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Abstract
During the course of life, muscle mass undergoes many changes in terms of quantity and quality. Skeletal muscle is a dynamic
tissue able to hypertrophy or atrophy according to growth, ageing, physical activity, nutrition and health state. The purpose of the
present review is to present the mechanisms by which exercise can induce changes in human skeletal muscle mass bymodulating
protein balance and regulating the fate of satellite cells. Exercise is known to exert transcriptional, translational and post-
translational regulations as well as to induce epigenetic modifications and to control messenger RNA stability, which all
contribute to the regulation of protein synthesis. Exercise also regulates the autophagy–lysosomal and the ubiquitin–proteasome
pathways, the two main proteolytic systems in skeletal muscle, indicating that exercise participates to the regulation of the quality
control mechanisms of cellular components and, therefore, to muscle health. Finally, activation, proliferation and differentiation
of satellite cells can be enhanced by exercise to induce muscle remodelling and hypertrophy. Each of these mechanisms can
potentially impact skeletal muscle mass, depending on the intensity, duration and frequency with which the signal appears.
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Introduction

During the course of life, muscle mass undergoes many
changes in terms of quantity and quality. Skeletal muscle is
a dynamic tissue able to hypertrophy and to atrophy according
to the age, the physical activity, the nutritional state and po-
tentially several diseases. Muscle mass accretion or loss re-
sults from net protein balance. If protein synthesis exceeds
protein degradation, proteins will accumulate and muscle
mass will increase. Inversely, if protein synthesis is less than
degradation, loss of muscle mass will occur. In addition, sat-
ellite cell inclusion may contribute to increased muscle mass,
while fibre loss results in a reduction of muscle mass. The
purpose of the present review is to present the mechanisms
by which exercise can exert changes in skeletal muscle mass
of healthy adult humans. Undoubtedly, nutrition, and more

particularly amino acids, plays an essential role in the regula-
tion of protein balance and satellite cells by exercise. We pur-
posely chose not to focus on this aspect here, and we refer the
readers to recently published reviews [34, 97, 103, 137, 142].
Of note, the term Bexercise^ represents one single session of
physical exercises while Bexercise training^ or Btraining^ rep-
resents repeated sessions to form a whole training program.
Finally, we will limit the report of animal findings to the strict
minimum to favour the presentation of data acquired in
human.

Effect of exercise on protein balance

Resistance exercise

Most studies on the response to exercise of human muscle
protein turnover have focused on changes in the hours follow-
ing resistance exercise, likely to result in muscle hypertrophy.
After heavy resistance exercise, mixed muscle protein synthe-
sis is increased for up to 48 h [119]. Similarly, after strenuous
exercise, myofibrillar protein synthesis peaked at 24 h and
remained elevated at 72 h [100]. Contrary to the systemic
response of feeding on all skeletal muscles, physical activity
only stimulates a response in the exercised muscles [99]. Over
the same time period after exercise, the muscle extracellular
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matrix and tendon increased protein synthesis in a similar
pattern [100] although probably at a slower rate [62]. The
magnitude of the increase in protein synthesis in skeletal mus-
cle after resistance exercise depends upon the intensity and the
total workload. Below 40% of the one-repetition maximum
(1-RM), there is no detectable increase in protein synthesis
while the latter is increased by two- to threefold at intensities
above 60% 1-RM [83]. Those results do not imply that inten-
sities below 40% 1-RM cannot elicit anabolic responses.
Indeed, in addition to the intensity, muscle fatigue is important
to take into consideration. Increases in muscle protein synthe-
sis at 30% 1-RM have been found to be comparable to in-
creases at 90% 1-RM when exercise is performed to failure,
not when work is matched between 30 and 90% 1-RM [20].
Practically, increasing the total workload can overcome the
lack of anabolic response generally observed at a lower inten-
sity, probably due to a higher recruitment of type II fibres
following the fatiguing nature of the contractions [20]. We
can therefore easily understand why repeating contractions
during endurance exercise for minutes or hours, even if the
intensity is rather low, can induce an anabolic response as
presented in the next section. In terms of contraction mode,
eccentric resistance exercise training, i.e. lengthening contrac-
tions, was found to be more potent to induce muscle hyper-
trophy than concentric training [127]. This effect seems to be
due to the higher external loading, which is an intrinsic feature
of eccentric contractions, rather than the contraction mode per
se. Indeed, when total work was matched between eccentric
and concentric contractions, no difference in muscle hypertro-
phy was observed after training [102].

In skeletal muscle, the range of the increase in protein syn-
thesis in response to exercise (+ 80–100%) is surprising, be-
cause the rate of net accretion ofmuscle protein is much lower.
It may take 20 weeks of intense resistance exercise to increase
muscle mass by 20%. This is, of course, due to a concomi-
tantly elevated protein degradation after acute exercise if nu-
trient intake is insufficient [119]. Protein ingestion after exer-
cise increases skeletal muscle protein synthesis and net bal-
ance to a greater extent than exercise in the fasted state [149].
Measurements of protein synthesis and degradation after a
12-h fast indicate that degradation exceeds synthesis, resulting
in a negative protein balance [163]. In the recovery period
after exercise without nutrient provision, protein synthesis
and protein degradation are increased compared with the
12-h fasted state, although net balance does not improve to a
positive balance. When receiving an infusion of mixed amino
acids after a fasted period, protein synthesis increases, where-
as protein degradation remains the same or decreases slightly
and net protein balance becomes positive. When exercise is
combined with amino acids, protein synthesis increases more
than after exercise or amino acid feeding alone, and protein
degradation remains similar to exercise without feeding. Net
protein balance is enhanced in comparison with amino acid

feeding alone. For the latest perspectives regarding protein
ingestion after resistance exercise training to increase muscle
hypertrophy, the reader is referred to a very recent review of
the literature [142]. The increase in protein synthesis after
feeding is a transient storage phenomenon, whereas physical
activity stimulates a longer-term adaptive response. Providing
nutrition after physical activity takes advantage of the anabolic
signalling pathways that physical activity has initiated by pro-
viding amino acid building blocks and energy for protein syn-
thesis [99]. The molecular mechanisms by which exercise
regulates protein synthesis and protein degradation will be
presented after the section on endurance exercise.

Endurance exercise

Compared to resistance exercise, endurance exercise is
characterised by a lower intensity and a longer duration from
about 30min to several hours. In contrast to resistance training
for which muscle hypertrophy is the predominant adaptation,
endurance training is associated with enhanced endurance ca-
pacity through the induction of shifts in substrate metabolism,
mitogenesis and angiogenesis [66, 67]. Detailed comparisons
between endurance and resistance exercise-induced muscle
adaptations can be found in [24, 30, 31]. Compared to
resistance training, fewer studies have investigated the links
between endurance exercise and protein metabolism.
Nonetheless, endurance exercise is also associated with a
stimulation of mixed muscle protein synthesis following run-
ning, walking or swimming in both men and women [26, 59,
60, 138, 150]. Compared to resistance exercise, the response
seems to be somewhat delayed as during the initial 1–1.5 h
post-exercise, only minimal increases in muscle protein syn-
thesis are observed, after which protein synthesis increases
significantly [90] and can be maintained for up to 24 h, de-
pending on the intensity of the exercise [37]. In contrast to
resistance exercise, increased mixed muscle protein synthesis
following endurance exercise appears to be predominantly
driven by increases in sarcoplasmic and mitochondrial, rather
than myofibrillar protein synthesis [38, 161]. Synthesis of
mitochondrial proteins is preferentially upregulated in re-
sponse to endurance exercise, while myofibrillar synthesis is
preferentially upregulated in response to resistance exercise, at
least in the trained state [161]. Similar to resistance exercise,
muscle protein degradation responses to endurance exercise
have been less studied. It has been shown that during endur-
ance exercise, muscle protein degradation was increased [4,
26], probably for energetic purposes, by releasing free amino
acids [115]. These increases in muscle protein degradation
during exercise are maintained post-exercise [26, 138],
however, to a lesser extent than during exercise [4].
As mentioned earlier, the next section will focus on
the molecular mechanisms by which exercise regulates
protein synthesis and protein degradation.
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Mechanisms in exercise-induced protein
balance

Protein synthesis

Any step of gene expression can potentially be regulated from
transcriptional to translational and post-translational regula-
tions, as well as via chemical and structural modifications of
DNA or messenger RNA (mRNA) stability (Fig. 1). The abil-
ity of exercise to regulate each of those steps is detailed in the
following section.

Transcriptional regulations

Most genes are regulated primarily at the level of transcription
rather than translation [17]. This transcriptional regulation is
mediated by transcription factors, which generally simulta-
neously bind DNA and RNA polymerase, as well as other
factors necessary for the transcription process. Transcription
factors, and their cofactors, can be regulated through revers-
ible post-translational modifications such as phosphorylation
or inactivated through mechanisms such as proteolysis.
Transcription is initiated at the promoter site as an increase
in the amount of an active transcription factor binds a target
DNA sequence. Other proteins, known as scaffolding pro-
teins, bind other cofactors and hold them in place. DNA se-
quences far from the point of initiation, known as enhancers,
can aid in the assembly of this transcription machinery. While
it would be impossible to establish an exhaustive list of all

transcription factors, cofactors and other scaffolding proteins
that are regulated by exercise, the induction of the expression
of immediate early genes, such as c-Fos or c-Jun, or the ex-
pression of activating protein 1 or serum response factor is a
crucial primary step in the response to contractile activity [9].
These are themselves transcription factors or components
thereof, which can further influence gene expression [166].

DNA modifications

Non-genetic structural modifications of DNA and/or histones
resulting in alterations in gene expression are encompassed
under the term epigenetics [71]. Thosemodifications are tight-
ly regulated by three major mechanisms: (1) methylation of
the cytosine residues of DNA; (2) chemical modifications of
specific residues of histone tails such as acetylation, methyla-
tion or phosphorylation; and (3) transcriptional regulation by
microRNAs (miRNAs) [114]. The latter epigenetic modifica-
tion will be developed in a specific section hereafter. The
classic DNA covalent modification is methylation of cytosine,
which results in the addition of a methyl group by DNA
cytosine-5-methyltransferase (DNMT) enzymes [76]. The ef-
fect of DNA methylation on gene expression depends on its
location within the genome. DNAmethylation at the promoter
and enhancer regions of genes is associated with transcription-
al repression, whereas the un- or hypomethylated state is re-
lated to a transcriptionally permissive state [35]. Indeed, pro-
moter DNAmethylation changes the conformational layout of
chromatin to a more condensed state, more difficult to access
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by the transcriptional machinery. Conversely, DNA methyla-
tion within the gene body seems to be associated with active
transcription [75].

Histone post-translational modifications are the second
most common epigenetic regulation. The nucleosome is
formed by an octamer of histone proteins in which 147 bp
of DNA is wrapped around it [74, 143]. Nucleosomes contain
two copies of each one of the core histone proteins (H2A,
H2B, H3 and H4). In addition, the H1 linker histone stabilises
the nucleosome and the linker DNA region between nucleo-
somes. In the context of the present review, the tail domain of
the histones is particularly susceptible to the post-translational
modifications induced by resistance or endurance exercise
[96] and nutrition [29]. The modifications in histone tails are
controlled by histone acetyltransferases, histone deacetylases
and histone demethylases, amongst others [74, 143].

Epigenetic modifications, and more particularly methyla-
tion of the promoters of peroxisome proliferator-activated re-
ceptor-gamma coactivator-1 alpha (PGC-1α), pyruvate dehy-
drogenase kinase 4 (PDK4) and peroxisome proliferator-
activated receptor-delta (PPAR-δ) as well histone acetylation
of glucose transporter 4 (GLUT4) and myocyte enhancer fac-
tor 2 (MEF2), have been shown to contribute to metabolic
adaptations to endurance exercise [11, 95, 114]. In the context
of the present review on the control of muscle mass, a very
recent report shows that human skeletal muscle possesses an
epigenetic memory of hypertrophy [136]. The number of
hypomethylated loci across the genome after reloading
was twice versus earlier loading. Specific genes, namely
AXIN1, glutamate receptor ionotropic kainate 2 (GRIK2),
calcium/calmodulin-dependent kinase 4 (CAMK4) and tumor
necrosis factor receptor-associated factor 1 (TRAF1), were
hypomethylated with enhanced expression after loading, and
those genes maintained their hypomethylated status during
unloading while muscle mass returned to control levels.
Those results suggest a memory of the methylation signature
of those genes following earlier hypertrophy [136]. GRIK2,
TRAF1, bicaudal C homolog 1 (BICC1) and stromal antigen
1 (STAG1) were epigenetically sensitive to acute exercise as
they were hypomethylated after resistance exercise, and this
hypomethylation was maintained 22 weeks later with the larg-
est increase in gene expression and muscle mass after
reloading [136]. All together, those results indicate an
underestimated but important epigenetic role for a large num-
ber of genes in muscle hypertrophy and memory.

mRNA stability

Two classes of short RNA molecules, small interfering RNA
(siRNA) and miRNA, have been identified as sequence-
specific post-transcriptional regulators of gene expression
[145]. Pri-microRNA transcripts are first processed into ~
70-nucleotide pre-miRNA with imperfect stem loop by

Drosha inside the nucleus. Pre-miRNAs are transported to
the cytoplasm by Exportin 5 and are processed into miRNA
duplexes by dicer, a multidomain enzyme of the RNase III
family. Dicer also processes long double-stranded molecules
into siRNA duplexes. The nascent siRNA and miRNA are
double-stranded duplexes. These duplexes need to be un-
wound before they can be assembled into an RNA-induced
silencing complex (RISC). Only one strand (~ 21–25 nucleo-
tides) of the miRNA duplex or the siRNA duplex is preferen-
tially assembled into the RISC, which subsequently acts on its
target by translational repression or mRNA cleavage, depend-
ing, at least in part, on the level of complementarity between
the small RNA and its target [61]. Of note, each tissue can
express specific miRNA, called myomiR in muscle [129].

While miRNAmay be released from skeletal muscle to the
systemic circulation, here, we will focus on the effect of exer-
cise on the regulation of miRNA in skeletal muscle. If it is
clear that they are required for muscle development and re-
generation, the role of miRNA in muscle maintenance and
adaptation during adulthood has not been well characterised
up to now [80]. In 2007, it was shown for the first time that
miRNA levels could be modulated by changes in mechanical
demand [94]. In a mechanical overload mouse model, the
plantaris muscle showed a ~ 50% decrease in miR-1 and
miR-133 levels [94]. In humans, resistance exercise resulted
in a decrease in miR-1 expression in skeletal muscle [39]. As
miR-1 targets insulin-like growth factor 1 (IGF-1) and the
IGF-1 receptor, it has been suggested that a decrease in miR-
1 would potentiate activation of the IGF-1/protein kinase B
(PKB) signalling cascade [42]. In addition, there is evidence
to suggest that the magnitude of change in miRNA expression
following resistance exercise training could predict whether a
person would respond well or less well to the exercise [33]. In
young adult males, changes in miRNA expression in the
vastus lateralis muscle corresponded to differences in muscle
hypertrophy after 12 weeks of resistance training [33].
Twenty-one miRNAs were profiled, all showing no signifi-
cant change in the high-responder group, whereas an increase
in miR-451 and a decrease in miR-378 as well as a tendency
towards decreased miR-26a and miR-29a were found in the
low-responder group. Not only resistance exercise regulates
miRNA expression; several studies found that adaptations to
endurance exercise were under the control of specific miRNA
as well.

The targeted deletion of miR-208b or miR-499 revealed
that these two miRNAs were required to establish the slow-
twitch fibre phenotype as KO mice for either miRNA resulted
in a muscle with significantly more fast-twitch fibres [152].
Consistent with this finding, these knockout mice exhibited
reduced exercise capacity when subjected to forced running
[152]. Using the same exercise paradigm, Safdar et al. [131]
found that treadmill running increased the expression of miR-
181, miR-1 and miR-107 and reduced miR-23 expression.
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These changes in miRNA expression were associated with
increased expression of the miR-23 target and PGC-1α, as
well as downstream targets of PGC-1α involved in mitochon-
drial biogenesis, namely aminolevulinic acid synthase, citrate
synthase and cytochrome c [131]. In addition, PGC-1α has
been found to be targeted by miR-696, another miRNA that is
downregulated in response to endurance exercise [6]. Similar
results have been found for miR-494, the downregulation of
which corresponded to a concomitant increase in gene targets
involved in mitochondrial biogenesis [167]. In addition to
mitochondrial biogenesis, miRNAs may be involved in regu-
lating adaptations involving oxygen delivery to the muscle via
increased capillary density. The levels of miR-16 in the soleus
muscle of rats following swim training decreased whereas the
expression of vascular endothelial growth factor and its re-
spective type 2 receptor increased [44]. In untrained human
participants, acute endurance exercise increased the expres-
sion of miR-1 and miR-133 in the quadriceps muscle, while
resting levels of miR-1, miR-133a, miR-133b and miR-206
were lower following 12 weeks of training than before train-
ing [108]. In addition, the changes observed following the
acute exercise pre-training were abolished post-training, sug-
gesting that miRNA levels in response to exercise are sensi-
tive to training status [108]. Similarly, increased miR-1, miR-
133a, miR-133-b and miR-181a expression and decreased
miR-9, miR-23a, miR-23b andmiR-31 expression were found
following an acute exercise [130]. After 10 days of training,
miR-1 and miR-31 expression was still increased and de-
creased, respectively, while miR-29b expression was in-
creased, confirming that the training status is part of the reg-
ulation of miRNA expression.

Translational and post-translational regulations

The translation rate may be regulated by rapid changes within
a few minutes. In this case, it implicates the activity or asso-
ciation of components of the translational machinery, which
are primarily mediated by changes in the states of phosphor-
ylation of translation factors and specific RNA-binding pro-
teins. Over the longer term, hours to days, the control of pro-
tein synthesis involves changes in the levels of translation
factors and ribosomes [121]. The process of translation is
divided into three stages: initiation, elongation and termina-
tion. Each stage requires translation factors that transiently
associate with the ribosome. For a detailed description of the
molecular regulations of the translation phase by exercise,
with a specific emphasis on the mammalian target of
rapamycin (mTOR) pathway, the reader is referred to the fol-
lowing reviews: [2, 8, 45, 55, 70, 155].

Increased ribosomal function seems required to induce net
protein synthesis and muscle hypertrophy [10]. Enhanced pro-
tein translation rates can be achieved by increased ribosomal
efficiency and/or elevated ribosomal capacity via ribosome

biogenesis. Both processes are regulated at least in part by
mTOR complex 1 (mTORC1) activity. Recent findings sug-
gest that increased mTORC1 activity following compensatory
overload hypertrophy in a murine model has a larger impact
on translational efficiency than capacity during the first few
days following loading [56]. Nevertheless, mTORC1 also
plays a central role in ribosome biogenesis by regulating the
synthesis of both ribosomal proteins and ribosomal RNA [92].
In humans, until recently, most studies have focused on ribo-
somal efficiency after acute resistance exercise and long-term
resistance training but several lines of evidence now suggest
that ribosomal biogenesis may be a key rate-limiting factor in
the regulation of resistance training-induced myofibre hyper-
trophy [10]. Ribosomal RNA represents 80 to 85% of total
RNA but is less easy to quantify than total RNA. Therefore,
the magnitude of changes in the amount of total RNA is often
used as a surrogate of changes in the levels of ribosomal RNA.
Over the course of resistance training, total RNA amount ap-
pears linked to the magnitude of myofibre [140] and muscle
[45] hypertrophy, suggesting that ribosomal RNA amount al-
so varies with changes in muscle growth.

Protein degradation

Studies examining human skeletal muscle protein turnover
have focused predominantly on muscle protein synthesis.
This is not surprising, considering protein synthetic responses
to a variety of stressors in healthy muscle, including nutrition
and exercise, are generally more robust and sustained than
those related to protein degradation [118, 119]. In skeletal
muscle, protein degradation is supported by four major pro-
teolytic systems: the calcium-dependent calpains [169], the
autophagy–lysosomal proteases/cathepsins [18], the cysteine
protease caspase enzymes and the ubiquitin–proteasome sys-
tem [43]. Evidence has accumulated that these systems work
as partners during muscle proteolysis rather than independent-
ly. The control of the degradation rate per se is accomplished
in two distinct ways: in the short term, by controlling the
enzymatic activities of proteases and/or the access of sub-
strates to these proteases, and in the long term, by controlling,
at both transcriptional and translational levels, the synthesis of
the proteases and their accessory enzymes [144].

Autophagy is a highly conserved degradation mechanism
bywhich bulk cytoplasmic, long-lived proteins and organelles
are degraded by the lysosomal enzymes (cathepsins) [132].
Cathepsins are also capable of degrading myofibrillar proteins
such as troponin T, myosin heavy chain or tropomyosin [15].
Autophagy is particularly active in skeletal muscle, where it
can be evaluated using specific molecular markers of activa-
tion such as unc-51-like kinase 1 (ULK1) phosphorylation
and specific proteins, indicating increased autophagosome
content, such as total microtubule-associated protein
light chain 3 (LC3), LC3-II and LC3-II/LC3-I ratio, or
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autophagosome degradation, such as p62 [89]. LC3-II, the
lipidated form of LC3-I, directly reflects the presence of
autophagosomes [12]. LC3-II is recruited at both the inner
and outer membranes during vesicle elongation, where it re-
mains bound until autophagosomes fuse with lysosomes
[123]. Thus, the LC3-II/LC3-I ratio is recognised as a reliable
marker of autophagosome synthesis [81]. p62 binds both to
aggregated proteins and to LC3-II and is degraded with the
autophagosome content after fusion with lysosome and, as
such, helps to determine the amount of autophagosomes
discarded by the lysosomes [113].

While studying autophagy in human is not an easy task due
to its very dynamic nature, the activation of autophagy in
skeletal muscle has been found to occur through AMP-
activated kinase (AMPK) and its downstream target ULK1.
In human, the regulation of autophagy mainly relies on exer-
cise intensity, less on the nutritional state, which differs some-
what from studies in mice [73, 135]. The autophagy-related
and autophagy–regulatory genes are upregulated after an
ultraendurance running race [72]. Those results contrast with
the reduction in autophagosome synthesis and content,
assessed by the ratio LC3-II/LC3-I and LC3-II protein levels,
respectively, after endurance exercise of shorter duration (60–
120 min) at moderate intensities (50–70% of VO2max) [47,
101, 135]. The effect of resistance exercise on the regulation
of autophagy has been much less studied, but it has been
shown that the LC3-II/LC3-I ratio and LC3-II protein levels
were decreased within the first few hours during the recovery
period [48, 52]. It remains to be established whether regular
endurance and strength training regulate basal autophagy in
humans.

Calcium-dependent μ-calpain, m-calpain and p94 contrib-
ute to muscle protein degradation [50], with p94 being the
most highly expressed in skeletal muscle [79]. Calpain enzy-
matic activity is upregulated in response to endurance exercise
[50]. The mechanism by which calpains contribute to muscle
protein degradation is probably by cleaving myofibrillar pro-
teins into smaller fragments for subsequent degradation by the
ubiquitin–proteasome system [54]. Similar to the calpains,
after cleaving by caspase-9, caspase-3 becomes activated
and initiates muscle proteolysis by degradingmyofibrillar pro-
teins into smaller fragments [40]. In addition to cleaving myo-
fibrils, caspase-3 is also able to activate proteasome activity
[154], thereby both providing substrate to the ubiquitin–pro-
teasome machinery and increasing ubiquitin–proteasome-me-
diated protein degradation. Before degradation by the protea-
some, cleaved myofibril segments are ubiquitylated by
muscle-specific ubiquitin ligases, amongst which atrogin-1
(MAFbx) and muscle RING finger-1 (MuRF-1). Poly-
ubiquitylated proteins are subsequently degraded by amino
acid hydrolysis within the 26S subunit of the proteasome [51].

Immediately following resistance exercise, MuRF-1 and
MAFbx mRNA levels are rapidly augmented, together with

their upstream transcription factor forkhead box 1 (FoxO1)
[36, 107], with MuRF-1 reaching a peak at 1–2 h post-
exercise and returning to baseline levels within 8 h [86].
This molecular regulation seems to be differentially affected
by the contraction mode, with increases in MuRF-1 and
FoxO1 mRNA levels only seen in response to concentric con-
tractions, not after eccentric contractions [107]. After eccentric
contractions, MAFbx mRNA levels were even decreased
while the mRNA levels of the structural components of the
ubiquitin–proteasome system, namely proteasome subunit
α1, ubiquitin splice forms I and II as well as MuRF-2 and
MuRF-3, were increased [107]. This difference in molecular
regulation between the two contraction modes is likely depen-
dent on the increased levels of damage and remodeling re-
quired for eccentric compared to concentric contraction.
Following 10 weeks of resistance training, the response of
the ubiquitin–proteasome system during the recovery period
is attenuated [141], reflecting a similar adaptation of the mus-
cle protein degradation rate after training [120]. This suggests
that most of the muscular remodeling due to resistance train-
ing occurs in the early phases of the training period. Following
moderate endurance exercise, both MuRF1 and MAFbx
mRNA levels were increased, suggesting a role for the ubiq-
uitin–proteasomal pathway in regulating post-endurance exer-
cise protein degradation as well [116]. Similar to resistance
exercise, MuRF1 mRNA levels after endurance exercise fol-
low a temporal pattern peaking between 1 and 2h, but being
maintained for up to 24 h post-exercise, unlike resistance ex-
ercise [86]. Contrary to resistance training, the upregulation of
the ubiquitin–proteasome system seems to persist after
10 weeks of endurance training [141], highlighting the differ-
ent regulations of protein metabolism between resistance and
endurance exercise.

Effect of exercise on satellite cells

Satellite cells are a population of muscle-derived stem cells
responsible for myofibre development and renewal [91]. They
are located outside sarcolemma and under the basal lamina of
the muscle fibre [25]. Normally, in resting skeletal muscles,
satellite cells are generally in a non-proliferative, quiescent
state, but they have the ability to re-enter the cell cycle to
generate new muscle fibres or to provide new myonuclei dur-
ing post-natal growth [134]. Activation, proliferation and fu-
sion of this population of cells are required by a myofibre
when undergoing myofibrillar protein growth to maintain a
constant nuclear/cytoplasmic ratio. Each step is tightly regu-
lated by the myogenic regulatory factors (MRFs), a family of
four members (MyoD, Myf-5, myogenin and MRF4, also
called Myf-6) [122].

Resistance exercise training has been shown to increase the
number of satellite cells after several days [32], weeks [111] or
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years [77]. This increase can be maintained as long as the
muscles are subjected to training. The cessation of training is
associated with the termination of satellite cell activation [78].
The activation of satellite cells can be attributed to exercise per
se, exercise-induced localised ultrastructural damage,
exercise-induced segmental fibre damage, exercise-induced
release of inflammatory substances and/or exercise-induced
release of growth factors [77]. It seems that the amount of
muscle fibre damage is not correlated to the changes in satel-
lite cells following training. The trigger for satellite cell acti-
vation could rather be the exercise-induced ultrastructural
muscle damage since fibres with more ultrastructural damage
also contained higher proportions of active satellite cells
[128]. While less studied, we understand from the latter that
the activation of satellite cells is not restricted to resistance
exercise but that endurance exercise can activate them as well,
the critical factors being the nature of contraction, eccentric
versus concentric, and the intensity of the session [1]. In con-
trast to resistance exercise, it seems that the activation of sat-
ellite cells in response to endurance exercise leads to muscle
adaptations rather than hypertrophy. The key triggers of satel-
lite cell activation by endurance exercise seem to be metabolic
factors, such as nitric oxide (NO), nicotinamide dinucleotide
(NAD) and sirtuins (SIRTs), as well as oxygen availability
according to emerging findings in vitro [1].

Additional mechanisms that could be shared by endurance
and resistance exercise contribute to the activation of satellite
cells [14]. It has been proposed that hepatocyte growth factor
(HGF) activates satellite cells and that IGF-I and fibroblast
growth factor (FGF) increase the proliferation of satellite cells
once they are activated [5, 146]. The discovery of two IGF-I
isoforms in skeletal muscle, mechanical growth factor (MGF)
and IGF-IEa, has suggested that MGF initiates satellite cell
activation and proliferation, while IGF-IEa promotes differen-
tiation of proliferating satellite cells [168].

In addition to the aforementioned factors, myostatin has
direct effects on the proliferation and/or differentiation of nu-
merous muscle cell lines [85, 126]. The effect on muscle fibre
number is likely to result from the activity of myostatin on
myoblast proliferation and/or differentiation during develop-
ment, while the effects on fibre size appear to be mediated
through the action of myostatin on muscle satellite cells
[153]. Myostatin inhibits proliferation through an upregula-
tion of p21 and decreases in the levels of both cyclin-
dependent kinase 2 and phosphorylated Rb, resulting in cell
cycle inhibition [147]. The effect on differentiation appears to
occur through downregulation of the myogenic differentiation
factors MyoD, Myf-5 and myogenin [85].

It can be hypothesised that exercise can induce activation
of satellite cells without proliferation, proliferation and with-
drawal from differentiation, proliferation and differentiation to
provide more myonuclei and proliferation and differentiation
to generate new fibres or to repair segmental fibre injuries

[77]. Although the studies mentioned above tend to favour
the idea that satellite cell addition participates to muscle hy-
pertrophy following exercise, it seems that skeletal muscle is
capable of hypertrophy via a mere increase in protein synthe-
sis with no additional satellite cell incorporation [93]. In ac-
cordance with the latter view, some studies have shown that
contraction-induced skeletal muscle growth occurs with no
change in total DNA per muscle [164, 165] and that inhibition
of satellite cell proliferation does not prevent muscle growth
[87]. The requirement of satellite cell activation for skeletal
muscle hypertrophy could be linked to the type of growth
stimulus, the magnitude of the growth response, the age of
the subjects and the time of sampling after the applied stimu-
lus. Muscle growth consists of multiple phases, including ac-
celerated transcriptional and translational responses followed
by possible satellite cell addition during the later stages of
hypertrophy. It is likely that satellite cell activation is neces-
sary only if a certain threshold of myofibre size is reached
[109].

Initiating signals leading to muscle
hypertrophy

The main cellular events leading to muscle hypertrophy are
summarised in Fig. 2. Via receptor binding and cellular sig-
nals, certain cytokines (others are obviously involved in mus-
cle degradation), hormones and growth factors are sensed and
activate a network of signal transduction pathways that result
in the nuclear translocation or activation of transcription fac-
tors [124]. Active transcription factors change the expression
of the major muscle growth regulators, IGFI-Ea, MGF and
myostatin, or other muscle-specific genes. IGFI-Ea, MGF
and insulin activate the phosphoinositide-3-kinase (PI3K)/
PKB/mTOR pathway, which enhances protein synthesis via
increased translational initiation and the synthesis of ribosom-
al proteins for ribosome biogenesis. Availability of amino
acids will activate mTOR signalling, whereas an increased
energy demand sensed by AMPK will inhibit mTOR.

In addition to stimulate muscle fibre hypertrophy, IGFI-Ea,
MGF, testosterone, myostatin and various other factors also
regulate an increased proliferation and/or differentiation of
satellite cells [64]. Hypertrophy is thus produced not only
through binding of growth factors on/in the skeletal muscle
fibres but also through binding to receptors on/in activated
satellite cells. Although IGF-I protein is one major mediator
of these hypertrophic effects, it has been suggested that the
isoform from which IGF-I is produced can affect its potency.
MGF has been proposed to be more potent for promoting rat
skeletal muscle hypertrophy [53]. However, this proposal has
been countered in another study in young growing rats, where
the ability of MGF to promote muscle hypertrophy was not
greater than IGF-IEa, with a barely non-existent effect in adult
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muscle [13]. It is thus possible that MGF can promote hyper-
trophy only when there is an active satellite cell pool, as ob-
served in growing animals [13]. A decreased response of both
IGF-I splice variants to resistance exercise with age has been
suggested and tested in human as well, but opposite results
have been found. Some studies reported a blunted response of
MGF mRNA after resistance exercise in older compared to
young subjects [58, 117] while a recent study found a higher
response instead [3]. This discrepancy cannot be explained by
the intensity of the exercise used in those different studies as
both 60–65% 1-RM and 80–85% 1-RM induced similar in-
creases in IGF-IEa and MGF mRNA levels in human skeletal
muscle [160]. Of note, there is considerable variation between
individuals in the response of IGF-IEa and MGF mRNA to
exercise [58], which contributes to the difficulty to draw clear
conclusions about their regulation and their role in muscle
accretion.

The signalling pathways leading to transcriptional and
translational changes in skeletal muscle in response to resis-
tance exercise are still not fully understood. Four potential
stimuli that may regulate these processes have been proposed:
mechanical load or stress, intracellular calcium, hypoxia and
redox state [9]. These are thought to be first messengers in a
signalling cascade in which various transcription factors, hor-
mones and other regulatory proteins are activated. Signal
transduction pathways shown to be activated in response to
various forms of contraction include those involving AMPK
[162], calcineurin [98], extracellular signal-regulated kinase
1/2 (ERK1/2) and p38 [159], c-Jun N-terminal kinase (JNK)
[7], nuclear factor kappa B (NF-κB) [65], PI3K/PKB/mTOR
[151] and protein kinase C (PKC) [125].

Calcineurin is a calcium–calmodulin-activated protein
phosphatase that dephosphorylates the transcription factor nu-
clear factor of activated T cells (NFAT), enabling its nuclear
translocation and DNA binding. The calcineurin pathway has
been linked not only to the regulation of skeletal muscle
growth but also to the conversion of fast-to-slow phenotype
[112] although, currently, the link with muscle growth is
questioned. Various sensors of mechanical strain seem to

possess the ability to translate strain into chemical signals that
induce the activation of skeletal muscle gene promoters [27].
A possible candidate sensor of the increase in mechanical
strain is focal adhesion kinase, a protein localised to the sar-
colemma [46]. The serum response factor, which is a tran-
scription factor, is a substrate of focal adhesion kinase, thereby
providing a transcriptional link between membrane, the ge-
nome and subsequent expression of muscle protein. The pu-
tative link between focal adhesion kinase and serum response
factor is the β1 integrin–RhoA signalling [156]. Different
modes of exercise affect ERK1/2 and p38 MAPK likely in
an intensity-dependent manner [106, 159]. However, only
those stimuli likely to result in hypertrophy, such as high-
frequency electrical stimulation, increased ribosomal protein
S6 kinase (S6K1) and PKB phosphorylation [106]. IGFI-Ea,
MGF andmyostatin are not directly regulated by stretch, over-
load or muscle contraction, but by the signal transduction
pathways that sense these stimuli and, consequently,
regulate the availability of these muscle growth factors
for receptor binding. The major step controlling the
availability of IGFI-Ea, MGF and myostatin in response
growth-inducing stimuli appears to be transcriptional
regulation [124]. In summary, muscle growth stimuli
lead to the activation of a signal transduction network
and to a changed availability of the major muscle
growth factors IGFI-Ea, MGF and myostatin. The acti-
vated signal transduction pathways and changed growth
factor availability will then regulate the activity of mus-
cle growth executors, which are the translational or pro-
tein synthesis machinery and, possibly, satellite cells.

It must be stated here that the view implying a major
role of IGF-I in skeletal muscle hypertrophy induced by
mechanical loading through the activation/proliferation
of satellite cells and/or the increase in protein synthesis
has been questioned [139]. It was found that IGF-IR
was not necessary for the induction of skeletal muscle
growth in response to mechanical loading, whereas com-
ponents of the PKB pathway were activated. Those results
were confirmed by others [157, 158]. Resistance exercise
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was performed either with armmuscles alone or with both arm
and leg muscles to induce either low or high elevations in
growth hormone, testosterone and IGF-1. Yet, despite
markedly different systemic concentrations between the
two groups, there was no difference in acute mTORC1
signalling or in muscle protein synthesis or in long-term
adaptations to training in terms of mass and strength
gains [157, 158]. However, suppression of testosterone
production via the use of a gonadotropin-releasing hor-
mone analogue in humans ablates muscle growth re-
sponses to resistance exercise [84], thus suggesting that
testosterone remains an integral part of protein metabol-
ic responses to exercise. These results suggest that IGF-
I and growth hormone are not the key factors necessary
for initiation of growth response to mechanical load and
that other factors are probably responsible for the acti-
vation of the PKB/mTORC1 pathway, such as, for example,
intrinsic mechanosensors.

Mechanotransduction is the process of converting me-
chanical signals that are sensed in response to cellular
movement into molecular signals, and numerous candi-
date Bmechanosensors^ have been suggested in skeletal
muscle. One target recently found was phospholipase D,
which increases the production of the lipid second mes-
senger phosphatidic acid in a mechanosensitive manner.
Phosphatidic acid signalling was found to be upstream
of contraction-induced activation of mTOR. Indeed,
pharmacological inhibition of phospholipase D impaired
activation of mTOR in response to muscle contractions
[110]. The focal adhesion complexes are other possible
mechanosensitive sensors that link the extracellular ma-
trix to the cytoplasmic cytoskeleton. They consist of a
variety of extracellular matrix receptors/integrins, intra-
cellular cytoskeletal and signalling molecules [82].
Interactions of extracellular matrix proteins with integrin
receptors stimulate intracellular signalling pathways im-
portant in cell growth and migration in adult skeletal
muscle [133]. Activation of integrin receptors appears
to be a common feature of muscle remodeling in re-
sponse to, amongst others, endurance exercise [148].
Focal adhesion kinase (FAK), which localises to focal
adhesion complexes, is a non-receptor tyrosine kinase,
which can be phosphorylated at Tyr397, and thereby
activated, upon engagement of integrin receptors [22,
28]. A growing body of evidence has associated FAK
activation with responses to mechanical stress in skeletal
muscle [41]. Indeed, FAK phosphorylation has been
shown to be increased in overload models in mice
[46, 57] and resistance exercise in humans [161]. In
addition, local overexpression of FAK in rodent skeletal
muscle stimulated muscle hypertrophy [82]. All togeth-
er, those results indicate that FAK is a legitimate
mechanosensitive component of muscle hypertrophy.

Concurrent exercise

Endurance and resistance exercise induce different phys-
iological and molecular adaptations that could potential-
ly interfere with each other. Performing endurance and
resistance exercise concurrently could be detrimental for
some adaptations, from which the interference hypothe-
sis was raised [16]. At the molecular level, it was orig-
inally thought that the activation of AMPK by endur-
ance exercise could inhibit the mTOR pathway, which is
activated by resistance exercise [30]. In the context of
the present review, consequent to the reduction in
mTOR signalling, the typical anabolic response after
resistance exercise would be reduced as well [105].
However, this potential mechanism was nuanced depending
on whether a single exercise or a training process was consid-
ered [49].Without questioning, the inhibitory effect of AMPK
on mTOR, which appears during exercise, seems to be lower
in humans than in rodents [69]. Moreover, during a
training process of a few weeks, the hypertrophic re-
sponse was not altered by the addition of endurance
training to a resistance training [88]. It seems that a rest
period of at least 6–24 h is needed to avoid any inter-
ference between both modalities of exercise, at least
when looking at muscle hypertrophy [104]. All together,
the recent findings seem to indicate that the interference
phenomenon originally described by Hickson in 1980 [63]
could be reduced or totally abrogated if training parameters
are planned appropriately [49].

Interindividual variability

While it is now well established that resistance exercise stim-
ulates muscle protein synthesis and promotes muscle mass
and strength gains, substantial variability exists following
standardised resistance training programs in the magnitude
of those gains from one individual to another. Changes in
muscle size ranging from 3% up to almost 60% have been
measured following 12 weeks of resistance training in healthy
young adults [68]. In addition to alterations in satellite cell
population, myogenic gene expression, miRNA and gene
polymorphisms, it has recently been postulated that the circa-
dian rhythms and underlying molecular clock signals could
contribute to this variability as well [23]. For example, taking
care of performing resistance exercise at a time when cortisol
levels are lowmay allow for increased plasma IGF-1 levels to,
in turn, allow the subsequent activation of S6K1. It has been
shown that the performance of resistance exercise in the eve-
ning compared to the morning was associated with reduced
plasma cortisol levels, indicating the potential for evening
over morning to reduce the catabolic environment and to pro-
mote muscle hypertrophy adaptations [19, 21].
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Perspectives

While the physiological adaptations to endurance and resis-
tance training seem relatively different and specific to the
modality of training, this could only be apparent. Indeed, a
priori, an increase in the mitochondrial pool and efficiency is a
hallmark of endurance training. Considering the huge amount
of energy protein synthesis and muscle accretion required, the
role of mitochondria to provide ATP during muscle hypertro-
phy has maybe been neglected so far. If this reveals true, any
training strategy aiming at increasing mitochondrial content
and function could help to speed up the accretion of muscle
mass, assuming the availability of amino acids is optimal. For
sure, this would ask a fine balance between endurance and
resistance exercise to avoid any interference as mentioned
above but this hypothesis is probably worth to be tested.

Conclusion

In conclusion, both resistance and endurance exercise regulate
protein balance and satellite cell inclusion. However, resis-
tance training has a higher potential than endurance training
to increase muscle mass.While several mechanisms leading to
muscle hypertrophy have been discovered, further investiga-
tion should focus on the specific regulation of those mecha-
nisms according to the training status, the age and the gender.
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