, 96], see Fig. 1. Moreover,
TTNtvs show a high penetrance after the age of 40 years and
there is a possibility that secondary stressors are needed to
develop DCM phenotype [27, 56]. Titin missense mutations

Fig. 1 Titin isoforms andmapped disease-associated missensemutations.
Titin isoforms assembled from the metatranscript, cardiac N2BA, cardiac
N2B, skeletal muscle N2A, Novex3 and Cronos transcripts (from top to
bottom). See text for details. Missense mutations causing DCM, HCM,
ARVC, RCM and myopathy are shown by vertical lines mapped on the

protein domains where they occur. Missense mutations downloaded from
the TITINdb (http://fraternalilab.kcl.ac.uk/TITINdb/), see Laddach et al.
[71]. Domain colors: red: Ig domains, white: Fn domains, green: Z-
repeats, yellow: PEVK sequence, blue: unique sequences
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are also likely to contribute to a small fraction of DCM [13, 38]
and they are a rare cause of hypertrophic cardiomyopathy
(HCM) and of arrhythmogenic right ventricular dysplasia [10,
16, 56, 75, 102] (Fig. 1).

TTNtv-induced DCM

Epidemiology and penetrance of TTNtv DCM is the most
common indication for heart transplantation and is associated
with TTNtv in ~ 20% of DCM cases [56, 57, 96, 99].
Surprisingly, 1–3% of the general population has a TTNtv
but the overwhelming majority does not present a cardiac
phenotype, and thus, the genotype-phenotype relationship of
TTNtvs is uncertain [5–7, 56, 99]. Clearly, it is important to
focus on the underlying mechanisms of TTNtv-induced
DCM.

Localization of TTNtv TTNtv are predominantly found in the
A-band region of titin and show a position-dependent manner
with increasing disease severity closer to the C-terminus [56,
60, 96, 99]. Recently, TTNtv-induced DCM has also been
associated with Z-disk, I-band, and M-band exons in a small
subset of patients [99]. The position-dependent effect might
be explained by TTN exon usage in left ventricular tissue,
characterized by the relative incorporation of exons into titin
transcripts, termed proportion spliced-in (PSI) [96].
Constitutively expressed exons have high PSI values, whereas
exons that are subject to alternative splicing show low PSI
scores [27, 96]. Therefore, titin’s A-band exons that have high
PSI scores and are incorporated in all titin isoforms are most
affected by TTNtvs [27, 60, 96]. Notably, exons in the I-band
region where intense alternative splicing occurs have low PSI
values [96]. Consequently, I-band exons with TTNtv can be
excluded from the transcript without resulting in a frameshift,
acting as a natural ‘exon-skipping’ mechanism [77, 96].
Hence, it has been suggested that TTNtv can be tolerated in
the healthy population because the majority of the mutations
fall in I-band exons that are subject to alternative splicing [60,
96]. It has also been proposed that the upregulation of cronos
titin [24], a novel titin isoform driven by an internal promoter
(Fig. 1), could rescue the effects of truncating mutations that
localize proximal to its internal I-band promoter [24, 123].
Truncating variants in the novex-3 exon that functions as an
alternative C-terminus occur equally in patients with DCM
and in healthy controls [96, 99, 110]. Although currently there
is lack of evidence for pathogenicity of novex-3 titin muta-
tions [96], whole-exome sequencing technologies are en-
abling the identification of novel rare cardiomyopathy-
causing titin truncating variants [101] and it is possible that
in future studies novex-3 titin truncating mutations will be
shown to play a role in the pathomechanism of some cardio-
myopathies [22, 64].

Currently, there is much uncertainty about the exact mech-
anism by which titin truncating mutations lead to a cardiac
phenotype. Multiple mechanisms have been proposed to ex-
plain TTNtv-induced DCM: haploinsufficiency, poison-pep-
tide/dominant-negative mechanism, and perturbation of cardi-
ac metabolism and signaling.

Haploinsufficiency Schafer et al. developed 2 rat strains and
modeled a proximal and distal TTNtv mutation and their
RNA-seq study revealed a profound nonsense mediated
mRNA decay (NMD) of the allele with TTNtv, indicating
haploinsufficiency [99]. However, protein gels did not reveal
truncated titins, suggesting that either no truncated proteins
are produced or that they are produced but rapidly degraded
[99]. Moreover, total protein levels of full-length titin appear
not different, suggesting an upregulation of the wild-type al-
lele, consistent with the transcript findings of the Schafer
study [99]. To study the effect of titin deficiency, Radke
et al. generated a conditional KO mouse model with progres-
sive postnatal loss of the complete titin protein achieved by
removing exon 2 (E2-KO) [94]. Results showed that titin de-
ficiency leads to sarcomere disassembly and atrophy in striat-
ed muscle and eventually DCM. Overall, these animal studies
suggest a need to further investigate the haploinsufficiency
mechanism in DCM patients with TTNtvs.

Poison peptide mechanism Another possible mechanism by
which TTNtv can induce DCM is the poison peptide/
dominant-negative mechanism. A limited amount of truncated
protein has been found in induced pluripotent stem cell (iPSC)
cardiomyocytes derived from patients with TTNtv [60].
Additionally, heterozygous TTNtv mutant iPSC-s have fewer
myofibrils and show sarcomere disorganization [60]. A recent
study by Schick et al. also demonstrates defects in sarcomere
assembly in patient-derived iPSC cardiomyocytes [100]. In a
large DCM patient cohort, Roberts et al. found that TTNtv
containing transcripts are not subjected to NMD and no
changes in the protein expression levels ofmajor titin isoforms
are detectable, suggesting the possible role of poison peptide/
dominant-negative mechanism in TTNtv-related DCM [96].

Perturbation of cardiac metabolism and signaling It is known
that mTORC1, which functions as a nutrient/energy sensor
and controls protein synthesis, is activated in DCM patients
[99, 122]. It is of interest therefore to determine whether dis-
tinct molecular pathways are associated with TTNtv-based
DCM. Indeed, Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis suggests altered cardiac metabo-
lism in TTNtv rats, independently of the position of the trun-
cation [99]. Furthermore, biochemical analysis revealed a shift
from fatty acids toward glycolysis, similar to those seen in the
failing heart that may be adaptive [99]. The levels of metabo-
lites that can activate mTOR are also increased in TTNtv rats
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[99]. Interestingly, major signaling pathways, involving
transforming growth factor-β, vascular endothelial growth
factor, and mitogen-activated protein kinases, that are critical-
ly important to cardiomyocyte function, are diminished in
iPS-derived cardiac cells containing TTNtv [60, 110].
Additionally, Verdonschot et al. found that all components
of the mitochondrial electron transport chain are significantly
upregulated in patients with TTNtv, leading to pronounced
cardiac alterations in mitochondrial function [109]. In accor-
dance with these alterations, Zhou et al. found decreased ox-
ygen consumption rate, elevated reactive oxygen species
(ROS) levels and increased mitochondrial protein
ubiquitination in rat hearts with TTNtv, indicating mitochon-
drial dysfunction caused by TTNtv [2]. Additionally, TTNtv
hearts show increased mTOR phosphorylation and impaired
autophagy function [2]. Interestingly, mutated iPSC
cardiomyocytes, derived from DCM patients with TTNtv,
show attenuated response to isoproterenol, [Ca2+]out and an-
giotensin II. Furthermore, mutated cells display a longer re-
covery period after caffeine administration [100]. These
changes suggest altered function of calcium-handling pro-
teins, such as SERCA, phospholamban (PLB), and
calsequestrin [100]. Overall, the importance of changes in
cardiac metabolism and calcium handling in DCM caused
by TTNtv warrant further investigation, including whether
these changes develop directly from the truncating mutation
or, more likely, are secondary effects.

Is a TTNtv sufficient to induce a phenotype
or are modifying effects required?

Not all individuals that carry a TTNtv develop DCM and a
multifactorial disease model has been proposed where multi-
ple factors contribute to the development of a TTNtv-based
phenotype [27, 99]. In this model, a second genetic variant
and/or environmental stressor is needed, as a ‘second or third
hit’, to uncover the effects of the TTNtv.

Sex differences Interestingly, the onset of DCM is ∼ 40 years
and the penetrance of TTNtv is sex dependent [30, 56]. The
median age of onset in males is estimated to be 28 years and
56 years in females [30]. In addition, women carrying TTNtv
mutations have a better prognosis than men [30, 56]. Further
studies are needed to establish whether the sex dependence
might be more related to the link between titin phosphoryla-
tion and increased oxidative stress [12, 30] and whether the
cardioprotective effects of estrogen in premenopausal women
contribute to sex-related differences [62, 76].

Peripartum cardiomyopathy TTNtv have also been linked to
peripartum cardiomyopathy (PPCM) where the distribution of
truncating variants in PPCM is similar to that found in DCM

[108, 112]. PPCM can also be a manifestation of familial
DCM and TTNtv in PPCM patients is a possible prognostic
factor for low recovery rate [108, 112].

Second mutation Often additional rare truncating variants or
other pathogenic cardiomyopathy genes are present in TTNtv
carriers that can increase the severity of DCM or can be asso-
ciated with an earlier onset of the disease [51, 56, 86, 97].

Environmental factors Although the onset of TTNtv-induced
DCM is ∼ 40 years [56], environmental insults, such as che-
motherapy, can induce pediatric-onset DCM cases [28].
Furthermore, TTNtv can be associated with a more severe
form of chemotherapy-induced cardiomyopathy (CCMP).
Recently, it has been reported that patients with TTNtv have
a prevalent genetic predisposition for alcoholic cardiomyopa-
thy and an even more impaired ejection fraction can be ob-
served in TTNtv-induced DCM patients with alcohol abuse
[110]. Therefore, alcohol is an additional environmental risk
that can contribute to a more severe outcome of TTNtv-
associated DCM. Finally, Gramlich et al. showed that hemo-
dynamic stress caused by angiotensin II or isoproterenol can
induce a more severe phenotype in heterozygous TTNtv mice
compared to control litter mates [40]. This finding suggests
that hypertension, a common risk factor for heart disease and
stroke [52], results in a more severe form of DCM in patients
with TTNtv [40].

In summary, many additional genetic and environmental
factors can influence the outcome of an existing TTNtv. In
most of the cases these stressors can unmask the effects of
TTNtv or induce an even more severe DCM phenotype.

Comparison between TTNtv- and TTNtv+
DCM

To date, there are contradictory observations in patient popu-
lations about the symptoms and differences between DCM
patients with (TTNtv+) or without (TTNtv-) mutations.
Furthermore, as discussed above, there is much debate about
the genotype-phenotype relationship of TTNtv in DCM, as
truncating titin mutations can be found in 1–3% of the general
population [5, 7, 56, 99]. Herman et al. showed no significant
differences in clinical manifestations between TTNtv+ and
TTNtv- subjects, including the risk of major cardiac events
[56]. Similarly, others reported that TTNtv+ does not appear
to be associated with worse prognosis and DCM patients with
TTNtv are unaccompanied by conduction disease [30].
Although, Verdonschot et al. found more life-threatening ar-
rhythmias in TTNtv+ patients associated with enhanced inter-
stitial myocardial fibrosis, the survival rate was similar be-
tween TTNtv+ and TTNtv- patients at long-term follow-up
[109]. Interestingly, recent whole-exome sequencing studies
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by Ahlberg et al. identified TTNtv as a major genetic contrib-
utor to atrial fibrillation [3]. A new zebrafish model that con-
tains a TTNtv mutation displays increased fibrosis and altered
sarcomere structure in the atria. Moreover, TTNtv+ zebrafish
show electrophysiological defects that could potentially de-
velop into arrhythmia [3]. Comparing TTNtv+ and TTNtv-
DCM patients, Roberts et al. observedmore severely impaired
left ventricular (LV) function, lower stroke volumes, and more
sustained ventricular tachycardia in TTNtv+ patients [96].
Furthermore, patients with TTNtv are at higher risk to more
adverse cardiac events, as death, cardiac transplant, or LV
assist device [96]. Overall, it is still uncertain whether or not
patients with TTNtv havemore severe symptoms compared to
TTNtv- DCM patients.

Patients with DCM caused by TTNtv respond to standard
DCM therapies [63] and long-term prognosis is similar to that
of patients without TTNtvs [29, 109]. Recovery from TTNtv-
associated PPCM is also possible with proper and careful
medical assistance [68]. Based on the metabolic changes in
TTNtv+ humans and animal models, mTOR pathway modu-
lation with metformin or ‘rapalogues’ (rapamycin analogues)
could serve as a potential treatment for TTNtv-induced DCM
[2, 110]. Zhou et al. observed that the mTORC1 inhibitor
rapamycin is able to rescue the attenuated autophagy in rat
hearts containing TTNtv mutations [2]. Additionally, research
groups are focusing on exon-skipping approaches to cure
TTNtv-associated DCM. Most TTN exons can be deleted
while keeping the reading frame intact. The deletion of a large
TTN exon induced by antisense oligonucleotides has been
accomplished [41], but it is currently uncertain how well the
absence of exons is tolerated or whether it might lead to a
cardiac phenotype at some stage of life. An exon-skipping
therapeutic strategy has already been approved by the Food
and Drug Administration (FDA) for use in Duchenne muscu-
lar dystrophy [1, 110], and the hope is that similar exon-
skipping approaches are feasible and be beneficial in TTNtv
patients as well. In summary, exon skipping has the potential
to cure TTNtv-induced DCM but much research is required
first, particularly focused on possible off-target effects that
might occur.

Conclusions and perspectives

It is now well established that TTN is a major human disease
gene that causes multiple neuromuscular and cardiac diseases
[13, 20, 26, 56, 74, 75, 89, 96, 98, 99]. Most studies are
currently focused on TTNtv that cause dilated cardiomyopa-
thy [56, 96, 99]. Even though TTNtv mutations are likely to
affect ribosome activity [99], sarcomeric organization [40,
60], and alter cardiac metabolism [99, 109], a clear
genotype-phenotype correlation is often lacking. Indeed, 1–
3% of the general population has a TTNtv, and it has been

proposed that additional genetic and/or environmental
stressors might be needed to unmask the effects of TTNtv
[40, 78, 97, 108, 110, 111]. Although TTNtv+ patients present
more life-threatening arrhythmias associated with enhanced
interstitial myocardial fibrosis, the survival rate is similar be-
tween TTNtv+ and TTNtv- patients at long-term follow-up
[29, 109]. In addition, TTNtv-associated DCM patients re-
spond well to standard DCM therapies [63]. Mimicking natu-
ral skipping of exons with low PSI scores [77, 96], exon skip-
ping with antisense oligonucleotides could provide a more
specific treatment option for patients with DCM caused by
TTNtv. Clearly, more research is required into the
pathomechanism by which TTNtv mutations induce DCM
and into the possibility of exon skipping as a therapy.
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