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Abstract
Resistance training (RT) is performed for improvements in body composition in young healthy adults and for health
benefits in middle-aged and older adults. Traditionally, RT is prescribed at moderate- to high-intensity to promote
benefits on skeletal muscle mass and strength in middle-aged and older adults without considering the vascular effects.
Recent evidence suggests that muscle strength may be more protective than muscle mass for cardiovascular disease
prevention and that muscle strength can be importantly improved with low-intensity RT. The main purpose of this
review was to examine the effects of RT intensity on arterial stiffness and blood pressure (peripheral and central) in
young and older adults. Although small increases in central arterial stiffness (carotid β and carotid-femoral pulse wave
velocity [PWV]) have been reported in young and middle-aged men, this review suggests that low- and high-intensity
RT may not affect arterial stiffness whereas low-intensity RT may decrease systemic arterial stiffness (brachial-ankle
PWV) in young healthy adults or not affect arterial stiffness in middle-aged and older adults. Independently of the
intensity, RT may be effective to reduce blood pressure (peripheral and central) in middle-aged and older adults with at
least elevated blood pressure at baseline. Further studies are needed to examine the impact of RT on arterial stiffness,
central blood pressure, and wave reflection in middle-aged and older adults.
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Introduction

Arterial stiffening is a major age-related risk factor for the
development of systolic hypertension [7] and cardiovascular
disease (CVD) [90]. Arterial stiffness can be measured non-
invasively as pulse wave velocity (PWV) in various arterial
segments. Carotid-femoral PWV (cfPWV) is the gold stan-
dard measure of aortic stiffness [60], although it does not
include the ascending aorta. Alternatively, brachial-ankle
PWV (baPWV) is a composite of cfPWVand peripheral arte-
rial stiffness, predominantly femoral-ankle (leg) PWV [82].
Both cfPWV and baPWV are positively associated with age
and systolic blood pressure (BP) and are predictors of CVD
and mortality [13, 85, 90, 91]. It is estimated that an increase
in cfPWV or baPWV by 1.0 m/s increases the risk of total
cardiovascular events (12–14%), mortality (13–15%), and
all-cause mortality (13–15%) [90, 91]. Central (aortic and ca-
rotid) BP are more relevant risk factors than brachial BP for
the development of hypertension and CVD because they exert
a pressure load on the left ventricle, brain, and other organs
[12, 77, 92]. The direction of the association between PWV
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and BP is age-related [30]. In young adults, increased BP is
the precursor of arterial stiffness, while in middle-aged and
older adults this association is inverted. Elevated cfPWV con-
tributes to augment left ventricular afterload via increases in
the pulsatile components of aortic BP (systolic BP [SBP] and
pulse pressure [PP]), leading to isolated systolic hypertension,
ventricular hypertrophy, and heart failure in middle-aged and
old adults [20, 39, 45]. In contrast, an increase in PWVmay be
determined by a concurrent increase in the steady components
of BP (mean arterial pressure and diastolic BP) in young
adults [59]. It is estimated that for each 10 mmHg increase
in aortic SBP, the risk of cardiovascular events increases by
8.8% [89].

Increased cfPWV has been linked to altered body com-
position, both increased adiposity [80] and reduced mus-
cle mass [1, 61]. Aortic stiffness also exhibits an inverse
relationship to upper-body muscular strength in heathy
young males [24]. Recent work further suggests that this
relationship exists in young and older men and women
and that relative muscle strength is more closely related
to cfPWV than either muscle mass or absolute muscle
strength alone [26]. Several studies have shown an in-
verse association between low leg muscle mass and
baPWV [46, 61, 79]. Additionally, the negative relation-
ship between reduced limb muscle mass and prevalence of
hypertension [32] and the protective effect of high muscle
strength against all-cause mortality in hypertensives [2]
support the notion that the skeletal muscle fitness plays
a beneficial role on vascular health. Since leg muscle
mass is a strong determinant of reduced aortic and leg
arterial stiffness in older adults [80], improvements in
mass and/or strength may result in cardiovascular benefits
by affecting PWV and BP.

Unlike participation in aerobic activities, which may bene-
fit both cardiorespiratory fitness as well as reduce arterial stiff-
ness and BP, the effects of muscle strengthening activities
(e.g., resistance training [RT]) on arterial stiffness are less
clear and controversial. Some experimental trials have found
RT to cause an increase in arterial stiffness [57] while other
studies observed no changes in arterial stiffness following RT
[10]. Similarly, meta-analyses on this topic vary with one con-
cluded no effect of RT on arterial stiffness [3] while another
concluded high-intensity RT would increase arterial stiffness
in young healthy individuals, especially in those with low
levels at baseline [56]. In contrast, high-intensity RT did not
change arterial stiffness in middle-aged adults [56]. Despite
the mixed evidence regarding the effects of RT on arterial
stiffness, it would seem that activities that benefit skeletal
muscle health would also be beneficial for overall cardiovas-
cular health based on the aforementioned relationships be-
tween the skeletal muscle and vasculature. Skeletal muscle
and vascular health may both be influenced by inflammation
[79] and endothelial function [6]. It is also possible that

changes in vascular health precede changes in skeletal muscle
health via reductions in skeletal muscle blood flow [1].

The American College of Sports Medicine recommends
RT at 65–85% of one-repetition maximum (1RM) as a means
for healthy adults to increase muscular fitness (e.g., strength
andmass) [76]. To increase muscular strength, a relatively low
(~ 50% of the one-repetition maximum, 1RM) RT intensity
can be effective for novice trainees. In contrast, relatively high
resistance exercise intensities (> 80% 1RM)may be necessary
to enhance muscular strength andmass in experienced trainees
[76]. While the physical stress of high-intensity resistance
exercise benefits the structure and function of many bodily
systems, primarily skeletal muscle and bone, it also imposes
a unique stress on the cardiovascular system. For instance,
high-intensity (> 90% 1RM) bilateral leg press exercise can
cause arterial pressures to rise to ~ 320/250 mmHg [49].
Repeated acute increases in BP during high-intensity resis-
tance exercise [49] may elicit structural and functional remod-
eling in the arterial and ventricular walls as well as chronic
changes in resting BP. During high-intensity resistance exer-
cise is difficult to avoid the Valsalva maneuver, which by itself
can increase cfPWV [35]. Changes in arterial stiffness may be
one consequence of alterations in arterial structure [96].
Numerus recent studies have examined the effects of high-
intensity RT on PWV and BP in younger and older adults
(Table 1). The following sections review the impact of high-
intensity RT and low-intensity RT on arterial stiffness and
resting BP in young and older adults.

The effects of high-intensity resistance
training on arterial stiffness in young,
middle-aged, and older adults

One of the first studies to investigate the effects of high-
intensity RTon arterial stiffness observed an increase in carot-
id β stiffness following 4 months of whole-body (2 upper and
3 lower) exercise training to concentric failure in young,
healthy men [57]. Similar increases in carotid β stiffness as
well as cfPWV have occurred in young women after high-
intensity RT [19]. However, other studies have shown no
change in carotid β stiffness [34, 74], cfPWV or peripheral
PWV (faPWVand carotid-radial) following RT in previously
sedentary young adults (Fig. 1) [10, 34, 74]. The contradictory
findings may be due to variations in the RT protocol. Further
research in this area has explored different RT protocols and
has demonstrated that the concentric component elicits the
increase in PWV [62]. Additionally, upper but not lower body
RT results in increased PWV [67]. Another consideration is
the modality of RT, machine based or free weight based. Free
weight-based RT mostly used by experienced trainees typical-
ly requires more core stabilization compared tomachine based
exercise which only allows movement through a fixed range
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of motion. With greater core stabilization demands and thus
potentially greater increases in intra-abdominal pressure dur-
ing exercise, theoretically, this modality of RT could cause
greater increases in arterial stiffness in young individuals.
However, one only study has examined the effects of primar-
ily high-intensity free weight (e.g., squats, deadlifts, overhead
press, etc.) training on arterial stiffness [34]. This study did not
observe any changes in arterial stiffness following 8 weeks of
RT in young healthy African American and Caucasian men
[34]. Collectively, whole-body high-intensity RT in young
individuals who have low baseline levels of arterial stiffness
may increase arterial stiffness by ~ 11% [56]. However, an
increase in arterial stiffness of that magnitude in young,
healthy individuals may not be enough to cause adverse car-
diovascular events [56].

Although the increase in arterial stiffness following high-
intensity resistance exercise in young individuals may not
pose a significant health risk, research has examined training
methods that could attenuate the increase in stiffness.
Maintaining, rather than increasing, the RT volume over a
12-week period of high-intensity RT prevent increases in ar-
terial stiffness [10]. The addition of low-intensity (50% 1RM)
following high-intensity (80% 1RM) exercises has been
shown to prevent the increases in arterial stiffness that occur

following high-intensity RT [69]. It is suggested that lower
and moderate-intensity resistance exercise attenuates the ele-
vations in arterial BP and sympathetic nervous system activity
that may occur following high-intensity resistance exercise
leading to an increase in arterial stiffness (Fig. 1) [69].
Additionally, a combination of RT with aerobic training may
be an effective means to prevent arterial stiffening as a meta-
analysis has shown a small reduction in arterial stiffness
followed combined training [58]. Notably, Figueroa et al.
[28] observed a reduction in systemic arterial stiffness
(baPWV) in post-menopausal women (~ 54 years) following
a combination of moderate-intensity (60% 1RM) circuit type
resistance exercise followed by 20 min of treadmill walking.
This is still in contrast to a more substantial reduction in PWV
following aerobic training alone [58]. Overall, it appears that
combining high-intensity RT with either aerobic training or
low-intensity RT and/or careful manipulation of the RT vol-
ume may be an effective strategy to prevent any potential
arterial stiffening effects of high-intensity RT.

With aging and menopause, there is a progressive increase
in cfPWVand baPWV [88, 95]. Increases in arterial stiffness
following high-intensity RT in older adults with already ele-
vated arterial stiffness may be of a greater concern for cardio-
vascular risk, although this apprehension is commonly

Fig. 1 Potential mechanisms for
the increases in arterial stiffness in
young, middle-aged and older
adults. High-intensity resistance
training and concurrent Valsalva
maneuver increase blood pressure
acutely and sympathetic activity
chronically, contributing to
increase arterial stiffness. In
contrast, decreases in PWV may
be explained by improved
endothelial NO-mediated
vasodilatory function.
Abbreviations: cfPWV, carotid-
femoral pulse wave velocity;
faPWV, femoral-ankle pulse
wave velocity; baPWV, brachial-
ankle pulse wave velocity; β
stiffness, carotid artery beta-
stiffness; NO, nitric oxide
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ignored by researchers in RT studies. Three studies have
shown no effect of RT on arterial stiffness in middle-aged
and/or older adults [18, 78, 94]. Cortez-Cooper et al. [18]
observed no change in arterial stiffness following 13 weeks
of machine based RT using an intensity of 70% 1RM in mid-
dle aged (~ 52 years) men and women. Yoshizawa et al. [94]
also found no effects of 12 weeks of moderate-intensity (60%
1RM) resistance exercise on arterial stiffness in middle-aged
women. Finally, Rossow et al. [78] observed no change in
arterial stiffness following high-intensity (80% 1RM) RT in
older (~ 57 years) women. As mentioned, Figueroa et al. [28]
observed a decrease in arterial stiffness following combined
RT and aerobic training in post-menopausal women. In con-
trast, one study observed an increase in arterial stiffness (~
14.5% increase in cfPWVand faPWV) following 4 weeks of
moderate-intensity (~ 50% 1RM or 65% 10RM) RT in pre-
hypertensive and stage-1 hypertensive middle-aged men and
women [15]. A meta-analysis which pooled the aforemen-
tioned studies concluded that RT in middle-aged subject does
not increase arterial stiffness [56]. Notably, the studies which
observed no change [78, 94] or a decrease [28] in arterial
stiffness following RT studied women exclusively or women
comprised the majority (~ 77%) of the participants in the RT
group [18]. The study that observed an increase in arterial
stiffness following RT included a majority of men (~ 67%)
in the RT group. Thus, in middle-aged and older individuals,
it is possible that men are more susceptible to increases in
arterial stiffness following RT compared to women although
there is a need for more evidence in this topic. Additionally,
there is a lack of evidence on how high-intensity (> 80%
1RM) RT effects arterial stiffness in older adults, especially
men.

The effects of high-intensity resistance
training on blood pressure in young,
middle-aged, and older adults

Hypertension is a primary risk factor for cardiovascular dis-
eases [40]. Non-pharmacological strategies for hypertension
include physical activity, primarily aerobic exercise supple-
mented by resistance exercise [52]. The BP-lowering effects
of aerobic exercise are well-established [42]. In contrast, few-
er studies have investigated the effects of high-intensity RTon
BP (Fig. 1). The mode of RTas well as other RT variables may
affect the magnitude of the change in resting BP following
training.

One of the earlier studies examining the effects of high-
(75–85% 1RM) and moderate-intensity (55–65% 1RM) RT
in older adults (~ 68 years) revealed that both training intensi-
ties were effective in reducing BP although the magnitude of
the decrease was greater following moderate-intensity com-
pared to high-intensity RT [87]. However, pooled analysis of

multiple studies examining the effect of various RT exercise
intensities on BP did not find a significant effect of RT inten-
sity on the change in BP [17]. Of note, the majority of RT
studies have used moderate to high training intensities (60–
80% 1RM) and thus the effect of different training intensities
is not entirely clear. With respect to the type of resistance
exercise, isometric or dynamic, a meta-analysis concluded that
isometric RT results in greater reductions in BP than either
traditional dynamic resistance exercise or even aerobic exer-
cise [9].

The effect of RT on resting BP does not appear to vary
between younger and older participants [16]. One investiga-
tion which compared the effects of 8-week high-intensity RT
on brachial BP observed no reductions in either younger or
older women without hypertension [78]. Similarly, 12 to
18weeks of RTwas ineffective to elicit brachial BP reductions
in normotensive young adults [10] or in postmenopausal
women [11]. Data from these studies may suggest that BP
reductions after RT are minimal and insignificant in normo-
tensive participants [17].

While most research on the BP lowering effects has mea-
sured brachial BP as the primary outcome, central (aortic) BP
is better related to future cardiovascular events [73]. Non-
invasive estimation of central BP requires measurement of
pressure waveforms from other sites in the arterial tree [53].
Despite the technology becoming more available for estima-
tion of central BP, only a handful of studies have specifically
investigated the effects of high-intensity RT on central BP.
One of the aforementioned studies which investigated the ef-
fects of whole-body resistance exercises without increases in
volume [10] did not observe any changes in central BP fol-
lowing 12 weeks of RT in young men and women. In contrast,
other investigations observed a central BP-lowering effect of
RT. Croymans et al. [21] found central aortic BP was reduced
in sedentary and overweight young men following 12 weeks
of RT. Similarly, 8-week high-intensity RT was effective in
reducing central aortic SBP (~ 10 mmHg) in young adults
with elevated BP and stage-1 hypertension [5]. Moreover,
Taaffe et al. [83] also observed reductions in central aortic
BP following 20 weeks of high-intensity RT in older (~
70 years) men and women with elevated BP or stage-1 hyper-
tension. Finally, Heffernan et al. [34] also observed reduction
in central BP (carotid and aortic SBP) following 8 weeks of
high-intensity RT in young African-American and Caucasian
men. These studies observed no changes in central arterial
stiffness [5, 34, 83]. Of note, the three studies which observed
reductions in central BP all included participants with relative-
ly high aortic SBP (> 105 mmHg) [21, 34, 83] compared to
the study which did not observe changes in aortic BP in which
participants had relatively low central BP (~ 102/74 mmHg)
[10]. Importantly, reductions in central BP following RToccur
independent of changes in brachial BP or central arterial stiff-
ness [5, 21, 83]. Notably, one of the studies reported that
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reduction of aortic BP was attributed to decreases in pressure
wave reflection and peripheral (arms and legs) arterial stiff-
ness in young adults [5].

With the limited number of studies that have examined the
central BP effects of RT, there is not enough information to
conclude if the modality, intensity, or other training variables
may impact the anti-hypertensive response to training. Thus,
there is a need for more research on the impact of RT on
central BP.

The effects of low-intensity resistance
training on arterial stiffness and blood
pressure in young adults

Several studies have reported that low-intensity RTat 30–50%
of 1RM promotes gains in muscle strength and mass that are
similar to those reported with high-intensity RT [54, 84, 86].
Low-intensity RTat 40–50% of 1RMwith slowmovement (≥
3 s concentric and eccentric phases) and shorter inter-set rest
periods (30 s) also increases muscular size and strength as
effective as conventional high-intensity RT [63, 84, 86]. In
addition, low-intensity RT to exhaustion can increase muscu-
lar size and strength to the same degree as high-intensity RT
[54].

In contrast to high-intensity RT, several studies have shown
that low-intensity RT effectively decreases arterial stiffness
(baPWV) in healthy young adults (Fig. 2) [63, 68, 70]. An
interesting effect of low-intensity RT when performed after
high-intensity RT in the same session is its capacity to sup-
press the increase in arterial stiffness (baPWV) induced by
high-intensity RT alone [69]. Interestingly, arterial stiffness
increases when the intensity of RT is reversed. These findings
therefore suggest that arterial stiffening is not suppressed by
low- before high-intensity RT. Thus, although low- after high-
intensity RT suppresses the increase in arterial stiffness, high-
intensity RT might neutralize this anti-stiffening effect of low-
intensity RT. On the other hand, increased arterial stiffness
might depend on the method (e.g., body part, contraction type)
of RT. In fact, upper limb RT increases arterial stiffness
(baPWV) while lower limb RT has no effect [23, 67].
Moreover, concentric RT (lifting phase) increases arterial stiff-
ness, whereas eccentric RT (lowering phase) does not affect
PWV [62]. Furthermore, high-intensity RT with rapid lifting
and slow lowering might prevent arterial stiffening [64].
These studies have reported no effect of low-intensity RT on
peripheral BP since participants were healthy normotensive
adults (Fig. 2). Based on these findings, the intensity of RT,
muscles exercise performed, and type of contraction required
to maintain cardiovascular health might have to be carefully
prescribed, especially in middle-aged older adults with hyper-
tension, CVD, and other chronic diseases or risk factors (e.g.,

type 2 diabetes, prediabetes, metabolic syndrome) with in-
creased PWVassociated with aging and health conditions.

The effects of low-intensity resistance
training on arterial stiffness and blood
pressure in middle-aged and older adults

The effects of low-intensity RTon arterial stiffness and hemo-
dynamics have been assessed following 4–52 weeks in
middle-aged and older adults (40–72 years of age), although
the number of studies are limited (Table 2 and Fig. 2). In short-
term RT (4–12 weeks) studies, authors reported no impact on
arterial stiffness. Fahs et al. [25] utilized unilateral knee exten-
sion exercise to examine the effects of low-intensity (30%
1RM) RT with and without blood-flow restriction in normo-
tensive middle-aged adults. Although they reported no effect
on SBP or faPWV following 6 weeks of low-intensity RT
(Table 2), there were significant increases in vascular conduc-
tance (26.2%) in the leg trained without blood-flow restric-
tion. These findings suggest that an RT program with a single-
leg exercise for the quadriceps may be not sufficient to im-
prove whole leg arterial stiffness and BP in normotensive
adults. Similarly, 16 weeks of low-intensity RT did not cause
significant reductions in aortic SBP (− 2 mmHg) in apparently
healthy older adults [93]. However, older women tended to
have lower SBP than men after RT.

Important factors that influence reductions in BP with
RT include BP at baseline and sex. Studies have shown
that the BP lowering effect of RT is not evident in indi-
viduals with normal BP, and on the other hand, there is
greater BP reduction in individuals with hypertension,
followed by those with elevated BP [48]. There is a grow-
ing number of studies suggesting that women may benefit
from low-intensity RT more than men [14, 27, 29, 65].
Evidence suggests that only 4 weeks of low- to moderate-
intensity (80% of 10RM) RT may induce more vascular
benefits in middle-aged women than men with elevated
BP or hypertension [14]. Despite similar reductions in
SBP in men and women, RT evoked an increase in
cfPWV in men but not in postmenopausal women. In
contrast, low-intensity RT decreased systemic PWV
(baPWV) but not SBP in normotensive middle-aged
women [65]. Although women in the previous two studies
[14, 65] had similar age, inclusion of women with normal
BP explains the lack of reduction in BP with a decrease in
baPWV [65]. To examine potential sex differences on the
impact of low-intensity (45% 1RM) RT on aortic BP and
wave reflection in older adults, Williams et al. random-
ized men and women aged 60–75 years to RT and flexi-
bility training in a crossover design [93]. They reported
no significant vascular changes following 16 weeks of RT.
Although significant reductions in wave reflection indexes
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including augmented pressure (22.2%) and augmentation
index (16.0%) were apparent in older women, but not
men, the decrease in aortic SBP (4 mmHg) in women
was not statistically significant. It was suggested that the
duration of the RT might have not been long enough to
evoke greater reductions in aortic SBP. More importantly,
it has been proposed that upper-body, but not lower-body
resistance exercises increase PWV acutely and chronically
[23, 67], which may attenuate decreases in BP. Given that
RT consisted of three exercises for trunk muscles and one
for thigh muscles in the study by Williams et al. [93],
more preference should be given to leg resistance exer-
cises. In contrast, it was found that aortic SBP significant-
ly decreased (7 mmHg) following 12 weeks of low-
intensity RT with slow movement in obese early postmen-
opausal women aged 47–60 years with elevated BP and
hypertension. Women in this RT intervention performed
three sets of four leg exercises. Despite reduction in aortic
SBP, low-intensity RT was inefficient to reduce arterial
stiffness measured as cfPWV, baPWV, and faPWV, which
is in agreement with previous studies that used high-
intensity RT [5, 34, 83]. In prehypertensive and never-
medicated hypertensive older adults, low- to moderate-

intensity RT for 12 weeks reduced aortic SBP and DBP
[36]. Although cfPWV was not measured in the previous
study, the decrease in forward wave pressure (Pf) may
indicate that reduction of proximal aorta stiffness would
have contributed to reductions in aortic SBP and Pf.
Given that participants in the previous study were pre-
dominantly (82%) older women, RT may be considered
a more effective strategy in women with elevated hyper-
tension [14, 27]. In a subsequent study in older obese
adults aged 65–79 years, moderate-intensity RT (70%
1RM) did not reduced baPWV and brachial SBP after 5-
months intervention [38]. An important limitation of the
previous study was high variability in the baPWV re-
sponse to RT, which might be due to inclusion of both
sexes and participants with normal BP and hypertension.
The only study to our knowledge to report reductions in
BP in older men utilized 52 weeks of low-intensity (45%
1RM) whole-body RT [43]. Kim and Kim [43] reported a
significant decrease in SBP (6.3%) and diastolic BP
(5.2%) with a concurrent increase in brachial artery com-
pliance (2.5%) in hypertensive older (72 years of age)
men. At this time, we cannot state whether or not males
need longer RT programs to have beneficial vascular

Fig. 2 Potential mechanism for
the decrease in PWV in young
adults. Low-intensity resistance
training does not change plasma
norepinephrine levels and
increases endothelial NO-
mediated vasodilatory function,
providing a restrain to
sympathetic-mediated
vasoconstriction. Abbreviations:
cfPWV, carotid-femoral pulse
wave velocity; faPWV, femoral-
ankle pulse wave velocity;
baPWV, brachial-ankle pulse
wave velocity; β stiffness, carotid
artery beta-stiffness; NO, nitric
oxide
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adaptations when compared to their female counterparts.
Investigations observing the effects of low-intensity RT
on central hemodynamics and arterial stiffness (PWV) in
older adults are severely limited. Taken together, evi-
dence to date suggests that it may be more difficult to
regress structural changes in the arterial wall than BP
with RT in older adults.

Potential mechanisms

Although the mechanism by which high-intensity RT in-
creases central artery stiffness is not entirely clear, it may
be due to elevations in plasma norepinephrine (NE) [67],
exaggerated elevations in BP during exercise [47, 49],
and repeated use of the Valsalva maneuver (Fig. 1)
[35]. A single bout of RT consisting of one set to exhaus-
tion at 75% of 1RM for nine whole-body exercises or
four sets at 70–80% of 1RM for two upper-body exer-
cises have increased central carotid (beta) or aortic
(cfPWV) stiffness in healthy young adults [22, 23].
Acute intermittent elevations of BP during resistance ex-
ercise sessions may influence the increase in central ar-
tery stiffness after high-intensity RT.

Some mechanisms have been proposed to explain the re-
duction in arterial stiffness after low-intensity RT (Fig. 2).
Okamoto et al. [66] found that plasma NE remained un-
changed and significantly increased after acute low- and
high-intensity resistance exercise, respectively. In addition,
plasma NE concentrations increase more after 10 weeks of
upper- than lower-limb low-intensity RT [67]. Moreover,
Okamoto et al. [67] also determined that arterial stiffness
(baPWV) was positively correlated with plasma NE concen-
trations in the upper-limb after RT. Thus, the increase in ar-
terial stiffness might result from complex interactions be-
tween sympathetic activity and vascular smooth muscle tone.
Therefore, low-intensity RT might reduce arterial stiffness by
providing restraint to sympathetic adrenergic vasoconstric-
tion. Thus, high-intensity RT enhances, whereas low-
intensity RT with slow lifting and lowering and short inter-
set rest periods attenuates the vasoconstriction stimulated by
sympathetic activity.

High-intensity RT does not favorably affect endothelial
function in healthy young men [41, 64, 75]. However,
improvements in brachial artery or forearm endothelial
function have been found after moderate- and high-
intensity RT in overweight premenopausal women [44,
71], young [4] and middle-aged [14, 15] adults with ele-
vated BP and hypertension. Positive effects on endothelial
function have been shown after low-intensity RT with
slow lifting and lowering and short inter-set rest periods
even in healthy adults [63, 68]. The continuous generation
of force during exercise at 40% maximum voluntaryTa
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contraction suppresses both muscle blood inflow and out-
flow due to an increased intramuscular pressure, causing
intramuscular hypoxia [8, 55]. Vascular tone is influenced
by the balance between local (endothelial nitric oxide [NO]
and muscle hypoxia-related metabolites) vasodilators and
sympathetic vasoconstrictor reflexes to maintain adequate
muscle blood flow and arterial BP [37]. Endothelin-1 (ET-
1), a potent endothelial-derived vasoconstrictor, may par-
tially explain the increased cfPWV in resistance-trained
male athletes [72]. The mechanisms underlying vascular
benefits of RT remain unclear in humans. The primary
mechanism may involve an increase in BP and shear stress
stimulation on endothelial cells during exercise bouts.
Repeated periods of increased blood flow and shear stress
during training mechanically stimulates endothelial NO
synthesis [31]. Improvements in vascular function after
6 months of RT and aerobic training were evident in the
exercised limb, suggesting that vascular benefits may be
associated with increased local shear stress rather than the
exercise modality [81]. Increased NO bioavailability by RT
may decrease production of ET-1 [50, 51]. In rats, RT
failed to decrease cfPWV and increase NO production,
suggesting that RT does not activate NO signaling pathway
(endothelial NO synthase/Akt phosphorylation) in endo-
thelial cells as occurred with endurance training [33].
Human studies are needed to investigate molecular-
signaling mechanisms of the impact of low- and high-
intensity RT on PWV. Collectively, the studies examined
in this review support the notion that low- to high-intensity
RT may reduce BP by improving endothelial function
(Figs. 1 and 2).

Conclusions

This review article highlights evidence on the effects of high- and
low-intensity RT on arterial stiffness and BP in young and older
adults. Increased central arterial stiffness and SBP are associated
with aging and cardiovascular diseases. In addition, the age-
related loss of skeletal muscle mass/strength is also associated
with arterial stiffening and hypertension. Therefore, RTshould be
the primary exercise modality to improve these age-related vas-
cular and muscular abnormalities. Although the potential for ad-
verse effects of high-intensity RT on central arterial stiffness ex-
ists, most of the studies have shown that high-intensity RT does
not affect arterial stiffness whereas low-intensity RTcan decrease
or not change arterial stiffness. Importantly, RT independently of
the intensity has demonstrated effectiveness to improve BP (pe-
ripheral and central) and peripheral artery endothelial function.
Further studies are needed to examine the impact of RTon central
arterial stiffness, BP, and wave reflection in middle-aged and
older adults.
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