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Abstract

Hypertrophic cardiomyopathy (HCM) is mainly caused by mutations in sarcomeric proteins. Thirty to forty percent of identified
mutations are found in the ventricular myosin heavy chain (3-MyHC). A common mechanism explaining how numerous
mutations in several different proteins induce a similar HCM-phenotype is unclear. It was proposed that HCM-mutations cause
hypercontractility, which for some mutations is thought to result from mutation-induced unlocking of myosin heads from a so-
called super-relaxed state (SRX). The SRX was suggested to be related to the “interacting head motif,” i.e., pairs of myosin heads
folded back onto their S2-region. Here, we address these structural states of myosin in context of earlier work on weak binding
cross-bridges. However, not all HCM-mutations cause hypercontractility and/or are involved in the interacting head motif. But
most likely, all mutations alter the force generating mechanism, yet in different ways, possibly including inhibition of SRX. Such
functional—hyper- and hypocontractile—changes are the basis of our previously proposed concept stating that contractile
imbalance due to unequal fractions of mutated and wildtype protein among individual cardiomyocytes over time will induce
cardiomyocyte disarray and fibrosis, hallmarks of HCM. Studying (3-MyHC-mutations, we found substantial contractile vari-
ability from cardiomyocyte to cardiomyocyte within a patient’s myocardium, much higher than in controls. This was paralleled
by a similarly variable fraction of mutant MYH7-mRNA (cell-to-cell allelic imbalance), due to random, burst-like transcription,
independent for mutant and wildtype MYH?7-alleles. Evidence suggests that HCM-mutations in other sarcomeric proteins follow
the same disease mechanism.

Keywords Hypertrophic cardiomyopathy - Contractile imbalance - Allelic imbalance - Burst-like transcription - Weak binding
states

Introduction
Hypertrophic cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is a genetic cardiac dis-
ease with an incidence of 1:500 [75]. Recent reevaluation of
the prevalence of disease-causing mutations indicates an even
higher incidence of 1:200 [101]. The clinical onset of HCM is
highly variable; it ranges from a nearly asymptomatic disease
course to arrthythmias, syncopes, and the development of heart
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failure. Also, sudden cardiac death in young and mostly
asymptomatic athletes is characteristic for HCM [73]. HCM
is characterized by asymmetric hypertrophy of the left
ventricle and/or the interventricular septum that is not
caused by other pathologies such as hypertension or aortic
stenosis. In the myocardium of HCM-patients,
cardiomyocytes and myofibrils are often highly disor-
dered, and cardiomyocytes show variable size and shape.
Cell-to-cell contacts are partially disrupted and myocytes
are oriented in different directions [27, 72]. This so-called
myocyte and myofibrillar disarray is regarded as hallmark
of HCM and its degree appears associated with the severity of
disease progression [24, 31, 74, 118].

Mutations that lead to HCM

To date, more than 1500 mutations in up to 26 genes have
been linked to HCM [71]. However, several mutations
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need to be reevaluated whether they are truly disease-
causing according to the ACMG (American College of
Genetics and Genomics) guidelines [96]. A recent study
that compared sequence data from 3267 individuals diag-
nosed with HCM and 60,706 reference samples from the
Exome Aggregation Consortium (ExAC) shows that sev-
eral variants that were considered disease-causing are in
fact quite common in the reference population and thereby
may not be pathogenic [123]. Interestingly, about 90% of
all mutation-positive HCM-patients carry mutations in on-
ly four out of the 26 genes. These are the MYH7-gene
encoding for the ventricular 3-myosin heavy chain (f3-
MyHC), the MYBPC3-gene encoding for cardiac
myosin-binding protein C (cMyBP-C), and TNNT2 and
TNNI3 encoding for cardiac troponin T and troponin I,
respectively [71, 95, 123]. Among these, MYH7 and
MYBPC3 are the most commonly affected genes with ap-
proximately 30-50% of genotyped patients each; the ra-
tios vary between different cohorts [29, 36, 48, 53, 79, 95,
123]. In rare cases (3—5%), which are often associated
with a severe phenotype, two mutations either in the same
gene (double heterozygosity) or in different genes (com-
pound heterozygosity) are found [95, 115].

B-MyHC mutations in HCM

In this review, we mainly focus on mutations in [3-
MyHC (MYH7) which is the predominant myosin iso-
form in ventricular sarcomeres [78]. To date, more than
400 HCM-associated mutations have been described in
MYH?7, of which more than 95% are missense mutations
[20, 122]. Most 3-MyHC mutations are clustered be-
tween residues 181 and 937 (Fig. 1). These residues
form the myosin head domain (S-1), which includes the
motor domain with the actin binding site and the ATPase
site, the converter domain and the ELC-binding region of
the lever arm, and a small part of the S-2 portion of the
myosin rod [83, 123]. Approximately 20% are located in
the coiled coil region (S-2) that forms the thick filament
[20]. HCM-related 3-MyHC missense mutations have
been found to alter several different parameters of active
contraction such as isometric force levels, cross-bridge
cycling kinetics, acto-myosin ATPase-activity, shortening
velocity, calcium sensitivity of force generation, and re-
laxation properties of the sarcomeres (for reviews see
[17, 83]).

Active contraction in skeletal and cardiac muscle is
based on ATP-driven elastic deformation of myosin heads
resulting in generation of force and sarcomere shortening
[42, 45, 46]. The cross-bridge cycle in calcium-activated
striated muscle can be described by a two-state model
(Huxley-Brenner two-state model) [11, 13, 16, 43].
During force generation the acto-myosin cross-bridges
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Fig. 1 HCM-mutations in the S-1 region of 3-MyHC. Structure of the
S-1 part of 3-MyHC (blue) protein based on Rayment and colleagues
[92] with mutations validated as HCM-causing by Walsh and co-workers
[123]. The light chains are indicated in red (ELC) and green (RLC). Note
that the mutations are distributed all over S-1

cycle between two groups of states, the force generating,
strong binding states with high actin affinity and the non-
force generating, weak binding states with low actin affin-
ity. In the weak binding states, ATP is hydrolyzed to ADP
and P; but both products remain bound to the cross-bridge.
Biochemical studies and experiments on muscle fibers
showed that weak binding cross-bridges rapidly bind and
unbind actin [14, 15, 18, 107, 125]. This weak binding is
not sufficient to generate force [12, 19, 37]. Yet, weak
attachment of myosin to actin is an essential intermediate
for the transition into the force-generating states [16, 59].
The electrostatic, non-stereospecific weak interaction of
myosin with actin occurs at specific sites on actin that are
different from the tropomyosin-regulated strong binding
sites [60, 63, 70, 128]. The so-called power stroke is asso-
ciated with calcium binding to the troponin-tropomyosin
complex, phosphate release from myosin, and a transition
of the myosin heads from a non-stereospecific weak-bind-
ing conformation to a stereospecific, strong-binding con-
formation. Completion of the power stroke is coupled to
release of ADP and rapid rebinding of ATP (for reviews
see [34, 41, 104)).

Since mutations in 3-MyHC are located essentially in
all different functional subdomains of the molecule and
particularly of the myosin head domain (Fig. 1), it is not
surprising that these mutations affect the described mech-
anism of force generation in various ways [17, 83].



Pflugers Arch - Eur J Physiol (2019) 471:719-733

721

Hypotheses on the pathomechanisms in HCM

Poison peptide mechanism, haploinsufficiency,
and disease severity

The effects of 3-MyHC missense mutations on sarcomere
function suggested that the mutated myosin is incorporated
into the sarcomeres and that the normal mechanism of force
generation is disturbed [9]. This dominant negative “poison
peptide effect” of mutated 3-MyHC was supported by studies
showing altered sarcomere function and yet undisturbed pack-
ing of myofibrils or myofilaments, indicating normal incorpo-
ration of the mutated myosin into the thick filaments and the
sarcomeres [58].

Interestingly, the level of severity of HCM seems to be as-
sociated with the relative abundance of mutated vs. wildtype
protein in the myocardium. The usually more severe course of
disease in homozygous patients as compared to heterozygous
relatives was assumed to be due to the higher amount of mutant
protein in the homozygous patients [87, 94]. This assumption
was supported by findings in heterozygous HCM patients
where in several cases, a benign disease course was associated
with a low relative fraction of mutant vs. wildtype mRNA and
protein [7, 26, 35, 39, 81, 86, 111]. The unexpected deviation
from a 50:50 ratio of mutant vs. wildtype transcript and protein
in myocardial samples was called “tissue level allelic imbal-
ance” [81]. In addition, downregulation of mutant mRNA and
protein in an HCM-mouse model could reduce HCM-
pathology such as hypertrophy and myocyte disarray [49].
However, in some HCM-patients and mouse models low levels
of mutated 3-MyHC were found associated with early disease
onset and severe phenotype. This indicates that not only the
relative fraction of mutant 3-MyHC but also the location and
the functional alterations caused by the mutations themselves
contribute to the severity of the disease [39, 81, 121].

Also, for several other disorders, phenotypic severity has
been directly linked to the increased expression of alleles with
disease-causing mutations. High fractions of transcripts from
the allele encoding for a mutant K,7.1 potassium channel
(loss-of-function) seems to cause a more severe form of long
QT-syndrome [4]. In malignant hyperthermia patients, allelic
imbalance of the ryanodine receptor gene was determined
which might underlie the variable penetrance of the disease
[38]. Allelic imbalance resulting in increased expression of
the mutant allele can also lead to onset of a recessive disorder
in heterozygous patients, as shown for a causative mutation in
Zellweger Spectrum Disorder [30]. In summary, in several dis-
eases including HCM, the increased expression of the disease-
causing allele seems to contribute to severity, pathogenic phe-
notype and the clinical onset of the respective disorder.

The poison peptide hypothesis is well-established particu-
larly for 3-MyHC-mutations but also for HCM missense mu-
tations in other sarcomeric proteins. However, some

mutations—especially truncating nonsense and frameshift
mutations in MYBPC3—Iead to the expression of C-
terminally truncated isoforms that are usually not incorporated
in the sarcomeres [98]. Here, no poison peptide effect but most
likely the lack of functional cMyBP-C—so-called
haploinsufficiency—seems to lead to malfunction of the sar-
comeres [133], including reduced maximal force generation
and secondary altered calcium sensitivity due to changes in
myofilament protein phosphorylation [113] (for review see
[100]).

But how can various mutations in distinct functional areas of
one gene—and even more in several different genes—either
through a poison peptide mechanism or haploinsufficiency lead
to a similar disease phenotype? In the next sections, current
hypotheses on HCM pathogenesis will be addressed with a
main focus on mutations in MYH?7.

The hypercontractility hypothesis

Already, in early studies on HCM, both “hypercontractility”
and cardiac hypertrophy, as well as “hypocontractility”
followed by hypertrophy to compensate for the impairment,
were described as pathophysiological mechanisms leading to
HCM [9]. One current hypothesis based on clinical evidence
and experimental findings at the molecular level is that HCM-
mutations cause hypercontractility, while DCM mutations
lead to hypocontractility (for review see [6, 106]). A number
of HCM mutations in sarcomeric proteins showed increased
calcium sensitivity, higher maximum force generation, and
increased ATPase activity. This was associated with higher
tension cost, leading to defects in cellular and myocardial
energetics and reduced energy reserves, which seem to be
common in HCM. Yet, functional effects of several HCM-
mutations are incompatible with the “hypercontractility hy-
pothesis.” Results show that instead, contractility and calcium
sensitivity can be increased, decreased or unaltered in HCM
[57, 61, 80, 114, 119]; for review see [83]. For example, the
converter mutations R719W and R723G cause increased max-
imum force generation and decreased calcium sensitivity in
slow skeletal and cardiac muscle of HCM-patients [57, 61]. In
recombinant human-truncated myosin-S-1 fragments, reduced
intrinsic force and unaltered ATPase-activity were observed
[54]. Mutation R453C showed reduced ATPase activity [8,
103] and reduced force in heart tissues engineered from hu-
man pluripotent stem cell-cardiomyocytes [84]. For the most
intensively studied 3-MyHC mutation R403Q conflicting re-
sults on the increase or decrease of ATPase-activity, force
generation, velocity, etc. have been reported [83, 126]. One
explanation of these inconsistent results might reside in the
respective study setup; the use of either native, expressed, full
length, or truncated, -, or 3-MyHC of different species
seems to influence the effect.
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Structural states of the thick filament and HCM

During recent years, two novel aspects of myosin structure
and ATPase-function were revealed which may be relevant
for HCM pathology: the interacting head motif and the so-
called super-relaxed state, a state of myosin in relaxed muscle
with much reduced ATPase activity. Here, we discuss both
concepts in the light of previous studies on the conformation
of thick filaments and myosin heads in relaxed muscle.

Weak binding cross-bridge states and myosin layer lines

It has been known for a long time that myosin heads can
assume several different conformations including a helically
ordered structure. In X-ray diffraction, the helically ordered
structure of the myosin heads near the thick filament surface
typically gives rise to strong myosin layer lines (MLL) and
related meridional reflections [44]. The intensity of the MLLs
in skeletal and cardiac muscle strongly depends on tempera-
ture [69, 70, 128], on the ligand bound or the biochemical state
of myosin heads [34, 129—131]. The helical order as indicated
by strong MLLs requires a closed conformation of the myosin
heads (“closed” as defined by Geeves and Holmes and others,
where switch 2 of S1 stabilizes the y-phosphate in an inter-
mediate conformation [32, 34, 102]).

Early on, the coexistence of ordered and disordered myosin
head populations was postulated [89]. It was observed that
lowering the temperature reduces the MLL intensities and
increases diffuse scattering, indicating a reduction of the frac-
tion of helically ordered cross-bridges and increasing disorder.
Interestingly, lowering ionic strength (which increases the
fraction of cross-bridges weakly bound to actin [12, 14,
132]) essentially does not affect the MLLs [60, 69, 128]. X-
ray diffraction data from relaxed striated muscle at different
temperatures and ionic strengths together with model calcula-
tions provided evidence for three populations of myosin head
conformations which are in dynamic equilibrium: helically
ordered myosin heads situated close to the backbone of the
thick filament, disordered detached heads and disordered
heads that are weakly attached to actin [70, 128].

Not only in skeletal muscle but also in cardiac muscle, evi-
dence for cross-bridges weakly attached to actin was provided
[130]. Since weak attachment to actin enables myosin heads to
sense the activation status of the thin filament, most likely, also
in cardiac muscle, weak binding cross-bridge states are essen-
tial intermediates on the path to force generation.

The super-relaxed state
Single nucleotide turnover experiments on permeabilized, re-
laxed skeletal muscle fibers and strips from rabbit ventricular

muscle revealed nucleotide release rates from myosin with a
relatively fast and an extremely slow component [40, 108].

@ Springer

The slow component of the basal ATP turnover was attributed
to a so-called super-relaxed state (SRX) of myosin with a much
reduced metabolic rate. The authors assumed that in cardiac
muscle (not in skeletal muscle), a subset of myosin molecules
remain in the SRX even during activation of the muscle and thus
may slightly reduce the total metabolic rate of working cardiac
muscle. Correlations between X-ray diffraction studies and the
SRX experiments suggested that SRX myosin heads contribute
to the helically ordered population of myosin heads discussed
above [108]. The SRX could thus contribute to the strong MLLs
in relaxed skeletal and cardiac muscle in addition to previously
described other myosin/thick filament conformations [66, 131].
Recently, changes in MLLs and meridional reflections of
myosin during activation of frog skeletal muscle fibers [68]
and cardiac preparations from rat [93] suggested that stress on
the thick filament at increasing loads of the sarcomere may lead
to an increase in force by recruitment/unlocking of myosin
heads from the helically ordered population on the filament
backbone. The authors assume that these might be SRX heads
and conclude that the thick filament might act as additional
regulatory mechanosensor in skeletal and cardiac muscle. This
could provide a fast mechanism for recruiting myosin heads
from the SRX for force generation at high load to allow adjust-
ment of end-diastolic volume-dependent systolic force from
heart beat to heart beat known as the Frank-Starling-
Mechanism [68]. Further studies are warranted to clarify wheth-
er this idea is consistent with well-characterized kinetics of force
development and redevelopment in different muscle types.
Other mechanisms for unlocking of helically ordered my-
osin heads have been suggested early on for tarantula thick
filaments [22] and also for mouse cardiac muscle including
phosphorylation of the RLC which results in more disordered
myosin heads [21]. In skinned trabeculae of rat ventricle, RLC
phosphorylation was found to change the myosin conforma-
tion from helical order (as suggested for the SRX) towards a
more perpendicular orientation relative to the backbone. This
was associated with increased calcium sensitivity and force
[52]. Interestingly, the orientation of the RLC changed not
only upon phosphorylation of the RLC, but also through cal-
cium activation and at longer sarcomere length [52]. This
suggests that myosin heads in the helically ordered state (or
SRX) can be activated under several conditions which may
include both, short term (thick filament stress) and long term
(phosphorylation) modulations of cardiac contraction [47].

The interacting head motif

It was suggested that structurally the SRX corresponds to
myosin heads forming the so-called interacting head motif
on the thick filament backbone (IHM; for review see [76]).
Electron microscopy and 3D reconstructions of two-headed
myosin of smooth muscle thick filaments and of myosin-
regulated tarantula-striated muscle with unphosphorylated
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RLC indicated an asymmetric interaction of the two heads of
myosin dimers [124, 127]. The actin-binding domain of the
so-called blocked head was found linked to the converter and
the essential light chain of the second “free”” head. Both my-
osin heads were folded back onto their own coiled-coil S2-
part. The intra- and intermolecular interactions of the two
heads in this motif are thought to inhibit binding to actin and
to result in much reduced basal ATP turnover, as seen earlier
for the helically ordered myosin heads in scallop myosin with
extremely slow ATP-release [120]. This conformation appears
to be stabilized via ionic interactions [51, 97]. Further studies
using 3D single-particle analysis on isolated myosin filaments
confirmed this myosin motif in different muscle types, includ-
ing mouse and human cardiac muscle in the relaxed state and
in the absence of actin [135] [3].

In smooth muscle, the folded-back state most likely repre-
sents inhibited myosin that can be activated by RLC phos-
phorylation [124], representing the major regulatory mecha-
nism of smooth muscle contraction. In skeletal and cardiac
muscle, calcium binding to troponin C and the resulting acti-
vation of the thin filament regulate cross-bridge cycle activity
and thus force generation. Nevertheless, structural evidence
exists that also in skeletal muscle, RLC-phosphorylation can
modulate the conformation of myosin heads and thus acto-
myosin interaction [65]. Furthermore, for thick filaments iso-
lated from mouse cardiac muscle, it was shown that cMyBP-C
may also contribute to the ordered structure of the myosin
filament, and that phosphorylation of cMyBP-C results in
more disordered filaments [55, 56].

SRY, interacting head motif, myosin mesa hypothesis,
and hypercontractility in HCM

Overall, the evidence is not unequivocal whether the
interacting head motif indeed is related to the SRX and to
the helically ordered myosin heads that give rise to the strong
MLLs. The helical order of the thick filaments may as well
directly result from the closed myosin head conformation as
defined by Geeves and Holmes [34]. Quantitative consider-
ations suggested that the disorder/order equilibrium of myosin
heads in relaxed muscle is not determined by release/
formation of the interacting head motif [131]. An interesting
recent study on purified human myosin constructs with differ-
ent length of the proximal S2-region and in the absence of
actin addressed the question whether the SRX in the muscle
fibers is related to the interacting head motif observed in struc-
tural studies on isolated thick filaments [5]. The authors found
that the fraction of myosin heads with SRX-like basal ATPase
rates increased with lowering ionic strength. With
mavacamten, a cardiac myosin inhibitor, basal ATP turnover
of myosin in solution was reduced, suggesting stabilization of
the SRX state [5, 136]. Electron microscopy on human myo-
sin constructs using cross-linkable mavacamten revealed a

substantial fraction of a folded head state, which could repre-
sent the interacting head motif [5]. In studies on porcine car-
diac muscle strips, mavacamten reduced active tension by half
and strongly enhanced the MLLs in relaxation and activation,
indicating a larger fraction of helically ordered cross-bridges
[5]

Yet, further work is needed to provide direct evidence
about putative contributions of the interacting head motif to
the SRX and of both to MLLs. From many previous studies on
acto-myosin cross-bridge structure and turnover kinetics
in vitro and in sarcomeres, several predictions arise that can
be tested to further characterize the SRX and the interacting
head motif in cardiac and skeletal muscle, including the re-
cruitment of myosin heads from the interacting head motif
under physiological conditions which must be very rapid.
High-resolution structural studies on intact sarcomeres are de-
sirable to reveal the occupancy of this state/structural confor-
mation of myosin in situ.

How could SRX and interacting head motif be linked to f3-
MyHC mutations and HCM? It was hypothesized that HCM-
mutations in 3-MyHC which are located in or close to struc-
tures involved in the formation of the interacting head motif
interfere with back-folding of the myosin heads [83]. This
could decrease the total number of myosin heads in the
SRX, resulting in higher basal ATPase rate and possibly in-
creased contractility of cardiomyocytes in HCM and may
even impair relaxation, thus affecting diastolic and systolic
function in HCM. Spudich observed that several mutations
in the 3-MyHC motor domain map to a particular mesa-
shaped surface area which appears in a pre-power stroke con-
formation of S1 [105]. This area contains an arginine-rich,
positively charged region, which may interact with cMyBP-
C and titin and also with the proximal S2 region of same the
myosin dimer, thus strengthening the interacting head motif
[85, 105, 106]. The “myosin mesa hypothesis” suggested that
HCM mutations in the myosin mesa and in the converter alter
the charge of these regions, and possibly in related domains of
cMyBP-C. This would diminish the ionic S1-S2 interactions
and release the myosin heads from an inhibited state, resulting
in hypercontractility. In cardiac samples from HCM-patients
with mutations in cMyBP-C, evidence for destabilization of
myosin heads in the SRX was found [77]. Structural analysis
of locations and charge changes of HCM-associated variants
in 3-MyHC and myosin light chains with respect to the
interacting head motif conformation also suggested that sev-
eral mutations could impair the formation of the interactions
and thus could reduce the myosin head fraction in the SRX [1,
97]. However, 3-MyHC-mutations not in the mesa or convert-
er did not affect S1-S2 interactions and thus were considered
unlikely to contribute to disturbed formation of the SRX [85].
Also, several mutations in the myosin mesa, converter and
proximal S2-region actually increase the number of positively
charged amino acids [112] which could keep more myosin
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heads in the folded-back state and thus may not cause
hypercontractility.

Unequal allelic expression of wildtype
and mutated protein from cell to cell
and the contractile imbalance hypothesis

Cardiomyocytes from HCM-patients reveal large
functional variability from cell to cell

Recently, our group suggested the “contractile imbalance hy-
pothesis” as novel concept for the development of typical
HCM-features like cellular disarray and interstitial fibrosis. It
is based on the observation that single cardiomyocytes from
the very same HCM-patient generated highly different force
levels at identical Ca*™ - concentrations [62].

We have shown that calcium-dependent force generation of
isolated, permeabilized single cardiomyocytes from HCM-
patients with two different 3-MyHC-mutations (A200V and
R723G) vary substantially from cell to cell for each HCM-
patient, significantly more than for donor cardiomyocytes that
were used as controls (Fig. 2). Some patient cardiomyocytes
showed calcium sensitivity comparable to controls, whereas
others showed substantially reduced calcium sensitivity. At
physiological calcium concentrations, relative force genera-
tion of individual cardiomyocytes differed 10-20-fold com-
paring the weakest with the strongest cardiomyocyte with mu-
tations R723G or A200V, respectively. In contrast, in both
controls, forces at the same calcium concentration varied only
about 1.5-fold [82].

R723G vs. Donor
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Fig. 2 Contractile heterogeneity of individual cardiomyocytes from
HCM-patients compared to donor cardiomyocytes. Single
cardiomyocytes were isolated from frozen heart tissue of HCM-patients
(red) with the mutation R723G (left) or A200V (right), respectively, and
from donor individuals (blue) as controls. Cardiomyocytes were
permeabilized, and after adjustment of phosphorylation levels [57, 61,
80, 114, 119], they were subjected to different calcium concentrations
and the respective force generation was measured. Depicted are the
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We expect that a similar contractile imbalance will develop
if a mutation alters other parameters of cardiomyocyte func-
tion such as shortening velocity or relaxation properties [57].
Furthermore, we have preliminary evidence that also for
HCM-cardiomyocytes with mutations in cMyBP-C [2] or in
cTnl (unpublished) such functional imbalance from cell to cell
exists.

Our findings suggest that force generation of individual
cardiomyocytes during systole is highly variable in the myo-
cardium of HCM-patients. The functional heterogeneity will
cause contractile imbalance where stronger cardiomyocytes
may over-contract while weaker cardiomyocytes may be
over-stretched. This effect may disrupt the myocardial net-
work and lead to the HCM-associated myocyte disarray.
Moreover, increased stretching of myocardial cells induces
the release of TGF-[3, angiotensin II, and endothelin-1 [99,
116] and the expression of hypertrophic markers in cultured
neonatal cardiomyocytes [117]. An HCM-mouse model
showed that the—presumably mutation-induced—increased
expression of TGF-3 was directly associated with the activa-
tion of pro-fibrotic pathways and with hypertrophic remodel-
ing [109]. Accordingly, we assume that contractile imbalance
between cardiomyocytes of HCM-patients not only induces
myocyte disarray but also the release of TGF-3 and other
cytokines, thus triggering fibrosis and hypertrophy [17].

Cell-to-cell allelic imbalance among cardiomyocytes
and M. soleus fibers of HCM-patients as underlying
cause for functional imbalance

In earlier studies on slow M. soleus fibers from HCM patients
which express 3-MyHC, we also observed a large functional

A200V vs. Donor
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forces of individual left ventricular cardiomyocytes at different calcium
concentrations (force-pCa-relations), normalized to maximum force.
Each symbol and curve represents a different individual cell. The boxes
at physiological calcium concentration highlight the much larger variance
in force generation among individual cardiomyocytes from the patients
compared to controls. Figure reprinted from [82] and modified, with
permission from Frontiers
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variability among individual fibers. Calcium sensitivity
ranged from normal to highly shifted for mutations R719W
and R723G, while for fibers with mutation 1736T, highly var-
iable incomplete relaxation was found [57]. We asked whether
the functional heterogeneity could be due to unequal fractions
of mutant and wildtype 3-MyHC in the individual fibers.
Relative quantification of MYH7-mRNA from individual
M. soleus fibers with mutation R723G revealed a large vari-
ability of the fraction of R723G-mRNA ranging from 100 to
less than 20% [17]. Previously, highly variable fractions of
mutated protein had been determined in skeletal muscle fibers
with mutation R403Q [70].

The unequal fractions of mutated and wildtype MYH7-
mRNA in M. soleus fibers suggested that such cell-to-cell
allelic imbalance might also underlie the functional imbalance
in cardiomyocytes. We adapted the method and quantified the
relative expression of wildtype vs. mutant MYH7-mRNA in
single cardiomyocytes of the same myocardial samples
(R723G-1 and A200V) in which we had determined the con-
tractile imbalance [62, 82]. In addition, we analyzed a further
patient with mutation R723G (R723G-2). We found
cardiomyocytes with almost exclusively wildtype MYH?7-
mRNA, with different fractions of mRNA from both alleles,
and with almost exclusively mutant MYH7-mRNA in each
patient (Fig. 3), indicating cell-to-cell allelic imbalance.
Control experiments showed that not only variance in mutant
and wildtype MYH7-mRNA fractions but also in function
from cell to cell was much larger than the experimental error
[62, 82]. We assume that the functional heterogeneity is due to
the unequal expression of mutated and wildtype 3-MyHC
from cell to cell [62, 82]. So far, no direct correlation of mu-
tated vs. wildtype 3-MyHC protein fractions and cardiomyo-
cyte function is possible. This would require functional

analysis followed by highly sensitive quantitative mass-
spectrometric 3-MyHC analysis of the same single
cardiomyocytes. However, mathematical simulations that
took into account published rate constants for mRNA and
protein life times, and the effect of variable fractions of mutant
[3-MyHC on calcium sensitivity strengthened our conclusion
[62, 82].

Burst-like transcription as underlying mechanism
of cell-to-cell allelic imbalance

Which mechanism could trigger this striking heterogeneity of
MYH7-allele expression among individual cardiomyocytes?
The traditional model of continuous gene expression of both
alleles would most likely lead to a rather homogeneous allelic
expression pattern from cell to cell and is expected to result in a
Poisson distribution of absolute MYH7-mRNA copy numbers in
individual cardiomyocytes [90, 91]. Yet, absolute quantification
of MYH7-mRNA per cell in cardiac tissue from a HCM patient
revealed a log-normal distribution which does not support con-
tinuous gene expression [82].

During the last decades, evidence increased that most genes
are transcribed burst-like; they are switched on and off sto-
chastically at any time [28, 91]. The expression level is deter-
mined by the size (the duration) and the frequency of such
transcriptional bursts [23]. Burst-like transcription can result
in highly heterogeneous gene expression in each cell of seem-
ingly homogeneous cell populations [90, 134]. The indepen-
dent bursts of transcription of the two alleles may also lead to
variable fractions of allelic transcripts and protein from cell to
cell [10, 25, 50, 64]. For heterozygous disease-causing muta-
tions, the stochastic transcription of mutated and a wildtype
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Fig. 3 Cell-to-cell allelic imbalance of MYH7-mRNA in three HCM
patients. Individual cells were isolated from sections of cardiac tissue
via laser capture microdissection. Cells were lysed and the MYH7-
mRNA was amplified by single cell RT-PCR. The fractions of mutant
vs. wildtype transcript were determined by densitometric analysis of

allele-specific restriction digests. Depicted are the fractions of mutant
MYH7-mRNA in individual cardiomyocytes from three different HCM-
patients (R723G-1, R723G-2, and A200V). Each dot represents one
cardiomyocyte
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alleles resulting in phenotypic variability from cell to cell may
affect severity of certain genetic diseases [25].

We hypothesized that stochastic, burst-like transcription,
which is independent for mutant and wildtype MYH?7-alleles
might lead to the observed heterogeneity in MYH7-allele ex-
pression and function among individual cardiomyocytes from
the same patient. To test for burst-like expression, we deter-
mined the active transcription sites of the MYH7-gene in nu-
clei of cardiomyocytes of an HCM-patient with mutation
R723G by fluorescence in situ hybridization. We found not
only nuclei where both alleles were transcribed, but also cells
with one active transcription site and, importantly, 27% of the
cardiomyocytes were without active transcription sites for
MYH7 (Fig. 4) [82]. This strongly argues against a continuous
transcription of the MYH7-gene but indicates burst-like tran-
scription [91]. A very recent study confirms this assumption,
showing divergent levels of several sarcomeric mRNAs (e.g.,
Myh6 and Myh7) from cell to cell in rat cardiomyocytes indi-
cating burst-like transcription [67]. In addition, our finding of
cardiomyocytes with only one active allele points to the inde-
pendent activation of both alleles [82]. We assume that burst-
like transcription of the two MYH7-alleles directly causes the
different fractions of wildtype and mutant MYH7-mRNA from
cell to cell [82]. This conclusion was supported by our math-
ematical model based on the determined fraction of cells with
active transcription sites of the MYH7-gene and published rate
constants for mRNA-turnover [82].

Nonspecific Intronic set

fluorescence

One aTS No aTS

Two aTS
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Heterogeneous expression and contractile imbalance
also for cMyBP-C mutations in HCM

Recent studies suggest that also in patients with cMyBP-C mu-
tations, unequal cMyBP-C-protein abundance from cell to cell
exists [88, 110] which may lead to contractile imbalance, thus
contributing to HCM pathology [2]. Frameshift mutations in
MYBPC3 usually result in degradation of the truncated protein
and lower levels of wildtype cMyBP-C protein, indicating
haploinsufficiency [33, 113]. Immunofluorescent or histochemi-
cal labelling of cardiac tissue from heterozygous HCM-patients
with frameshift cMyBP-C mutations revealed variable distribu-
tion of the remaining wildtype cMyBP-C protein among individ-
ual cardiomyocytes [2, 88, 110].

Our own studies on cardiomyocytes of a patient with the
cMyBP-C-mutation ¢.927-2A>G, which generates a prema-
ture stop-codon between cMyBP-C domains C1 and C2
showed reduced overall cMyBP-C-fluorescence compared to
donor cardiomyocytes [2]. Among and within individual
cardiomyocytes much more heterogeneous cMyBP-C-fluo-
rescence compared to x-actinin or 3-MyHC fluorescent label-
ling was found (Fig. 5). This suggests unequal abundance of
wildtype cMyBP-C protein from cell to cell and patchy distri-
bution within some cardiomyocytes, which might be caused
by burst-like transcription of the MYBPC3-gene.

Functional studies with the same patient’s cardiomyocytes
revealed reduced force generation and higher calcium

Exonic set

MYH7 mRNA Merge

Fig.4 MYH?7 active transcription sites in individual cardiomyocytes of an
HCM-patient. Cryo-sections of 16-um thickness were obtained from
cardiac tissue of an HCM patient with the mutation R723G.
Fluorescence in situ hybridization (FISH) was performed using an
intronic probe set binding the pre-mRNA and an exonic probe set
binding the processed mRNA. Co-localization of both fluorescently

labeled probe sets in nuclei indicates active transcription sites (aTS).
Shown is a cardiomyocyte without aTS (upper panel), a cardiomyocyte
with one aTS (middle panel, arrow) and a cardiomyocyte with two aTS
(lower panel, arrows). Note that the second signal in the middle panel
(arrow head) originates from nonspecific fluorescence (left panel).
Figure reprinted from [82] and modified, with permission from Frontiers
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Fig. 5 Heterogeneous distribution of cMyBP-C in myocardium of an
HCM patient with a truncation mutation. Cryo-sections from cardiac
tissue of an HCM-patient with the cMyBP-C-mutation ¢.927-2A>G
were stained with an N-terminus-specific antibody for cMyBP-C (left
panel, green) to detect the inter- and intracellular distribution of

sensitivity and, interestingly, significantly larger variability of
force generation at submaximal calcium levels among
MYBP(C3-mutant cardiomyocytes compared to donor
cardiomyocytes [2]. We conclude that the MYBPC3-mutation
results in variable expression of wildtype cMyBP-C in the pa-
tient’s cardiomyocytes, i.e., variable haploinsufficiency (due to
allelic imbalance) from cell to cell. This may lead to contractile
imbalance, as suggested by the highly heterogeneous force
generation at physiological calcium levels, comparable to the
heterogeneity we found in the patients with 3-MyHC
mutations.

From burst-like transcription to contractile
imbalance—possible impact on HCM
pathomechanisms

Based on experimental evidence, our contractile imbalance
hypothesis suggests that burst-like transcription of the two
MYH?7-alleles leads to significant variability of mutant and
wildtype mRNA fractions among individual
cardiomyocytes from heterozygous HCM patients [62,
82]. Most likely, this translates into similar variable frac-
tions of mutant vs. wildtype 3-MyHC protein from cell to
cell. Since the mutations alter intrinsic 3-MyHC-function
and thus parameters of force generation of the
cardiomyocytes, unequal expression of mutant and
wildtype 3-MyHC will result in heterogeneous biomechan-
ical properties among individual cardiomyocytes. Over
time, this imbalance in the myocardium of HCM patients
will presumably contribute to development of cellular dis-
array and trigger the expression and release of e.g. TGF-f3,
leading to fibrosis and hypertrophy [17] (Fig. 6). The sto-
chastic nature of burst-like transcription will also lead to
changing fractions of mutant and wildtype MYH7-mRNA
and 3-MyHC-protein and thus of force generation per car-
diomyocyte over time [62, 82]. This effect may even in-
crease the structural distortions of the myocardium.

50 ym

cMyBP-C. The sections were co-stained with a 3-MyHC-specific
antibody (right panel, red) to visualize the overall sarcomere
fluorescence in the cardiomyocytes. Note the uneven distribution of
cMyBP-C between and also within individual cardiomyocytes while the
[3-MyHC stain is much more regular

Importantly, the contractile imbalance hypothesis is consis-
tent with the poison peptide principle in HCM, stating that the
mutated protein is incorporated into the sarcomeres and in-
duces significant alterations of sarcomere contractile function.
Evidence suggests that stochastic, independent, burst-like
transcription of mutant and wildtype alleles at least for
MYH?7 leads to variable fractions of the functionally different
wildtype and mutant 3-MyHC from cell to cell or even from
myofibril to myofibril. Therefore, not only the direct effect of
the mutations on (3-MyHC structure and function will trigger
the development of HCM. Also, contractile imbalance among
individual cardiomyocytes [17, 62, 82] and the overall frac-
tion of mutated vs. wildtype protein in the myocardium [7, 26,
35, 39, 81, 86, 111] will contribute to development of HCM.
Rare homozygous patients and mouse models show that
severely altered function of the myosin molecule itself, its
high-dose expression from both alleles, and associated
changes in cardiomyocyte physiology can lead to very
severe phenotypes which are different from heterozygous
patients, as discussed in our previous work [17, 62, 82].
In heterozygous patients, contractile imbalance between
cardiomyocytes will exacerbate the mutation-induced de-
velopment of hallmarks of HCM. Therapeutic interven-
tions in HCM that reduce force generation of the
cardiomyocytes with drugs like calcium-channel blockers
and (3-blockers [17, 62] or small molecule inhibitors like
mavacamten will be beneficial since they will reduce con-
tractile imbalance and cardiomyocyte distortions. This is
supported by a study on early treatment of HCM in pre-
clinical mutation-positive individuals where myocardial
remodeling was delayed [137].

The contractile imbalance hypothesis and other current hy-
potheses on the development of HCM do not necessarily con-
tradict each other. We propose that whenever there is a
mutation-induced change in function of the cardiomyocytes
(e.g., higher/lower force at the same calcium concentration,
altered relaxation) and the affected gene is expressed burst-
like with kinetics that result in different fractions of mutant
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Fig. 6 Contractile imbalance hypothesis for MYH7-mutations. In
heterozygous HCM-patients, both MYH7 alleles are expressed burst-
like; they are switched on and off in an independent and stochastic
manner (active mutant and wildtype alleles are indicated by black and
white stars). In adult human myocardium, in 27% of nuclei, both alleles
were found switched off (no stars, i.e., no active transcription sites in
scheme) [82]. Burst-like expression leads to heterogeneous fractions of
wildtype and mutant mRNA in neighboring cells (indicated by differently

and wildtype protein from cell to cell, then contractile imbal-
ance could develop [17, 62, 82]. Therefore, also if a mutation
affects the putative folded-back state of the myosin heads
[105] or reduces the number of myosin heads in the super-
relaxed state [40], the extent of functional change will be
different from cell to cell. It will depend on the respective
fractions of mutant and wildtype protein in each cardiomyo-
cyte and thus would lead to contractile imbalance and the
associated effects on HCM development.
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